Skip to content
1900

Exploring the Competitiveness of Hydrogen-fueled Gas Turbines in Future Energy Systems

Abstract

Hydrogen is currently receiving attention as a possible cross-sectoral energy carrier with the potential to enable emission reductions in several sectors, including hard-to-abate sectors. In this work, a techno-economic optimization model is used to evaluate the competitiveness of time-shifting of electricity generation using electrolyzers, hydrogen storage and gas turbines fueled with hydrogen as part of the transition from the current electricity system to future electricity systems in Years 2030, 2040 and 2050. The model incorporates an emissions cap to ensure a gradual decline in carbon dioxide (CO2) levels, targeting near-zero CO2 emissions by Year 2050, and this includes 15 European countries. The results show that hydrogen gas turbines have an important role to play in shifting electricity generation and providing capacity when carbon emissions are constrained to very low levels in Year 2050. The level of competitiveness is, however, considerably lower in energy systems that still allow significant levels of CO2 emissions, e.g., in Year 2030. For Years 2040 and 2050, the results indicate investments mainly in gas turbines that are partly fueled with hydrogen, with 30e77 vol.-% hydrogen in biogas, although some investments in exclusively hydrogen-fueled gas turbines are also envisioned. Both open cycle and combined cycle gas turbines (CCGT) receive investments, and the operational patterns show that also CCGTs have a frequent cyclical operation, whereby most of the start-stop cycles are less than 20 h in duration.

Related subjects: Production & Supply Chain
Countries: Sweden
Loading

Article metrics loading...

/content/journal2718
2021-10-05
2024-11-02
/content/journal2718
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error