Pulsed-Supplied Water Electrolysis via Two-Switch Converter for PV Capacity Firming
Abstract
Hydrogen constitutes the only carbon-free fuel that can be used for energy conversion, producing water as the only by-product. With water being one of the most abundant and inexhaustible raw materials in the world, and the required electricity input being provided by renewable resources, the produced hydrogen via water electrolysis constitutes a green pathway towards sustainability. In this work, a hybrid PV power-to-hydrogen, storage and fuel cell system is proposed to satisfy the domestic load of a residential building. Identifying alkaline as a mandatory electrolysis technology, the performance of alkaline electrolysis cells is assessed considering the inclusion of a two-switch buck-boost converter. Following a comprehensive formulation with respect to each distinguished system component, the balance condition at DC and AC buses is determined. The proposed configuration is evaluated, taking into account PV systems of different ratings, namely 3 kW, 5 kW and 7 kW. Based on actual data relating to both PV generation and domestic load for the year 2020, the obtained results from the annual simulations are compared with feed-in tariff and net-metering schemes. According to the results, PV capacity firming is achieved, creating great opportunities for autonomy enhancement, not only for electricity, but also in other energy sectors.