Skip to content
1900

Atomistic Modelling of Light-element Co-segregation at Structural Defects in Iron

Abstract

Studying the behaviour of hydrogen in the vicinity of extended defects, such as grain boundaries, dislocations, nanovoids and phase boundaries, is critical in understanding the phenomenon of hydrogen embrittlement. A key complication in this context is the interplay between hydrogen and other segregating elements. Modelling the competition of H with other light elements requires an efficient description of the interactions of compositionally complex systems, with the system sizes needed to appropriately describe extended defects often precluding the use of direct ab initio approaches. In this regard, we have developed novel electronic structure approaches to understand the energetics and mutual interactions of light elements at representative structural features in high-strength ferritic steels. Using this approach, we examine the co-segregation of hydrogen with carbon at chosen grain boundaries in α-iron. We find that the strain introduced by segregated carbon atoms at tilt grain boundaries increases the solubility of hydrogen close to the boundary plane, giving a higher H concentration in the vicinity of the boundary than in a carbon-free case. Via simulated tensile tests, we find that the simultaneous presence of carbon and hydrogen at grain boundaries leads to a significant decrease in the elongation to fracture compared with the carbon-free case.

Funding source: Deutsche Forschungsgemeinschaft (German Research Foundation, DFG), within the Collaborative Research Center SFB 761 “Stahl – ab initio
Countries: Germany
Loading

Article metrics loading...

/content/journal1959
2018-12-31
2024-12-23
/content/journal1959
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error