Integrated Home Energy Management with Hybrid Backup Storage and Vehicle-to-Home Systems for Enhanced Resilience, Efficiency, and Energy Independence in Green Buildings
Abstract
This study presents an innovative home energy management system (HEMS) that incorporates PV, WTs, and hybrid backup storage systems, including a hydrogen storage system (HSS), a battery energy storage system (BESS), and electric vehicles (EVs) with vehicle-to-home (V2H) technology. The research, conducted in Liaoning Province, China, evaluates the performance of the HEMS under various demand response (DR) scenarios, aiming to enhance resilience, efficiency, and energy independence in green buildings. Four DR scenarios were analyzed: No DR, 20% DR, 30% DR, and 40% DR. The findings indicate that implementing DR programs significantly reduces peak load and operating costs. The 40% DR scenario achieved the lowest cumulative operating cost of $749.09, reflecting a 2.34% reduction compared with the $767.07 cost in the No DR scenario. The integration of backup systems, particularly batteries and fuel cells (FCs), effectively managed energy supply, ensuring continuous power availability. The system maintained a low loss of power supply probability (LPSP), indicating high reliability. Advanced optimization techniques, particularly the reptile search algorithm (RSA), are crucial in enhancing system performance and efficiency. These results underscore the potential of hybrid backup storage systems with V2H technology to enhance energy independence and sustainability in residential energy management.