Poland
Investigating the Impact of Economic Uncertainty on Optimal Sizing of Grid-Independent Hybrid Renewable Energy Systems
Aug 2021
Publication
One of the many barriers to decarbonization and decentralization of the energy sector in developing countries is the economic uncertainty. As such this study scrutinizes economics of three grid-independent hybrid renewable-based systems proposed to co-generate electricity and heat for a small-scale load. Accordingly the under-study systems are simulated and optimized with the aid of HOMER Pro software. Here a 20-year average value of discount and inflation rates is deemed a benchmark case. The techno-economic-environmental and reliability results suggest a standalone solar/wind/electrolyzer/hydrogen-based fuel cell integrated with a hydrogen-based boiler system is the best alternative. Moreover to ascertain the impact of economic uncertainty on optimal unit sizing of the nominated model the fluctuations of the nominal discount rate and inflation respectively constitute within the range of 15–20% and 10–26%. The findings of economic uncertainty analysis imply that total net present cost (TNPC) fluctuates around the benchmark value symmetrically between $478704 and $814905. Levelized energy cost varies from an amount 69% less than the benchmark value up to two-fold of that. Furthermore photovoltaic (PV) optimal size starts from a value 23% less than the benchmark case and rises up to 55% more. The corresponding figures for wind turbine (WT) are respectively 21% and 29%. Eventually several practical policies are introduced to cope with economic uncertainty.
Evaluation of the Potential for Distributed Generation of Green Hydrogen Using Metal-hydride Storage Methods
May 2023
Publication
This study presents methodology for the evaluation of appropriateness of a hydrogen generator for gas production in multiple distributed plants based on renewable energy sources. The general idea is to form hydrogen clusters integrated with storage and transportation. The paper focuses on the financial viability of the plants presenting the results of economic evaluation together with sensitivity analysis for various economic factors. The analyzed case study proves that over a wide range of parameters alkaline electrolyzers show favorable economic characteristics however a PEM-based plant is more resilient to changes in the price of electricity which is the main cost component in hydrogen generation. The study is enriched with an experimental investigation of low-pressure storage methods based on porous metal hydride tanks. The effectiveness of the tanks (β) compared to pressurized hydrogen tanks in the same volume and pressure is equal to β = 10.2. A solution is proposed whereby these can be used in a distributed hydrogen generation concept due to their safe and simple operation without additional costly equipment e.g. compressors. A method for evaluation of the avoided energy consumption as a function of the effectiveness of the tanks is developed. Avoided energy consumption resulting from implementing MH tanks equals 1.33 – 1.37 kWh per kilogram of hydrogen depending on the number of stages of a compressor. The methods proposed in this paper are universal and can be used for various green hydrogen facilities.
Exploring Hydrogen-Enriched Fuels and the Promise of HCNG in Industrial Dual-Fuel Engines
Mar 2024
Publication
This paper presents a theoretical analysis of the selected properties of HCNG fuel calculations and a literature review of the other fuels that allow the storage of ecologically produced hydrogen. Hydrogen has the most significant CO2 reduction potential of all known fuels. However its transmission in pure form is still problematic and its use as a component of fuels modified by it has now become an issue of interest for researchers. Many types of hydrogen-enriched fuels have been invented. However this article will describe the reasons why HCNG may be the hydrogen-enriched fuel of the future and why internal combustion (IC) piston engines working on two types of fuel could be the future method of using it. CO2 emissions are currently a serious problem in protecting the Earth’s natural climate. However secondarily power grid stabilization with a large share of electricity production from renewable energy sources must be stabilized with very flexible sources—as flexible as multi-fuel IC engines. Their use is becoming an essential element of the electricity power systems of Western countries and there is a chance to use fuels with zero or close to zero CO2 emissions like e-fuels and HCNG. Dual-fuel engines have become an effective way of using these types of fuels efficiently; therefore in this article the parameters of hydrogen-enriched fuel selected in terms of relevance to the use of IC engines are considered. Inaccuracies found in the literature analysis are discussed and the essential properties of HCNG and its advantages over other hydrogen-rich fuels are summarized in terms of its use in dual-fuel (DF) IC engines.
Socio-economic Aspects of Hydrogen Energy: An Integrative Review
Apr 2023
Publication
Hydrogen can be recognized as the most plausible fuel for promoting a green environment. Worldwide developed and developing countries have established their hydrogen research investment and policy frameworks. This analysis of 610 peer-reviewed journal articles from the last 50 years provides quantitative and impartial insight into the hydrogen economy. By 2030 academics and business professionals believe that hydrogen will complement other renewable energy (RE) sources in the energy revolution. This study conducts an integrative review by employing software such as Bibliometrix R-tool and VOSviewer on socio-economic consequences of hydrogen energy literature derived from the Scopus database. We observed that most research focuses on multidisciplinary concerns such as generation storage transportation application feasibility and policy development. We also present the conceptual framework derived from in-depth literature analysis as well as the interlinkage of concepts themes and aggregate dimensions to highlight research hotspots and emerging patterns. In the future factors such as green hydrogen generation hydrogen permeation and leakage management efficient storage risk assessment studies blending and techno-economic feasibility shall play a critical role in the socio-economic aspects of hydrogen energy research.
The Perspectives for the Use of Hydrogen for Electricity Storage Considering the Foreign Experience
Mar 2017
Publication
Over the last years the European Union has seen a rapid increase in installed capacity of generating units based on renewable energy sources (RES). The most significant increase in installed capacity was recorded in 2015 in wind farms and solar PV installations. One of the most serious is the volatile character of RES on a time basis. Therefore for a further expected increase in the use of RES and their effectiveness improvements investments are needed allowing for electricity to be stored. One of the electricity storage options is to use excess electricity in order to produce hydrogen by electrolysis of water. Although this process plays a marginal role in obtaining hydrogen on a worldwide basis due to high costs experience in recent years has shown that periodically low (negative) electricity prices developing on the power exchanges in the situation where there is surplus electricity available affect economic requirements for hydrogen production technologies. The paper shows activities undertaken by European countries (mainly Germany) aiming at making it possible for hydrogen to be stored in the natural gas grids. A particular attention is given to material resource issues and possible operational problems that might arise while blending natural gas with hydrogen into the grid. The experiences of selected European countries are of particular interest from the Polish perspective having regard to significant increase of RES in electricity generation during the last few years and adopted objectives for the growing importance of RES in the Poland’s energy balance.
Hydrogen or Electric Drive—Inconvenient (Omitted) Aspects
May 2023
Publication
Currently hydrogen and electric drives used in various means of transport is a leading topic in many respects. This article discusses the most important aspects of the operation of vehicles with electric drives (passenger cars) and hydrogen drives. In both cases the official reason for using both drives is the possibility of independence from fossil fuel supplies especially oil. The desire for independence is mainly dictated by political considerations. This article discusses the acquisition of basic raw materials for the construction of lithium-ion batteries in electric cars as well as methods for obtaining hydrogen as a fuel. The widespread use of electric passenger cars requires the construction of a network of charging stations. This article shows that taking into account the entire production process of electric cars including lithium-ion batteries the argument that they are ecological cannot be used. Additionally it was indicated that there is no concept for the use of used accumulator batteries. If hydrogen drives are used in trains there is no need to build the traction network infrastructure and then continuously monitor its technical condition and perform the necessary repairs. Of course the necessary hydrogen tanks must be built but there must be similar tanks to store oil for diesel locomotives. This paper also deals with other possibilities of hydrogen application for transformational usage e.g. the use of combustion engines driven with liquid hydrogen. Unfortunately an optimistic approach to this issue does not allow for a critical view of the whole matter. In public discussion there is no room for scientific arguments and emotions to dominate.
Energy-Economic Assessment of Islanded Microgrid with Wind Turbine, Photovoltaic Field, Wood Gasifier, Battery, and Hydrogen Energy Storage
Sep 2022
Publication
Island energy systems are becoming an important part of energy transformation due to the growing needs for the penetration of renewable energy. Among the possible systems a combination of different energy generation technologies is a viable option for local users as long as energy storage is implemented. The presented paper describes an energy-economic assessment of an island system with a photovoltaic field small wind turbine wood chip gasifier battery and hydrogen circuit with electrolyzer and fuel cell. The system is designed to satisfy the electrical energy demand of a tourist facility in two European localizations. The operation of the system is developed and dynamically simulated in the Transient System Simulation (TRNSYS) environment taking into account realistic user demand. The results show that in Gdansk Poland it is possible to satisfy 99% of user demand with renewable energy sources with excess energy equal to 31% while in Agkistro Greece a similar result is possible with 43% of excess energy. Despite the high initial costs it is possible to obtain Simple Pay Back periods of 12.5 and 22.5 years for Gdansk and Agkistro respectively. This result points out that under a high share of renewables in the energy demand of the user the profitability of the system is highly affected by the local cost of energy vectors. The achieved results show that the system is robust in providing energy to the users and that future development may lead to an operation based fully on renewables.
Assessment of the Co-combustion Process of Ammonia with Hydrogen in a Research VCR Piston Engine
Oct 2022
Publication
The presented work concerns experimental research of a spark-ignition engine with variable compression ratio (VCR) adapted to dual-fuel operation in which co-combustion of ammonia with hydrogen was conducted and the energy share of hydrogen varied from 0% to 70%. The research was aimed at assessing the impact of the energy share of hydrogen co-combusted with ammonia on the performance stability and emissions of an engine operating at a compression ratio of 8 (CR 8) and 10 (CR 10). The operation of the engine powered by ammonia alone for both CR 8 and CR 10 is associated with either a complete lack of ignition in a significant number of cycles or with significantly delayed ignition and the related low value of the maximum pressure pmax. Increasing the energy share of hydrogen in the fuel to 12% allows to completely eliminate the instability of the ignition process in the combustible mixture which is confirmed by a decrease in the IMEP uniqueness and a much lower pmax dispersion. For 12% of the energy share of hydrogen co-combusted with ammonia the most favorable course of the combustion process was obtained the highest engine efficiency and the highest IMEP value were recorded. The conducted research shows that increasing the H2 share causes an increase in NO emissions for both analyzed compression ratios
Centralized Offshore Hydrogen Production from Wind Farms in the Baltic Sea Area—A Study Case for Poland
Aug 2023
Publication
In Poland hydrogen production should be carried out using renewable energy sources particularly wind energy (as this is the most efficient zero-emission technology available). According to hydrogen demand in Poland and to ensure stability as well as security of energy supply and also the realization of energy policy for the EU it is necessary to use offshore wind energy for direct hydrogen production. In this study a centralized offshore hydrogen production system in the Baltic Sea area was presented. The goal of our research was to explore the possibility of producing hydrogen using offshore wind energy. After analyzing wind conditions and calculating the capacity of the proposed wind farm a 600 MW offshore hydrogen platform was designed along with a pipeline to transport hydrogen to onshore storage facilities. Taking into account Poland’s Baltic Sea area wind conditions with capacity factor between 45 and 50% and having obtained results with highest monthly average output of 3508.85 t of hydrogen it should be assumed that green hydrogen production will reach profitability most quickly with electricity from offshore wind farms.
Research of Energy Efficiency and Environmental Performance of Vehicle Power Plant Converted to Work on Alternative Fuels
Apr 2024
Publication
The use of alternative fuels remains an important factor in solving the problem of reducing harmful substances caused by vehicles and decarbonising transport. It is also important to ensure the energy efficiency of vehicle power plants when using different fuels at a sufficient level. The article presents the results of theoretical and experimental studies of the conversion of diesel engine to alternative fuels with hydrogen admixtures. Methanol is considered as an alternative fuel which is a cheaper alternative to commercial diesel fuel. The chemical essence of improving the calorific value of alternative methanol fuel was investigated. Studies showed that the energy effect of burning an alternative mixture with hydrogen additives exceeds the effect of burning the same amount of methanol fuel. The increase in combustion energy and engine power is achieved as a result of heat from efficient use of the engine exhaust gases and chemical conversion of methanol. An experimental installation was created to study the work of a converted diesel engine on hydrogen–methanol mixtures and thermochemical regeneration processes. Experimental studies of the energy and environmental parameters of diesel engine converted to work on an alternative fuel with hydrogen admixtures have shown that engine power increases by 10–14% and emissions of harmful substances decrease.
Efficient Use of Low-Emission Power Supply for Means of Transport
Apr 2023
Publication
The paper presents the possibilities of low-emission-powered vehicles based mainly on compressed hydrogen. It shows currently used forms of powering vehicles based on their genesis process of obtention and popularity. They are also compared to each other presenting the advantages and disadvantages of a given solution. The share of electricity in transport its forecasts for the future and the possibilities of combination with conventional energy sources are also described. Based on current technological capabilities hydrogen plays a crucial role as presented in the above work constituting a fundamental basis for future transport solutions.
Effects of Hydrogen, Methane, and Their Blends on Rapid-Filling Process of High-Pressure Composite Tank
Feb 2024
Publication
Alternative fuels such as hydrogen compressed natural gas and liquefied natural gas are considered as feasible energy carriers. Selected positive factors from the EU climate and energy policy on achieving climate neutrality by 2050 highlighted the need for the gradual expansion of the infrastructure for alternative fuel. In this research continuity equations and the first and second laws of thermodynamics were used to develop a theoretical model to explore the impact of hydrogen and natural gas on both the filling process and the ultimate in-cylinder conditions of a type IV composite cylinder (20 MPa for CNG 35 MPa and 70 MPa for hydrogen). A composite tank was considered an adiabatic system. Within this study based on the GERG-2008 equation of state a thermodynamic model was developed to compare and determine the influence of (i) hydrogen and (ii) natural gas on the selected thermodynamic parameters during the fast-filling process. The obtained results show that the cylinder-filling time depending on the cylinder capacity is approximately 36–37% shorter for pure hydrogen compared to pure methane and the maximum energy stored in the storage tank for pure hydrogen is approximately 28% lower compared to methane whereas the total entropy generation for pure hydrogen is approximately 52% higher compared to pure methane.
Spatial Succession for Degradation of Solid Multicomponent Food Waste and Purification of Toxic Leachate with the Obtaining of Biohydrogen and Biomethane
Jan 2022
Publication
A huge amount of organic waste is generated annually around the globe. The main sources of solid and liquid organic waste are municipalities and canning and food industries. Most of it is disposed of in an environmentally unfriendly way since none of the modern recycling technologies can cope with such immense volumes of waste. Microbiological and biotechnological approaches are extremely promising for solving this environmental problem. Moreover organic waste can serve as the substrate to obtain alternative energy such as biohydrogen (H2 ) and biomethane (CH4 ). This work aimed to design and test new technology for the degradation of food waste coupled with biohydrogen and biomethane production as well as liquid organic leachate purification. The effective treatment of waste was achieved due to the application of the specific granular microbial preparation. Microbiological and physicochemical methods were used to measure the fermentation parameters. As a result a four-module direct flow installation efficiently couples spatial succession of anaerobic and aerobic bacteria with other micro- and macroorganisms to simultaneously recycle organic waste remediate the resulting leachate and generate biogas.
The Influence of the Changes in Natural Gas Supplies to Poland on the Amount of Hydrogen Produced in the SMR Reactor
Mar 2024
Publication
Thanks to investments in diversifying the supply of natural gas Poland did not encounter any gas supply issues in 2022 when gas imports from Russia were ceased due to the Russian Federation’s armed intervention in Ukraine. Over the past few years the supply of gas from routes other than the eastern route has substantially grown particularly the supplies of liquefied natural gas (LNG) via the LNG terminal in Swinouj´scie. The growing proportion of LNG in Poland’s gas supply ´ leads to a rise in ethane levels in natural gas as verified by the review of data taken at a specific location within the gas system over the years 2015 2020 and 2022. Using measurements of natural gas composition the effectiveness of the steam hydrocarbon reforming process was simulated in the Gibbs reactor via Aspen HYSYS. The simulations confirmed that as the concentration of ethane in the natural gas increased the amount of hydrogen produced and the heat required for reactions in the reformer also increased. This article aims to analyze the influence of the changes in natural gas quality in the Polish transmission network caused by changes in supply structures on the mass and heat balance of the theoretical steam reforming reactor. Nowadays the chemical composition of natural gas may be significantly different from that assumed years ago at the plant’s design stage. The consequence of such a situation may be difficulties in operating especially when controlling the quantity of incoming natural gas to the reactor based on volumetric flow without considering changes in chemical composition.
Thermodynamic Analysis of the Combustion Process in Hydrogen-Fueled Engines with EGR
Jun 2024
Publication
This article presents a novel approach to the analysis of heat release in a hydrogen-fueled internal combustion spark-ignition engine with exhaust gas recirculation (EGR). It also discusses aspects of thermodynamic analysis common to modeling and empirical analysis. This new approach concerns a novel method of calculating the specific heat ratio (cp/cv) and takes into account the reduction in the number of moles during combustion which is characteristic of hydrogen combustion. This reduction in the number of moles was designated as a molar contraction. This is particularly crucial when calculating the average temperature during combustion. Subsequently the outcomes of experimental tests including the heat-release rate the initial combustion phase (denoted CA0- 10) and the main combustion phase (CA10-90) are presented. Furthermore the impact of exhaust gas recirculation on the combustion process in the engine is also discussed. The efficacy of the proposed measures was validated by analyzing the heat-release rate and calculating the mean combustion temperature in the engine. The application of EGR in the range 0-40% resulted in a notable prolongation of both the initial and main combustion phases which consequently influenced the mean combustion temperature.
Evaluation of the Technical Condition of Pipes during the Transportation of Hydrogen Mixtures According to the Energy Approach
Jun 2024
Publication
In this study a theoretical–experimental methodology for determining the stress–strain state in pipeline systems taking into account the hydrogen environment was developed. A complex of theoretical and experimental studies was conducted to determine the specific energy of destruction as an invariant characteristic of the material’s resistance to strain at different hydrogen concentrations. The technique is based on the construction of complete diagrams of the destruction of the material based on the determination of true strains and stresses in the local volume using the method involving the optical–digital correlation of speckle images. A complex of research was carried out and true diagrams of material destruction were constructed depending on the previous elastic–plastic strain and the action of the hydrogen environment. The change in the concentration of hydrogen absorbed by the material was estimated depending on the value of the specific energy of destruction. A study was conducted on tubular samples and the degree of damage to the material of the inner wall under the action of hydrogen and stress from the internal pressure was evaluated according to the change in specific energy depending on the value of the true strain established with the help of an optical–digital correlator on the outer surface and the degree of damage was determined. It has been established that the specific fracture energy of 17G1S steel decreases by 70–90% under the influence of hydrogen. The effect of the change in the amount of strain energy on the thickness of the pipe wall is illustrated.
Solar-driven (Photo)electrochemical Devices for Green Hydrogen Production and Storage: Working Principles and Design
Feb 2024
Publication
The large-scale deployment of technologies that enable energy from renewables is essential for a successful transition to a carbon-neutral future. While photovoltaic panels are one of the main technologies commonly used for harvesting energy from the Sun storage of renewable solar energy still presents some challenges and often requires integration with additional devices. It is believed that hydrogen – being a perfect energy carrier – can become one of the broadly utilised storage alternatives that would effectively mitigate the energy supply and demand issues associated with the intermittent nature of renewable energy sources. Current pathways in the development of green technologies indicate the need for more sustainable material utilisation and more efficient device operation. To address this requirement integration of various technologies for renewable energy harvesting conversion and storage in a single device appears as an advantageous option. From the hydrogen economy perspective systems driven by green solar electricity that allow for (photo)electrochemical water splitting would generate hydrogen with the minimal CO2 footprint. If at the same time one of the device electrodes could store the generated gas and release it on demand the utilisation of critical and often costly elements would be reduced with possible gain in more effective device operation. Although conceptually attractive this cross-disciplinary concept has not gained yet enough attention and only limited number of experimental setups have been designed tested and reported. This review presents the first exhaustive overview and critical examination of various laboratory-scale prototype setups that attempt to combine both the hydrogen production and storage processes in a single unit via integration of a metal hydride-based electrode into a photoelectrochemical cell. The architectures of presented configurations enables direct solar energy to hydrogen conversion and its subsequent storage in a single device which – in some cases – can also release the stored (hydrogen) energy on demand. In addition this work explores perspectives and challenges related with the potential upscaling of reviewed solar-to-hydrogen storage systems trying to map and indicate the main future directions of their technological development and optimization. Finally the review also combines information and expertise scattered among various research fields with the aim of stimulating much-needed exchange of knowledge to accelerate the progress in the development and deployment of optimum green hydrogen-based solutions.
Experimental Investigation on Knock Characteristics from Pre-Chamber Gas Engine Fueled by Hydrogen
Feb 2024
Publication
Hydrogen-fueled engines require large values of the excess air ratio in order to achieve high thermal efficiency. A low value of this coefficient promotes knocking combustion. This paper analyzes the conditions for the occurrence of knocking combustion in an engine with a turbulent jet ignition (TJI) system with a passive pre-chamber. A single-cylinder engine equipped with a TJI system was running with an air-to-fuel equivalence ratio λ in the range of 1.25–2.00 and the center of combustion (CoC) was regulated in the range of 2–14 deg aTDC (top dead center). Such process conditions made it possible to fully analyze the ascension of knock combustion until its disappearance with the increase in lambda and CoC. Measures of knock in the form of maximum amplitude pressure oscillation (MAPO) and integral modulus of pressure oscillation (IMPO) were used. The absolute values of these indices were pointed out which can provide the basis for the definition of knock combustion. Based on our own work the MAPO index > 1 bar was defined determining the occurrence of knocking (without indicating its quality). In addition taking into account MAPO it was concluded that IMPO > 0.13 bar·deg is the quantity responsible for knocking combustion.
Is the Polish Solar-to-Hydrogen Pathway Green? A Carbon Footprint of AEM Electrolysis Hydrogen Based on an LCA
Apr 2023
Publication
Efforts to direct the economies of many countries towards low-carbon economies are being made in order to reduce their impact on global climate change. Within this process replacing fossil fuels with hydrogen will play an important role in the sectors where electrification is difficult or technically and economically ineffective. Hydrogen may also play a critical role in renewable energy storage processes. Thus the global hydrogen demand is expected to rise more than five times by 2050 while in the European Union a seven-fold rise in this field is expected. Apart from many technical and legislative barriers the environmental impact of hydrogen production is a key issue especially in the case of new and developing technologies. Focusing on the various pathways of hydrogen production the essential problem is to evaluate the related emissions through GHG accounting considering the life cycle of a plant in order to compare the technologies effectively. Anion exchange membrane (AEM) electrolysis is one of the newest technologies in this field with no LCA studies covering its full operation. Thus this study is focused on a calculation of the carbon footprint and economic indicators of a green hydrogen plant on the basis of a life cycle assessment including the concept of a solar-to-hydrogen plant with AEM electrolyzers operating under Polish climate conditions. The authors set the range of the GWP indicators as 2.73–4.34 kgCO2eq for a plant using AEM electrolysis which confirmed the relatively low emissivity of hydrogen from solar energy also in relation to this innovative technology. The economic profitability of the investment depends on external subsidies because as developing technology the AEM electrolysis of green hydrogen from photovoltaics is still uncompetitive in terms of its cost without this type of support.
Improving Ecological Efficiency of Gas Turbine Power System by Combusting Hydrogen and Hydrogen-Natural Gas Mixtures
Apr 2023
Publication
Currently the issue of creating decarbonized energy systems in various spheres of life is acute. Therefore for gas turbine power systems including hybrid power plants with fuel cells it is relevant to transfer the existing engines to pure hydrogen or mixtures of hydrogen with natural gas. However significant problems arise associated with the possibility of the appearance of flashback zones and acoustic instability of combustion an increase in the temperature of the walls of the flame tubes and an increase in the emission of nitrogen oxides in some cases. This work is devoted to improving the efficiency of gas turbine power systems by combusting pure hydrogen and mixtures of natural gas with hydrogen. The organization of working processes in the premixed combustion chamber and the combustion chamber with a sequential injection of ecological and energy steam for the “Aquarius” type power plant is considered. The conducted studies of the basic aerodynamic and energy parameters of a gas turbine combustor working on hydrogen-containing gases are based on solving the equations of conservation and transfer in a multicomponent reacting system. A four-stage chemical scheme for the burning of a mixture of natural gas and hydrogen was used which allows for the rational parameters of environmentally friendly fuel burning devices to be calculated. The premixed combustion chamber can only be recommended for operations on mixtures of natural gas with hydrogen with a hydrogen content not exceeding 20% (by volume). An increase in the content of hydrogen leads to the appearance of flashback zones and fuel combustion inside the channels of the swirlers. For the combustion chamber of the combined-cycle power plant “Vodoley” when operating on pure hydrogen the formation of flame flashback zones does not occur.
No more items...