Exploring Technological Solutions for Onboard Hydrogen Storage Systems Through a Heterogeneous Knowledge Network: From Current State to Future Research Opportunities
Abstract
With the imminent threat of the energy crises, innovation in energy technologies is happening world-wide. The aim is to reduce our reliance on fossil fuels. Electric vehicles with fuel-cells that use hydrogen as an energy carrier are touted to be one of the most important potential replacements of the gasoline vehicle in both future transportation scenarios and emerging smart energy grids. However, hydrogen storage is a major technical barrier that lies between where we are now and the mass application of hydrogen energy. Further exploration of onboard hydrogen storage systems (OHSS) is urgently needed and, in this regard, a comprehensive technology opportunity analysis will help. Hence, with this research, we drew on scientific papers and patents related to OHSS and developed a novel methodology for investigating the past, present, and future development trends in OHSS. Specifically, we constructed a heterogeneous knowledge network using a unique multi-component structure with three core components: hydrogen carriers, hydrogen storage materials, and fuel cells. From this network, we extracted both the developed and underdeveloped technological solutions in the field and applied a well-designed evaluation system and prediction model to score the future development potential of these technological solutions. What emerged was the most promising directions of research in the short, medium, and long term. The results show that our methodology can effectively identify technology opportunities in OHSS, along with providing valuable decision support to researchers and enterprise managers associated with the development and application of OHSS.