Energy Management Control Strategy for Saving Trip Costs of Fuel Cell/Battery Electric Vehicles
Abstract
Fuel cell vehicles (FCVs) should control the energy management between two energy sources for fuel economy, using the stored energy in a battery or generation of energy through a fuel cell system. The fuel economy for an FCV includes trip costs for hydrogen consumption and the lifetime of two energy sources. This paper proposes an implementable energy management control strategy for an FCV to reduce trip costs. The concept of the proposed control strategy is first to analyze the allowable current of a fuel cell system from the optimal strategies for various initial battery state of charge (SOC) conditions using dynamic programming (DP), and second, to find a modulation ratio determining the current of a fuel cell system for driving a vehicle using the particle swarm optimization method. The control strategy presents the on/off moment of a fuel cell system and the proper modulation ratio of the turned-on fuel cell system with respect to the battery SOC and the power demand. The proposed strategy reduces trip costs in real-time, similar to the DP-based optimal strategy, and more than the simple energy control strategy of switching a fuel cell system on/off at the battery SOC boundary conditions even for long-term driving cycles.