United States
CFD Modeling and Consequence Analysis of an Accidental Hydrogen Release in a Large Scale Facility
Sep 2013
Publication
In this study the consequences of an accidental release of hydrogen within large scale (>15000 m3) facilities were modelled. To model the hydrogen release an LES Navier–Stokes CFD solver called fireFoam was used to calculate the dispersion and mixing of hydrogen within a large scale facility. The performance of the CFD modelling technique was evaluated through a validation study using experimental results from a 1/6 scale hydrogen release from the literature and a grid sensitivity study. Using the model a parametric study was performed varying release rates and enclosure sizes and examining the concentrations that develop. The hydrogen dispersion results were then used to calculate the corresponding pressure loads from hydrogen-air deflagrations in the facility.
Life-Cycle Greenhouse Gas Emissions Of Biomethane And Hydrogen Pathways In The European Union
Oct 2021
Publication
Gaseous fuels with low life-cycle emissions of greenhouse gases (GHG) play a prominent role in the European Union’s (EU) decarbonization plans. Renewable and low-GHG hydrogen are highlighted in the ambitious goals for a cross-sector hydrogen economy laid out in the European Commission’s Hydrogen Strategy. Renewable hydrogen and biomethane are given strong production incentives in the Commission’s proposed revision to the Renewable Energy Directive (REDII). The EU uses life-cycle analysis (LCA) to determine whether renewable gas pathways meet the GHG reduction thresholds for eligibility in the REDII. This study aims to support European policymakers with a better understanding of the uncertainties regarding gaseous fuels’ roles in meeting climate goals. Life-cycle GHG analysis is complex and differences in methodology as well as data inputs and assumptions can spell the difference between a renewable gas pathway qualifying or not for REDII eligibility at the 50% to 80% GHG reduction level. It is thus important for European policymakers to use robust LCA to ensure that policy only supports gas pathways consistent with a vision of deep decarbonization. For this purpose we conduct sensitivity analysis of the life-cycle GHG emissions of a number of low-GHG gas pathways including biomethane produced from four feedstocks: wastewater sludge manure landfill gas (LFG) and silage maize; and hydrogen produced from eight sources: natural gas combined with carbon capture and storage (CCS) coal with CCS biomass gasification renewable electricity 2030 EU grid electricity wastewater sludge biomethane manure biomethane and LFG biomethane. For each pathway we estimate the life-cycle GHG intensity using a default central case identify key parameters that strongly affect the fuel’s GHG intensity and conduct a sensitivity analysis by changing these key parameters according to the range of possible values collected from the literature. Figure ES1 summarizes the full range of possible GHG intensities for each gaseous pathway we analyzed in this study—biomethane is depicted in the top figure and hydrogen is shown in the bottom. The bars represent the GHG intensity of the central case and vertical error bars indicate the maximum and minimum GHG intensity of each pathway according to our sensitivity analysis. The dotted orange horizontal line illustrates the fossil comparator which is 94 grams of carbon dioxide equivalent per megajoule (gCO2e/MJ) for transport fuels in the REDII. The dotted yellow line represents the GHG intensity of a 65% GHG reduction goal for biomethane used in the transportation sector or 70% GHG reduction for hydrogen. Pathways are situated from left to right in increasing order of GHG intensity of the central case. Comparing the central cases of the four biomethane pathways the waste-based biomethane pathways generally have negative GHG intensity. However considering the uncertainty in these GHG intensities manure biomethane might have more limited carbon reduction potential in the 100-year timeframe if methane leakage from its production process is high. In contrast wastewater sludge biomethane and LFG biomethane even after accounting for uncertainties retain relatively low GHG emissions. On the other hand biomethane produced from silage maize can have much higher emissions; in the central case we find that silage maize biogas only reduces GHG emissions by 30% relative to the fossil comparator—the low carbon reduction potential is due to the significant emissions emerging from direct and indirect land use change involved in growing maize. Taking into account the variation in assumptions silage maize biomethane can be worse for the climate than fossil fuels.
Hydrogen Station Location Planning via Geodesign in Connecticut: Comparing Optimization Models and Structured Stakeholder Collaboration
Nov 2021
Publication
Geodesign is a participatory planning approach in which stakeholders use geographic information systems to develop and vet alternative design scenarios in a collaborative and iterative process. This study is based on a 2019 geodesign workshop in which 17 participants from industry government university and non-profit sectors worked together to design an initial network of hydrogen refueling stations in the Hartford Connecticut metropolitan area. The workshop involved identifying relevant location factors rapid prototyping of station network designs and developing consensus on a final design. The geodesign platform which was designed specifically for facility location problems enables breakout groups to add or delete stations with a simple point-and-click operation view and overlay different map layers compute performance metrics and compare their designs to those of other groups. By using these sources of information and their own expert local knowledge participants recommended six locations for hydrogen refueling stations over two distinct phases of station installation. We quantitatively and qualitatively compared workshop recommendations to solutions of three optimal station location models that have been used to recommend station locations which minimize travel times from stations to population and traffic or maximize trips that can be refueled on origin–destination routes. In a post-workshop survey participants rated the workshop highly for facilitating mutual understanding and information sharing among stakeholders. To our knowledge this workshop represents the first application of geodesign for hydrogen refueling station infrastructure planning.
Greenhouse Gas Emissions of Conventional and Alternative Vehicles: Predictions Based on Energy Policy Analysis in South Korea
Mar 2020
Publication
This paper compares the well-to-wheel (WTW) greenhouse gas (GHG) emissions of representative vehicle types–internal combustion engine vehicle (ICEV) hybrid electric vehicle (HEV) plug-in hybrid electric vehicle (PHEV) battery electric vehicle (BEV) and fuel cell electric vehicle (FCEV)–in the future (2030) based on a WTW analysis for the present (2017) and an analysis of various energy policies that could affect future emissions. South Korea was selected as the target region because it has detailed energy policies related to alternative vehicles. The WTW analysis for the present was performed based on three sets of subordinate analyses: (1) life cycle analyses of eight base fuels; (2) life cycle analyses of electricity and hydrogen; and (3) analyses of the fuel economies of seven vehicle types. From the WTW analysis for the present the national average WTW GHG emissions of ICEV-gasoline ICEV-diesel ICEV-liquefied petroleum gas HEV PHEV BEV and FCEV were calculated as 225 233 201 159 133 109 and 55 g-CO2-eq./km respectively. For calculating the WTW GHG emissions in the future two policies regarding electricity production and three policies regarding hydrogen production were analysed. Three cases with varying the degrees of improvements in fuel economies were considered. Six future scenarios were constructed and each scenario represented the case in which each energy policy is enacted. In the reference scenario for compact car the WTW GHG emissions of ICEVs-gasoline HEV PHEV BEV-200 mile FCEV were analysed as 161 110 97 86 and 91 g-CO2-eq./km respectively. The differences between ICEV/HEV and BEV were predicted to decrease in the future mainly due to larger improvements of ICEV/HEV in fuel economies compared to that of BEV. The future life cycle GHG emissions of electricity and hydrogen were calculated according to energy policy. Both two policies regarding power generation were confirmed to increase the benefits of utilizing BEVs but current energy policy regarding hydrogen production were confirmed to decrease the benefits of utilizing FCEVs. Based on the comprehensive results of this study a framework was proposed to evaluate the impacts of an energy policy regarding electricity and hydrogen production on the benefits of using BEVs and FCEVs compared to using HEVs and ICEVs. This framework can also be utilized in other countries when they assess and establish their energy policies.
Catalytic Hydrogen Production from Methane: A Review on Recent Progress and Prospect
Aug 2020
Publication
Natural gas (Methane) is currently the primary source of catalytic hydrogen production accounting for three quarters of the annual global dedicated hydrogen production (about 70 M tons). Steam–methane reforming (SMR) is the currently used industrial process for hydrogen production. However the SMR process suffers with insufficient catalytic activity low long-term stability and excessive energy input mostly due to the handling of large amount of CO2 coproduced. With the demand for anticipated hydrogen production to reach 122.5 M tons in 2024 novel and upgraded catalytic processes are desired for more effective utilization of precious natural resources. In this review we summarized the major descriptors of catalyst and reaction engineering of the SMR process and compared the SMR process with its derivative technologies such as dry reforming with CO2 (DRM) partial oxidation with O2 autothermal reforming with H2O and O2. Finally we discussed the new progresses of methane conversion: direct decomposition to hydrogen and solid carbon and selective oxidation in mild conditions to hydrogen containing liquid organics (i.e. methanol formic acid and acetic acid) which serve as alternative hydrogen carriers. We hope this review will help to achieve a whole picture of catalytic hydrogen production from methane.
Development of Liquid Hydrogen Leak Frequencies Using a Bayesian Update Process
Sep 2021
Publication
To quantify the risk of an accident in a liquid hydrogen system it is necessary to determine how often a leak may occur. To do this representative component leakage frequencies specific to liquid hydrogen can be determined as a function of the normalized leak size. Subsequently the system characteristics (e.g. system pressure) can be used to calculate accident consequences. Operating data (such as leak frequencies) for liquid hydrogen systems are very limited; rather than selecting a single leak frequency value from a literature source data from different sources can be combined using a Bayesian model. This approach provides leakage rates for different amounts of leakage distributions for leakage rates to propagate through risk assessment models to establish risk result uncertainty and a means for incorporating liquid hydrogen-specific leakage data with leakage frequencies from other fuels. Specifically other cryogenic fluids like liquefied natural gas are used as a baseline for the Bayesian analysis. This Bayesian update process is used to develop leak frequency distributions for different system component types and leak sizes. These leak frequencies can be refined as liquid hydrogen data becomes available and may then inform safety code requirements based on the likelihood of liquid hydrogen release for different systems.
Developing New Understanding of Photoelectrochemical Water Splitting Via In-situ Techniques: A Review on Recent Progress
Mar 2014
Publication
Photoelectrochemical (PEC) water splitting is a promising technology for solar hydrogen production to build a sustainable renewable and clean energy economy. Given the complexity of the PEC water splitting processes it is important to note that developing in-situ techniques for studying PEC water splitting presents a formidable challenge. This review is aimed at highlighting advantages and disadvantages of each technique while offering a pathway of potentially combining several techniques to address different aspects of interfacial processes in PEC water splitting. We reviewed recent progress in various techniques and approaches utilized to study PEC water splitting focusing on spectroscopic and scanning-probe methods.
Black TiO2 for Solar Hydrogen Conversion
Feb 2017
Publication
Titanium dioxide (TiO2 ) has been widely investigated for photocatalytic H2 evolution and photoelectrochemical (PEC) water splitting since 1972. However its wide bandgap (3.0–3.2 eV) limits the optical absorption of TiO2 for sufficient utilization of solar energy. Blackening TiO2 has been proposed as an effective strategy to enhance its solar absorption and thus the photocatalytic and PEC activities and aroused widespread research interest. In this article we reviewed the recent progress of black TiO2 for photocatalytic H2 evolution and PEC water splitting along with detailed introduction to its unique structural features optical property charge carrier transfer property and related theoretical calculations. As summarized in this review article black TiO2 could be a promising candidate for photoelectrocatalytic hydrogen generation via water splitting and continuous efforts are deserved for improving its solar hydrogen efficiency.
Road Map to a US Hydrogen Energy: Reducing Emissions and Driving Growth Across the Nation
Oct 2020
Publication
This US Hydrogen Road Map was created through the collaboration of executives and technical industry experts in hydrogen across a broad range of applications and sectors who are committed to improving the understanding of hydrogen and how to increase its adoption across many sectors of the economy. For the first time this coalition of industry leaders has convened to develop a targeted holistic approach for expanding the use of hydrogen as an energy carrier. Due to great variation among national and state policies infrastructure needs and community interests each state and region of the US will likely have its own specific policies and road maps for implementing hydrogen infrastructure. The West Coast for example has traditionally had progressive policies on reducing transportation emissions so it is likely that hydrogen will scale sooner for vehicles in this region especially California. Experts also acknowledge the role that hydrogen in combination with renewables can play in supplying microgrid-type power to communities with the highest risk of shut-offs during seasonal weather-related issues such as high temperatures or wildfire-related power interruptions. Some states have emphasized the need to decarbonize the gas grid so blending hydrogen in natural gas networks and using hydrogen as feedstock may advance more quickly in these regions. Other states are interested in hydrogen as a means to address power grid issues enable the deployment of renewables and support competitive nuclear power. The launch of hydrogen technologies in some states or regions will help to scale hydrogen in various applications across the country laying the foundation for energy security grid resiliency economic growth and the reduction of both greenhouse gas (GHG) emissions and air pollutants. This report outlines the benefits and impact of fuel cell technologies and hydrogen as a viable solution to the energy challenges facing the US through 2030 and beyond. As such it can serve as the latest comprehensive industry-driven national road map to accelerate and scale up hydrogen in the economy across North America
An Investigation of Mobile Hydrogen and Fuel Cell Technology Applications
Sep 2019
Publication
Safe practices in the production storage distribution and use of hydrogen are essential for the widespread acceptance of hydrogen and fuel cell technologies. A significant safety incident in any project could damage public perception of hydrogen and fuel cells. A recent incident involving a hydrogen mobile storage trailer in the United States has brought attention to the potential impacts of mobile hydrogen storage and transport. Road transport of bulk hydrogen presents unique hazards that can be very different from those for stationary equipment and new equipment developers may have less experience and expertise than seasoned gas providers. In response to the aforementioned incident and in support of hydrogen and fuel cell activities in California the Hydrogen Safety Panel (HSP) has investigated the safety of mobile hydrogen and fuel cell applications (mobile auxiliary/emergency fuel cell power units mobile fuellers multi-cylinder trailer transport unmanned aircraft power supplies and mobile hydrogen generators). The HSP examined the applications requirements and performance of mobile applications that are being used extensively outside of California to understand how safety considerations are applied. This paper discusses the results of the HSP’s evaluation of hydrogen and fuel cell mobile applications along with recommendations to address relevant safety issues.
Risk Assessment and Ventilation Modeling for Hydrogen Vehicle Repair Garages
Sep 2019
Publication
The availability of repair garage infrastructure for hydrogen fuel cell vehicles is becoming increasingly important for future industry growth. Ventilation requirements for hydrogen fuel cell vehicles can affect both retrofitted and purpose-built repair garages and the costs associated with these requirements can be significant. A hazard and operability (HAZOP) study was performed to identify key risk-significant scenarios related to hydrogen vehicles in a repair garage. Detailed simulations and modeling were performed using appropriate computational tools to estimate the location behaviour and severity of hydrogen release based on key HAZOP scenarios. This work compares current fire code requirements to an alternate ventilation strategy to further reduce potential hazardous conditions. It is shown that position direction and velocity of ventilation have a significant impact on the amount of flammable mass in the domain.
Hydrogen and Fuel Cell Vehicles UN Global Technical Regulation No. 13: Latest Updates Reflecting Heavy Duty Vehicles
Sep 2019
Publication
This paper provides a detailed technical description of the United Nations Global Technical Regulation No. 13 (UN GTR #13) 1998 Agreement and contracting party obligations phase 2 activity and safety provisions being discussed and developed for heavy duty hydrogen fuel cell vehicles.
Acid Acceleration of Hydrogen Generation Using Seawater as a Reactant
Jul 2016
Publication
The present study describes hydrogen generation from NaBH4 in the presence of acid accelerator boric oxide or B2O3 using seawater as a reactant. Reaction times and temperatures are adjusted using various delivery methods: bulk addition funnel and metering pump. It is found that the transition metal catalysts typically used to generate hydrogen gas are poisoned by seawater. B2O3 is not poisoned by seawater; in fact reaction times are considerably faster in seawater using B2O3. Reaction times and temperatures are compared for pure water and seawater for each delivery method. It is found that using B2O3 with pure water bulk addition is 97% complete in 3 min; pump metering provides a convenient method to extend the time to 27 min a factor of 9 increase above bulk addition. Using B2O3 with seawater as a reactant bulk addition is 97% complete in 1.35 min; pump metering extends the time to 23 min a factor of 17 increase above bulk. A second acid accelerator sodium bisulfate or NaHSO4 is investigated here for use with NaBH4 in seawater. Because it is non-reactive in seawater i.e. no spontaneous H2 generation NaHSO4 can be stored as a solution in seawater; because of its large solubility it is ready to be metered into NaBH4. With NaHSO4 in seawater pump metering increases the time to 97% completion from 3.4 min to 21 min. Metering allows the instantaneous flow rate of H2 and reaction times and temperatures to be tailored to a particular application. In one application the seawater hydrogen generator characterized here is ideal for supplying H2 gas directly to Proton Exchange Membrane fuel cells in sea surface or subsea environments where a reliable source of power is needed.
Hydrogen Technologies Safety Guide
Jan 2015
Publication
The purpose of this guide is to provide basic background information on hydrogen technologies. It is not intended to be a comprehensive collection of hydrogen technologies safety information. It is intended to provide project developers code officials and other interested parties the background information to be able to put hydrogen safety in context. For example code officials reviewing permit applications for hydrogen projects will get an understanding of the industrial history of hydrogen basic safety concerns and safety requirements.
Development of Risk Mitigation Guidance for Sensor Placement Inside Mechanically Ventilated Enclosures – Phase 1
Sep 2019
Publication
Guidance on Sensor Placement was identified as the top research priority for hydrogen sensors at the 2018 HySafe Research Priority Workshop on hydrogen safety in the category Mitigation Sensors Hazard Prevention and Risk Reduction. This paper discusses the initial steps (Phase 1) to develop such guidance for mechanically ventilated enclosures. This work was initiated as an international collaborative effort to respond to emerging market needs related to the design and deployment equipment for hydrogen infrastructure that is often installed in individual equipment cabinets or ventilated enclosures. The ultimate objective of this effort is to develop guidance for an optimal sensor placement such that when integrated into a facility design and operation will allow earlier detection at lower levels of incipient leaks leading to significant hazard reduction. Reliable and consistent early warning of hydrogen leaks will allow for the risk mitigation by reducing or even eliminating the probability of escalation of small leaks into large and uncontrolled events. To address this issue a study of a real-world mechanically ventilated enclosure containing GH2 equipment was conducted where CFD modelling of the hydrogen dispersion (performed by AVT and UQTR and independently by the JRC) was validated by the NREL Sensor laboratory using a Hydrogen Wide Area Monitor (HyWAM) consisting of a 10-point gas and temperature measurement analyzer. In the release test helium was used as a hydrogen surrogate. Expansion of indoor releases to other larger facilities (including parking structures vehicle maintenance facilities and potentially tunnels) and incorporation into QRA tools such as HyRAM is planned for Phase 2. It is anticipated that results of this work will be used to inform national and international standards such as NFPA 2 Hydrogen Technologies Code Canadian Hydrogen Installation Code (CHIC) and relevant ISO/TC 197 and CEN documents.
Carbon Negative Transportation Fuels - A Techno-Economic-Environmental Analysis of Biomass Pathways for Transportation
Feb 2022
Publication
Global warming and fossil fuel depletion have necessitated alternative sources of energy. Biomass is a promising fuel source because it is renewable and can be carbon negative even without carbon capture and storage. This study considers biomass as a clean renewable source for transportation fuels. An Aspen Plus process simulation model was built of a biomass gasification biorefinery with Fischer-Tropsch (FT) synthesis of liquid fuels. A GaBi life cycle assessment model was also built to determine the environmental impacts using a cradle-to-grave approach. Three different product pathways were considered: Fischer-Tropsch synthetic diesel hydrogen and electricity. An offgas autothermal reformer with a recycle loop was used to increase FT product yield. Different configurations and combinations of biorefinery products are considered. The thermal efficiency and cost of production of the FT liquid fuels are analyzed using the Aspen Plus process model. The greenhouse gas emissions profitability and mileage per kg biomass were compared. The mileage traveled per kilogram biomass was calculated using modern (2019-2021) diesel electric and hydrogen fuel cell vehicles. The overall thermal efficiency was found to be between 20-41% for FT fuels production between 58-61% for hydrogen production and around 25-26% for electricity production for this biorefinery. The lowest production costs were found to be $3.171/gal of FT diesel ($24.304/GJ) $1.860/kg of H2 ($15.779/GJ) and 13.332¢/kWh for electricity ($37.034/GJ). All configurations except one had net negative carbon emissions over the life cycle of the biomass. This is because carbon is absorbed in the trees initially and some of the carbon is sequestered in ash and unconverted char from the gasification process furthermore co-producing electricity while making transportation fuel offsets even more carbon emissions. Compared to current market rates for diesel hydrogen and electricity the most profitable biorefinery product is shown to be hydrogen while also having net negative carbon emissions. FT diesel can also be profitable but with a slimmer profit margin (not considering government credits) and still having net negative carbon emissions. However our biorefinery could not compete with current commercial electricity prices in the US. As oil hydrogen and electricity prices continue to change the economics of the biorefinery and the choice product will change as well. For our current biorefinery model hydrogen seems to be the most promising product choice for profit while staying carbon negative while FT diesel is the best choice for sequestering the most carbon and still being profitable. All code and data are given.
Numerical Prediction of Cryogenic Hydrogen Vertical Jets
Sep 2019
Publication
Comparison of Computational Fluid Dynamics (CFD) predictions with measurements is presented for cryo-compressed hydrogen vertical jets. The stagnation conditions of the experiments are characteristic of unintended leaks from pipe systems that connect cryogenic hydrogen storage tanks and could be encountered at a fuel cell refuelling station. Jets with pressure up to 5 bar and temperatures just above the saturation liquid temperature were examined. Comparisons are made to the centerline mass fraction and temperature decay rates the radial profiles of mass fraction and the contours of volume fraction. Two notional nozzle approaches are tested to model the under-expanded jet that was formed in the tests with pressures above 2 bar. In both approaches the mass and momentum balance from the throat to the notional nozzle are solved while the temperature at the notional nozzle was assumed equal to the nozzle temperature in the first approach and was calculated by an energy balance in the second approach. The two approaches gave identical results. Satisfactory agreement with the measurements was found in terms of centerline mass fraction and temperature. However for test with 3 and 4 bar release the concentration was overpredicted. Furthermore a wider radial spread was observed in the predictions possibly revealing higher degree of diffusion using the k-ε turbulence model. An integral model for cryogenic jets was also developed and provided good results. Finally a test simulation was performed with an ambient temperature jet and compared to the cold jet showing that warm jets decay faster than cold jets.
Dispersion of Cryogenic Hydrogen Through High-aspect Ratio Nozzles
Sep 2019
Publication
Liquid hydrogen is increasingly being used as a delivery and storage medium for stations that provide compressed gaseous hydrogen for fuel cell electric vehicles. In efforts to provide scientific justification for separation distances for liquid hydrogen infrastructure in fire codes the dispersion characteristics of cryogenic hydrogen jets (50–64 K) from high aspect ratio nozzles have been measured at 3 and 5 barabs stagnation pressures. These nozzles are more characteristic of unintended leaks which would be expected to be cracks rather than conventional round nozzles. Spontaneous Raman scattering was used to measure the concentration and temperature field along the major and minor axes. Within the field of interrogation the axis-switching phenomena was not observed but rather a self-similar Gaussian-profile flow regime similar to room temperature or cryogenic hydrogen releases through round nozzles. The concentration decay rate and half-widths for the planar cryogenic jets were found to be nominally equivalent to that of round nozzle cryogenic hydrogen jets indicating a similar flammable envelope. The results from these experiments will be used to validate models for cryogenic hydrogen dispersion that will be used for simulations of alternative scenarios and quantitative risk assessment
A Comparative Technoeconomic Analysis of Renewable Hydrogen Production Using Solar Energy
May 2016
Publication
A technoeconomic analysis of photoelectrochemical (PEC) and photovoltaic-electrolytic (PV-E) solar-hydrogen production of 10 000 kg H2 day−1 (3.65 kilotons per year) was performed to assess the economics of each technology and to provide a basis for comparison between these technologies as well as within the broader energy landscape. Two PEC systems differentiated primarily by the extent of solar concentration (unconcentrated and 10× concentrated) and two PV-E systems differentiated by the degree of grid connectivity (unconnected and grid supplemented) were analyzed. In each case a base-case system that used established designs and materials was compared to prospective systems that might be envisioned and developed in the future with the goal of achieving substantially lower overall system costs. With identical overall plant efficiencies of 9.8% the unconcentrated PEC and non-grid connected PV-E system base-case capital expenses for the rated capacity of 3.65 kilotons H2 per year were $205 MM ($293 per m2 of solar collection area (mS−2) $14.7 WH2P−1) and $260 MM ($371 mS−2 $18.8 WH2P−1) respectively. The untaxed plant-gate levelized costs for the hydrogen product (LCH) were $11.4 kg−1 and $12.1 kg−1 for the base-case PEC and PV-E systems respectively. The 10× concentrated PEC base-case system capital cost was $160 MM ($428 mS−2 $11.5 WH2P−1) and for an efficiency of 20% the LCH was $9.2 kg−1. Likewise the grid supplemented base-case PV-E system capital cost was $66 MM ($441 mS−2 $11.5 WH2P−1) and with solar-to-hydrogen and grid electrolysis system efficiencies of 9.8% and 61% respectively the LCH was $6.1 kg−1. As a benchmark a proton-exchange membrane (PEM) based grid-connected electrolysis system was analyzed. Assuming a system efficiency of 61% and a grid electricity cost of $0.07 kWh−1 the LCH was $5.5 kg−1. A sensitivity analysis indicated that relative to the base-case increases in the system efficiency could effect the greatest cost reductions for all systems due to the areal dependencies of many of the components. The balance-of-systems (BoS) costs were the largest factor in differentiating the PEC and PV-E systems. No single or combination of technical advancements based on currently demonstrated technology can provide sufficient cost reductions to allow solar hydrogen to directly compete on a levelized cost basis with hydrogen produced from fossil energy. Specifically a cost of CO2 greater than ∼$800 (ton CO2)−1 was estimated to be necessary for base-case PEC hydrogen to reach price parity with hydrogen derived from steam reforming of methane priced at $12 GJ−1 ($1.39 (kg H2)−1). A comparison with low CO2 and CO2-neutral energy sources indicated that base-case PEC hydrogen is not currently cost-competitive with electrolysis using electricity supplied by nuclear power or from fossil-fuels in conjunction with carbon capture and storage. Solar electricity production and storage using either batteries or PEC hydrogen technologies are currently an order of magnitude greater in cost than electricity prices with no clear advantage to either battery or hydrogen storage as of yet. Significant advances in PEC technology performance and system cost reductions are necessary to enable cost-effective PEC-derived solar hydrogen for use in scalable grid-storage applications as well as for use as a chemical feedstock precursor to CO2-neutral high energy-density transportation fuels. Hence such applications are an opportunity for foundational research to contribute to the development of disruptive approaches to solar fuels generation systems that can offer higher performance at much lower cost than is provided by current embodiments of solar fuels generators. Efforts to directly reduce CO2 photoelectrochemically or electrochemically could potentially produce products with higher value than hydrogen but many as yet unmet challenges include catalytic efficiency and selectivity and CO2 mass transport rates and feedstock cost. Major breakthroughs are required to obtain viable economic costs for solar hydrogen production but the barriers to achieve cost-competitiveness with existing large-scale thermochemical processes for CO2 reduction are even greater.
Achieving High-rate Hydrogen Recovery from Wastewater Using Customizable Alginate Polymer Gel Matrices Encapsulating Biomass
Jul 2018
Publication
In addition to methane gas higher-value resources such as hydrogen gas are produced during anaerobic wastewater treatment. They are however immediately consumed by other organisms. To recover these high-value resources not only do the desired phenotypes need to be retained in the anaerobic reactor but the undesired ones need to be washed out. In this study a well-established alginate-based polymer gel with and without a coating layer was used to selectively encapsulate hydrogen-producing biomass in beads to achieve high-rate recovery of hydrogen during anaerobic wastewater treatment. The effect of cross-linking agents Ca2+ Sr2+ and Ba2+ as well as a composite coating on the beads consisting of alternating layers of polyethylenimine and silica hydrogel were investigated with respect to their performance specifically their mass transfer characteristics and their differential ability to retain the encapsulated biomass. Although the coating reduced the escape rate of encapsulated biomass from the beads all alginate polymer matrices without coating effectively retained biomass. Fast diffusion of dissolved organic carbon (DOC) through the polymer gel was observed in both Ca-alginate and Sr-alginate without coating. The coating however decreased either the diffusivity or the permeability of the DOC depending on whether the DOC was from synthetic wastewater (more lipids and proteins) or real brewery wastewater (more sugars). Consequently the encapsulation system with coating became diffusion limited when brewery wastewater with high chemical oxygen demand was fed resulting in a lower hydrogen production rate than the uncoated encapsulation systems. In all cases the encapsulated biomass was able to produce hydrogen even at a hydraulic residence time of 45 min. Although there are limitations to this system the used of encapsulated biomass for resource recovery from wastewater shows promise particularly for high-rate systems in which the retention of specific phenotypes is desired.
No more items...