Norway
PIV-measurements of Reactant Flow in Hydrogen-air Explosions
Sep 2017
Publication
The paper present the work on PIV-measurements of reactant flow velocity in front of propagating flames in hydrogen-air explosions. The experiments was performed with hydrogen-air mixture at atmospheric pressure and room temperature. The experimental rig was a square channel with 45 × 20 mm2 cross section 300 mm long with a single cylindrical obstacle of blockage ratio 1/3. The equipment used for the PIV-measurements was a Firefly diode laser from Oxford lasers Photron SA-Z high-speed camera and a particle seeder producing 1 μm droplets of water. The gas concentrations used in the experiments was 14 and 17 vol% hydrogen in air. The resulting explosion can be characterized as slow since the maximum flow velocity of the reactants was 13 m/s in the 14% mixture and 23 m/s in the 17% mixture. The maximum flow velocities was measured during the flame-vortex interaction and at two obstacle diameters behind the obstacle. The flame-vortex interaction contributed to the flame acceleration by increasing the overall reaction rate and the flow velocity. The flame area as a function of position is the same for both concentrations as the flame passes the obstacle.
Hydrogen Explosions in 20’ ISO Container
Oct 2015
Publication
This paper describes a series of explosion experiments in inhomogeneous hydrogen air clouds in a standard 20′ ISO container. Test parameter variations included nozzle configuration jet direction reservoir back pressure time of ignition after release and degree of obstacles. The paper presents the experimental setup resulting pressure records and high speed videos. The explosion pressures from the experiments without obstacles were in the range of 0.4–7 kPa. In the experiments with obstacles the gas exploded more violently producing pressures in order of 100 kPa.
A Review of Cohesive Zone Modelling as an Approach for Numerically Assessing Hydrogen Embrittlement of Steel Structures
Jun 2014
Publication
Simulation of hydrogen embrittlement (HE) requires a coupled approach; on one side the models describing hydrogen transport must account for local mechanical fields while on the other side the effect of hydrogen on the accelerated material damage must be implemented into the model describing crack initiation and growth. This study presents a review of coupled diffusion and cohesive zone modelling as a method for numerically assessing HE of a steel structure. While the model is able to reproduce single experimental results by appropriate fitting of the cohesive parameters there appears to be limitations in transferring these results to other hydrogen systems. Agreement may be improved by appropriately identifying the required input parameters for the particular system under study.
Link to document download on Royal Society Website
Link to document download on Royal Society Website
H2FC European Infrastructure; Research Opportunities to Focus on Scientific and Technical Bottlenecks
Sep 2013
Publication
The European Strategy Forum on Research Infrastructures (ESFRI) recognizes in its roadmap for Research Infrastructures that ?in the near future hydrogen as an energy carrier derived from various other fuels and fuel cells as energy transformers are expected to come into a major role for mobility but also for different other mobile and stationary applications? |1|. This modern hydrogen driven society lags far behind the reality. Because of that it is conform to question the current situation concerning the belief that already most is comprehensively investigated and developed concerning hydrogen technology is correct and already done. From that it appears the hydrogen technology is market ready only partial and not prepared in a sufficient way to get finally included and adopted in modern hydrogen driven society and especially the acceptance of the society is a critical. Beside this critical view through society several scientific and technical bottlenecks still discoverable. Nevertheless it is possible to foster furthermore science and development on hydrogen technology. The ?Integrating European Infrastructure? was created to support science and development of hydrogen and fuel cell technologies towards European strategy for sustainable competitive and secure energy also while identifying scientific and technical bottlenecks to support solutions based on. Its acronym is H2FC European Infrastructure and was formed to integrate the European R&D community around rare and/or unique infrastructural elements that will facilitate and significantly enhance the research and development of hydrogen and fuel cell technology.
Fire Tests Carried Out in FCH JU FIRECOMP Project, Recommendations and Application to Safety of Gas Storage Systems
Sep 2017
Publication
In the event of a fire composite pressure vessels behave very differently from metallic ones: the material is degraded potentially leading to a burst without significant pressure increase. Hence such objects are when necessary protected from fire by using thermally-activated devices (TPRD) and standards require testing cylinder and TPRD together. The pre-normative research project FireComp aimed at understanding better the conditions which may lead to burst through testing and simulation and proposed an alternative way of assessing the fire performance of composite cylinders. This approach is currently used by Air Liquide for the safety of composite bundles carrying large amounts of hydrogen gas.
Can the Addition of Hydrogen to Natural Gas Reduce the Explosion Risk?
Sep 2009
Publication
One of the main benefits sought by including hydrogen in the alternative fuels mix is emissions reduction – eventually by 100%. However in the near term there is a very significant cost differential between fossil fuels and hydrogen. Hythane (a blend of hydrogen and natural gas) can act as a viable next step on the path to an ultimate hydrogen economy as a fuel blend consisting of 8−30 % hydrogen in methane can reduce emissions while not requiring significant changes in existing infrastructure. This work seeks to evaluate whether hythane may be safer than both hydrogen and methane under certain conditions. This is due to the fact hythane combines the positive safety properties of hydrogen (strong buoyancy high diffusivity) and methane (much lower flame speeds and narrower flammability limits as compared to hydrogen). For this purpose several different mixture compositions (e.g. 8 % 20 % and 30 % hydrogen) are considered. The evaluation of (a) dispersion characteristics (which are more positive than for methane) (b) combustion characteristics (which are closer to methane than hydrogen) and (c) Combined dispersion + explosion risk is performed. This risk is expected to be comparable to that of pure methane possibly lower in some situations and definitely lower than for pure hydrogen. The work is performed using the CFD software FLACS that has been well-validated for safety studies of both natural gas/methane and hydrogen systems. The first part of the work will involve validating the flame speeds and flammability limits predicted by FLACS against values available in literature. The next part of the work involves validating the overpressures predicted by the CFD tool for combustion of premixed mixtures of methane and hydrogen with air against available experimental data. In the end practical systems such as vehicular tunnels garages etc. is used to demonstrate positive safety benefits of hythane with comparisons to similar simulations for both hydrogen and methane.
Benchmark Exercise on Risk Assessment Methods Applied to a Virtual Hydrogen Refuelling Station
Sep 2009
Publication
A benchmarking exercise on quantitative risk assessment (QRA) methodologies has been conducted within the project HyQRA under the framework of the European Network of Excellence (NoE) HySafe. The aim of the exercise was basically twofold: (i) to identify the differences and similarities in approaches in a QRA and their results for a hydrogen installation between nine participating partners representing a broad spectrum of background in QRA culture and history and (ii) to identify knowledge gaps in the various steps and parameters underlying the risk quantification. In the first step a reference case was defined: a virtual hydrogen refuelling station (HRS) in virtual surroundings comprising housing school shops and other vulnerable objects. All partners were requested to conduct a QRA according to their usual approach and experience. Basically participants were free to define representative release cases to apply models and frequency assessments according their own methodology and to present risk according to their usual format. To enable inter-comparison a required set of results data was prescribed like distances to specific thermal radiation levels from fires and distances to specific overpressure levels. Moreover complete documentation of assumptions base data and references was to be reported. It was not surprising that a wide range of results was obtained both in the applied approaches as well as in the quantitative outcomes and conclusions. This made it difficult to identify exactly which assumptions and parameters were responsible for the differences in results as the paper will show. A second phase was defined in which the QRA was determined by a more limited number of release cases (scenarios). The partners in the project agreed to assess specific scenarios in order to identify the differences in consequence assessment approaches. The results of this phase provide a better understanding of the influence of modelling assumptions and limitations on the eventual conclusions with regard to risk to on-site people and to the off-site public. This paper presents the results and conclusions of both stages of the exercise.
Hysafe SBEP-V20: Numerical Predictions of Release Experiments Inside a Residential Garage With Passive Ventilation
Sep 2009
Publication
This work presents the results of the Standard Benchmark Exercise Problem (SBEP) V20 of Work Package 6 (WP6) of HySafe Network of Excellence (NoE) co-funded by the European Commission in the frame of evaluating the quality and suitability of codes models and user practices by comparative assessments of code results. The benchmark problem SBEP-V20 covers release scenarios that were experimentally investigated in the past using helium as a substitute to hydrogen. The aim of the experimental investigations was to determine the ventilation requirements for parking hydrogen fuelled vehicles in residential garages. Helium was released under the vehicle for 2 h with 7.200 l/h flow rate. The leak rate corresponded to a 20% drop of the peak power of a 50 kW fuel cell vehicle. Three double vent garage door geometries are considered in this numerical investigation. In each case the vents are located at the top and bottom of the garage door. The vents vary only in height. In the first case the height of the vents is 0.063 m in the second 0.241 m and in the third 0.495 m. Four HySafe partners participated in this benchmark. The following CFD packages with the respective models were applied to simulate the experiments: ADREA-HF using k–ɛ model by partner NCSRD FLACS using k–ɛ model by partner DNV FLUENT using k–ɛ model by partner UPM and CFX using laminar and the low-Re number SST model by partner JRC. This study compares the results predicted by the partners to the experimental measurements at four sensor locations inside the garage with an attempt to assess and validate the performance of the different numerical approaches.
3D Risk Management for Hydrogen Installations (HY3DRM)
Oct 2015
Publication
This paper introduces the 3D risk management (3DRM) concept with particular emphasis on hydrogen installations (Hy3DRM). The 3DRM framework entails an integrated solution for risk management that combines a detailed site-specific 3D geometry model a computational fluid dynamics (CFD) tool for simulating flow-related accident scenarios methodology for frequency analysis and quantitative risk assessment (QRA) and state-of-the-art visualization techniques for risk communication and decision support. In order to reduce calculation time and to cover escalating accident scenarios involving structural collapse and projectiles the CFD-based consequence analysis can be complemented with empirical engineering models reduced order models or finite element analysis (FEA). The paper outlines the background for 3DRM and presents a proof-of-concept risk assessment for a hypothetical hydrogen filling station. The prototype focuses on dispersion fire and explosion scenarios resulting from loss of containment of gaseous hydrogen. The approach adopted here combines consequence assessments obtained with the CFD tool FLACS-Hydrogen from Gexcon and event frequencies estimated with the Hydrogen Risk Assessment Models (HyRAM) tool from Sandia to generate 3D risk contours for explosion pressure and radiation loads. For a given population density and set of harm criteria it is straightforward to extend the analysis to include personnel risk as well as risk-based design such as detector optimization. The discussion outlines main challenges and inherent limitations of the 3DRM concept as well as prospects for further development towards a fully integrated framework for risk management in organizations.
Explosion and Fire Risk Analyses of Maritime Fuel Cell Rooms with Hydrogen
Sep 2017
Publication
A methodology for explosion and fire risk analyses in enclosed rooms is presented. The objectives of this analysis are to accurately predict the risks associated with hydrogen leaks in maritime applications and to use the approach to provide decision support regarding design and risk-prevention and risk mitigating measures. The methodology uses CFD tools and simpler consequence models for ventilation dispersion and explosion scenarios as well as updated frequency for leaks and ignition. Risk is then efficiently calculated with a Monte Carlo routine capturing the transient behavior of the leak. This makes it possible to efficiently obtain effects of sensitivities and design options maintaining safety and reducing costs.
CFD and VR for Risk Communication and Safety Training
Sep 2011
Publication
There are new safety challenges with an increased use of hydrogen e.g. that people may not see dangerous jet flames in case of an incident. Compared to conventional fuels hydrogen has very different characteristics and physical properties and is stored at very high pressure or at very low temperatures. Thus the nature of hazard scenarios will be very different. Consequence modelling of ventilation releases explosions and fires can be used to predict and thus understand hazards. In order to describe the detailed development of a hazard scenario and evaluate ways of mitigation 3D Computational Fluid Dynamics (CFD) models will be required. Even with accurate modelling the communication of risk can be challenging. For this visualization in virtual reality (VR) may be of good help in which the CFD model predictions are presented in a realistic 3D environment with the possibility to include sounds like noise from a high pressure release explosion or fire. In cooperation with Statoil Christian Michelsen Research (CMR) and GexCon have developed the VRSafety application. VRSafety can visualize simulation results from FLACS (and another CFD-tool KFX) in an immersive VR-lab or on a PC. VRSafety can further be used to interactively control and start new CFD-simulations during the sessions. The combination of accurate CFD-modelling visualization and interactive use through VRSafety represents a powerful toolbox for safety training and risk communication to first-responders employees media and other stakeholders. It can also be used for lessons learned sessions studying incidents and accidents and to demonstrate what went wrong and how mitigation could have prevented accidents from happening. This paper will describe possibilities with VRSafety and give examples of use.
Hazard Distance Nomograms for a Blast Wave from a Compressed Hydrogen Tank Rupture in a Fire
Sep 2017
Publication
Nomograms for assessment of hazard distances from a blast wave generated by a catastrophic rupture of stand-alone (stationary) and onboard compressed hydrogen cylinder in a fire are presented. The nomograms are easy to use hydrogen safety engineering tools. They were built using the validated and recently published analytical model. Two types of nomograms were developed – one for use by first responders and another for hydrogen safety engineers. The paper underlines the importance of an international effort to unify harm and damage criteria across different countries as the discrepancies identified by the authors gave the expected results of different hazard distances for different criteria.
Technical and Economic Analysis of One-Stop Charging Stations for Battery and Fuel Cell EV with Renewable Energy Sources
Jun 2020
Publication
Currently most of the vehicles make use of fossil fuels for operations resulting in one of the largest sources of carbon dioxide emissions. The need to cut our dependency on these fossil fuels has led to an increased use of renewable energy sources (RESs) for mobility purposes. A technical and economic analysis of a one-stop charging station for battery electric vehicles (BEV) and fuel cell electric vehicles (FCEV) is investigated in this paper. The hybrid optimization model for electric renewables (HOMER) software and the heavy-duty refueling station analysis model (HDRSAM) are used to conduct the case study for a one-stop charging station at Technical University of Denmark (DTU)-Risø campus. Using HOMER a total of 42 charging station scenarios are analyzed by considering two systems (a grid-connected system and an off-grid connected system). For each system three different charging station designs (design A-hydrogen load; design B-an electrical load and design C-an integrated system consisting of both hydrogen and electrical load) are set up for analysis. Furthermore seven potential wind turbines with different capacity are selected from HOMER database for each system. Using HDRSAM a total 18 scenarios are analyzed with variation in hydrogen delivery option production volume hydrogen dispensing option and hydrogen dispensing option. The optimal solution from HOMER for a lifespan of twenty-five years is integrated into design C with the grid-connected system whose cost was $986065. For HDRSAM the optimal solution design consists of tube trailer as hydrogen delivery with cascade dispensing option at 350 bar together with high production volume and the cost of the system was $452148. The results from the two simulation tools are integrated and the overall cost of the one-stop charging station is achieved which was $2833465. The analysis demonstrated that the one-stop charging station with a grid connection is able to fulfil the charging demand cost-effectively and environmentally friendly for an integrated energy system with RESs in the investigated locations.
Safe Hydrogen Fuel Handling and Use for Efficient Implementation – SH2IFT
Sep 2019
Publication
The SH2IFT project combines social and technical scientific methods to address knowledge gaps regarding safe handling and use of gaseous and liquid hydrogen. Theoretical approaches will be complemented by fire and explosion experiments with emphasis on topics of strategic importance to Norway such as tunnel safety maritime applications etc. Experiments include Rapid Phase Transition Boiling Liquid Expanding Vapour Explosion and jet fires. This paper gives an overview of the project and preliminary results.
Metal Hydride Hydrogen Compressors
Feb 2014
Publication
Metal hydride (MH) thermal sorption compression is an efficient and reliable method allowing a conversion of energy from heat into a compressed hydrogen gas. The most important component of such a thermal engine – the metal hydride material itself – should possess several material features in order to achieve an efficient performance in the hydrogen compression. Apart from the hydrogen storage characteristics important for every solid H storage material (e.g. gravimetric and volumetric efficiency of H storage hydrogen sorption kinetics and effective thermal conductivity) the thermodynamics of the metal–hydrogen systems is of primary importance resulting in a temperature dependence of the absorption/desorption pressures). Several specific features should be optimised to govern the performance of the MH-compressors including synchronisation of the pressure plateaus for multi-stage compressors reduction of slope of the isotherms and hysteresis increase of cycling stability and life time together with challenges in system design associated with volume expansion of the metal matrix during the hydrogenation.<br/>The present review summarises numerous papers and patent literature dealing with MH hydrogen compression technology. The review considers (a) fundamental aspects of materials development with a focus on structure and phase equilibria in the metal–hydrogen systems suitable for the hydrogen compression; and (b) applied aspects including their consideration from the applied thermodynamic viewpoint system design features and performances of the metal hydride compressors and major applications.
Vented Hydrogen Deflagrations in Containers: Effect of Congestion for Homogeneous Mixtures
Sep 2017
Publication
This paper presents results from an experimental study of vented hydrogen deflagrations in 20-foot ISO containers. The scenarios investigated include 14 tests with explosion venting through the doors of the containers and 20 tests with venting through openings in the roof. The parameters investigated include hydrogen concentration vent area type of venting device and the level of congestion inside the containers. All tests involved homogeneous and initially quiescent hydrogen-air mixtures. The results demonstrate the strong effect of congestion on the maximum reduced explosion pressures which typically is not accounted for in current standards and guidelines for explosion protection. The work is a deliverable from work package 2 (WP2) in the project “Improving hydrogen safety for energy applications through pre-normative research on vented deflagrations” or HySEA which receives funding from the Fuel Cells and Hydrogen Joint Undertaking (FCH JU) under grant agreement no. 671461.
Validation of CFD Modelling of LH2 Spread and Evaporation Against Large-Scale Spill Experiments
Sep 2009
Publication
Hydrogen is widely recognized as an attractive energy carrier due to its low-level air pollution and its high mass-related energy density. However its wide flammability range and high burning velocity present a potentially significant hazard. A significant fraction of hydrogen is stored and transported as a cryogenic liquid. Therefore loss of hydrogen containments may lead to the formation of a pool on the ground. In general very large spills will give a pool whereas moderate sized spills may evaporate immediately. Accurate hazard assessments of storage systems require a proper prediction of the liquid hydrogen pool evaporation and spreading. A new pool model handling the spread and the evaporation of liquid spills on different surfaces has recently been developed in the 3D Computational Fluid Dynamics (CFD) tool FLACS [1-4]. As the influence of geometry on the liquid spread is taken into account in the new pool model realistic industrial scenarios can be investigated. The model has been validated for LNG spills on water with the Burro and Coyote experiments [56]. The model has previously been tested for LH2 release in the framework of the EU-sponsored Network of Excellence HySafe where experiments carried out by BAM were modelled. In the large scale BAM experiments [7] 280 kg of liquid hydrogen was spilled in 6 tests adjacent to buildings. In these tests the pool spreading the evaporation and the cloud formation were investigated. Simulations of these tests are found to compare reasonably well with the experimental results. In the present work the model is extended and the liquid hydrogen spill experiments carried out by NASA are simulated with the new pool model. The large scale NASA experiments [89] consisted of 7 releases of liquefied hydrogen at White Sand New Mexico. The release test 6 is used. During these experiments cloud concentrations were measured at several distances downwind of the spill point. With the new pool model feature the FLACS tool is shown to be an efficient and accurate tool for the investigation of complex and realistic accidental release scenarios of cryogenic liquids.
Modelling of Hydrogen Jet Fires Using CFD
Sep 2011
Publication
The computational fluid dynamics (CFD) software FLACS has primarily been developed to model dispersion and explosion phenomena; however models for the simulation of jet fires are under development. The aim is to be able to predict industrial fires efficiently and with good precision. Newly developed models include e.g. flame models for non-premixed flames discrete transfer radiation model as well as soot models. Since the time scales for fire simulations are longer than for explosions the computational speed is important. The recent development of non-compressible and parallel solvers in FLACS may therefore be important to ensure efficiency. Hydrogen flames may be invisible will generate no soot and tend to radiate less than hydrocarbon fuels. Due to high pressure storage the flame lengths can be significant. Simpler jet flame relations can not predict the jet flame interaction with objects and barriers and thus the heat loads on impacted objects. The development of efficient and precise CFD-tools for hydrogen fires is therefore important. In this paper the new models for the simulation of fire are described. These models are currently under development and this manuscript describes the current status of the work. Jet fire experiments performed by Health and Safety Laboratories (HSL) both free jets and impinging jets will also be simulated to evaluate the applicability and validity of the new fire models.
Development of Uniform Harm Criteria for Use in Quantitative Risk Analysis of the Hydrogen Infrastructure
Sep 2009
Publication
This paper discusses the preliminary results of the Risk Management subtask efforts within the International Energy Agency (IEA) Hydrogen Implementing Agreement (HIA) Task 19 on Hydrogen Safety to develop uniform harm criteria for use in the Quantitative Risk Assessments (QRAs) of hydrogen facilities. The IEA HIA Task 19 efforts are focused on developing guidelines and criteria for performing QRAs of hydrogen facilities. The performance of QRAs requires that the level of harm that is represented in the risk evaluation be established using deterministic models. The level of harm is a function of the type and level of hazard. The principle hazard associated with hydrogen facilities is uncontrolled accumulation of hydrogen in (semi) confined spaces and consecutive ignition. Another significant hazard is combustion of accidentally released hydrogen gas or liquid which may or may not happen instantaneously. The primary consequences from fire hazards consist of personnel injuries or fatalities or facility and equipment damage due to high air temperatures radiant heat fluxes or direct contact with hydrogen flames. The possible consequences of explosions on humans and structures or equipment include blast wave overpressure effects impact from fragments generated by the explosion the collapse of buildings and the heat effects from subsequent fire balls. A harm criterion is used to translate the consequences of an accident evaluated from deterministic models to a probability of harm to people structures or components. Different methods can be used to establish harm criteria including the use of threshold consequence levels and continuous functions that relate the level of a hazard to a probability of damage. This paper presents a survey of harm criteria that can be utilized in QRAs and makes recommendations on the criteria that should be utilized for hydrogen-related hazards.
Hydrogen as an Energy Carrier: An Evaluation of Emerging Hydrogen Value Chains
Nov 2018
Publication
Some 3% of global energy consumption today is used to produce hydrogen. Only 0.002% of this hydrogen about 1000 tonnes per annum(i) is used as an energy carrier. Yet as this timely position paper from DNV GL indicates hydrogen can become a major clean energy carrier in a world struggling to limit global warming.<br/>The company’s recently published 2018 Energy Transition Outlook(1) projects moderate uptake of hydrogen in this role towards 2050 then significant growth towards 2100. Building on that this position paper provides a more granular analysis of hydrogen as an energy carrier.
Ia-HySafe Standard Benchmark Exercise Sbep-V21- Hydrogen Release and Accumulation within a Non-Ventilated Ambient Pressure Garage at Low Release Rates
Sep 2011
Publication
The successful Computational Fluid Dynamics (CFD) benchmarking activity originally started within the EC-funded Network of Excellence HySafe (2004-2009) continues within the research topics of the recently established “International Association of Hydrogen Safety” (IA-HySafe). The present contribution reports the results of the standard benchmark problem SBEP-V21. Focus is given to hydrogen dispersion and accumulation within a non-ventilated ambient pressure garage both during the release and post-release periods but for very low release rates as compared to earlier work (SBEP-V3). The current experiments were performed by CEA at the GARAGE facility under highly controlled conditions. Helium was vertically released from the centre of the 5.76 m (length) x 2.96 m (width) x 2.42 m (height) facility 22 cm from the floor from a 29.7 mm diameter opening at a volumetric rate of 18 L/min (0.027 g/s equivalent hydrogen release rate compared to 1 g/s for SBEP-V3) and for a period of 3740 seconds. Helium concentrations were measured with 57 catharometric sensors at various locations for a period up to 1.1 days. The simulations were performed using a variety of CFD codes and turbulence models. The paper compares the results predicted by the participating partners and attempts to identify the reasons for any observed disagreements.
Hydrogen Refuelling Stations for Public Transport Quality and Safety in the User-interface
Sep 2007
Publication
Hydrogen stations and supply systems for public transport have been demonstrated in a number of European cities during the last four years. The first refuelling facility was put into operation in Reykjavik in April 2003. Experience from the four years of operation shows that safety related incidents are more frequent in the user interface than in the other parts of the hydrogen refuelling station (HRS). This might be expected taking into account the fact that the refuelling is manually operated and that according to industrial statistics human failures normally stand for more than 80% of all safety related incidents. On the other hand the HRS experience needs special attention since the refuelling at the existing stations is carried out by well trained personnel and that procedures and systems are followed closely. So far the quality and safety approach to hydrogen refuelling stations has been based on industrial experience. This paper addresses the challenge related to the development of safe robust and easy to operate refuelling systems. Such systems require well adapted components and system solutions as well as user procedures. The challenge to adapt the industrial based quality and safety philosophy and methodologies to new hydrogen applications and customers in the public sector is addressed. Risk based safety management and risk acceptance criteria relevant to users and third party are discussed in this context. Human factors and the use of incident reporting as a tool for continuous improvement are also addressed. The paper is based on internal development programmes for hydrogen refuelling stations in Hydro and on participation in international EU and IPHE projects such as CUTE HyFLEET:CUTE HySafe and HyApproval.
The Norwegian Government’s Hydrogen Strategy - Towards a Low Emission Society
Jun 2020
Publication
On Wednesday 3rd of June 2020 Norwegian Minister for Petroleum and Energy Tina Bru and Minister for Climate and Environment Sveinung Rotevatn presented the Norwegian government's hydrogen strategy.<br/>The strategy sets the course for the government's efforts to stimulate development of hydrogen-related technologies. Hydrogen as an energy carrier can contribute to reduction of greenhouse gases and create value for the Norwegian business sector. The government wishes to prioritise efforts in areas where Norway Norwegian enterprises and technology clusters may influence the development of hydrogen related technologies and where there are opportunites for increased value creation and green growth. For hydrogen to be a low-carbon or emission-free energy carrier it must be produced with no or low emissions such as through water electrolysis with renewable electricity or from natural gas with carbon capture and storage.<br/>Today technology maturity and high costs represent barriers for increased use of hydrogen especially in the transport sector and as feedstock in parts of industry. If hydrogen and hydrogen-based solutions such as ammonia are to be used in new areas both the technology and the solutions must become more mature. In this respect further technology development will be vital.
Production of Sustainable Hydrogen and Carbon for the Metallurgical Industry
Dec 2021
Publication
Hydrogen will presumably become an important substitute for carbon as a reductant in the metallurgical industry for processes such as steel production. However the challenge to supply enough CO2 -free hydrogen for metallurgical processes has not been resolved yet. This paper reviews different production technologies for hydrogen and their advantages and drawbacks. Additionally it will highlight the development of plasma technology to produce hydrogen and carbon black which has been taking place at SINTEF during the last 30 years.
Hydrogen Venting Under Variable Flow Conditions
Sep 2011
Publication
Safety distances for hydrogen plumes are currently derived using models developed for hydrocarbon releases. It is well known that hydrogen behaves in a significantly different manner to that of hydrocarbons when released to atmosphere. There are two main aspects involved with the development of safety distances for credible hydrogen releases; the intensity of the thermal radiation from such a plume should it be ignited and the distance downwind from the release point to the point where a flammable mixture with air no longer exists. A number of distinct areas of venting behaviour were investigated; Thermal radiation from ignited plumes from vertical open ended vent pipes Far field radiation measurements for direct comparison with models Thermal radiation from ignited plumes from vertical vent pipes terminating in a T-piece Thermal radiation measurements from ignited hydrogen with a 45 vent termination Hydrogen concentration measurements with a T-piece.
Integration of Experimental Facilities: A Joint Effort for Establishing a Common Knowledge Base in Experimental Work on Hydrogen Safety
Sep 2009
Publication
With regard to the goals of the European HySafe Network research facilities are essential for the experimental investigation of relevant phenomena for testing devices and safety concepts as well as for the generation of validation data for the various numerical codes and models. The integrating activity ‘Integration of Experimental Facilities (IEF)’ has provided basic support for jointly performed experimental work within HySafe. Even beyond the funding period of the NoE HySafe in the 6th Framework Programme IEF represents a long lasting effort for reaching sustainable integration of the experimental research capacities and expertise of the partners from different research fields. In order to achieve a high standard in the quality of experimental data provided by the partners emphasis was put on the know-how transfer between the partners. The strategy for reaching the objectives consisted of two parts. On the one hand a documentation of the experimental capacities has been prepared and analysed. On the other hand a communication base has been established by means of biannual workshops on experimental issues. A total of 8 well received workshops has been organised covering topics from measurement technologies to safety issues. Based on the information presented by the partners a working document on best practice including the joint experimental knowledge of all partners with regard to experiments and instrumentation was created. Preserving the character of a working document it was implemented in the IEF wiki website which was set up in order to provide a central communication platform. The paper gives an overview of the IEF network activities over the last 5 years.
Residual Performance of Composite Pressure Vessels Submitted to Mechanical Impacts
Sep 2017
Publication
Type IV pressure vessels are commonly used for hydrogen on-board stationary or bulk storages. During their lifetime they can be submitted to mechanical impacts creating damage within the composite structure not necessarily correlated to what is visible from the outside. When an impact is suspected or when a cylinder is periodically inspected it is necessary to determine whether it can safely stay in service or not. The FCH JU project Hypactor aims at creating a large database of impacts characterized by various non destructive testing (NDT) methods in order to provide reliable pass-fail criteria for damaged cylinders. This paper presents some of the tests results investigating short term burst) and long term (cycling) performance of impacted cylinders and the recommendations that can be made for impact testing and NDT criteria calibration.
The Potential of Gas Switching Partial Oxidation Using Advanced Oxygen Carriers for Efficient H2 Production with Inherent CO2 Capture
May 2021
Publication
The hydrogen economy has received resurging interest in recent years as more countries commit to net-zero CO2 emissions around the mid-century. “Blue” hydrogen from natural gas with CO2 capture and storage (CCS) is one promising sustainable hydrogen supply option. Although conventional CO2 capture imposes a large energy penalty advanced process concepts using the chemical looping principle can produce blue hydrogen at efficiencies even exceeding the conventional steam methane reforming (SMR) process without CCS. One such configuration is gas switching reforming (GSR) which uses a Ni-based oxygen carrier material to catalyze the SMR reaction and efficiently supply the required process heat by combusting an off-gas fuel with integrated CO2 capture. The present study investigates the potential of advanced La-Fe-based oxygen carrier materials to further increase this advantage using a gas switching partial oxidation (GSPOX) process. These materials can overcome the equilibrium limitations facing conventional catalytic SMR and achieve direct hydrogen production using a water-splitting reaction. Results showed that the GSPOX process can achieve mild efficiency improvements relative to GSR in the range of 0.6–4.1%-points with the upper bound only achievable by large power and H2 co-production plants employing a highly efficient power cycle. These performance gains and the avoidance of toxicity challenges posed by Ni-based oxygen carriers create a solid case for the further development of these advanced materials. If successful results from this work indicate that GSPOX blue hydrogen plants can outperform an SMR benchmark with conventional CO2 capture by more than 10%-points both in terms of efficiency and CO2 avoidance.
Alkaline Fuel cell Technology - A review
Apr 2021
Publication
The realm of alkaline-based fuel cells has with the arrival of anionic exchange membrane fuel cells (AEMFCs) taken a great step to replace traditional liquid electrolyte alkaline fuel cells (AFCs). The following review summarises progress bottleneck issues and highlights the most recent research trends within the field. The activity of alkaline catalyst materials has greatly advanced however achieving long-term stability remains a challenge. Great AEMFC performances are reported though these are generally obtained through the employment of platinum group metals (PGMs) thus emphasising the importance of R&D related to non-PGM materials. Thorough design strategies must be utilised for all components to avoid a mismatch of electrochemical properties between electrode components. Lastly AEMFC optimisation challenges on the system-level will also have to be assessed as few application-size AEMFCs have been built and tested.
Implementing Maritime Battery-electric and Hydrogen Solutions: A Technological Innovation Systems Analysis
Sep 2020
Publication
Maritime transport faces increasing pressure to reduce its greenhouse gas emissions to be in accordance with the Paris Agreement. For this to happen low- and zero-carbon energy solutions need to be developed. In this paper we draw on sustainability transition literature and introduce the technological innovation system (TIS) framework to the field of maritime transportation research. The TIS approach analytically distinguishes between different innovation system functions that are important for new technologies to develop and diffuse beyond an early phase of experimentation. This provides a basis for technology-specific policy recommendations. We apply the TIS framework to the case of battery-electric and hydrogen energy solutions for coastal maritime transport in Norway. Whereas both battery-electric and hydrogen solutions have developed rapidly the former is more mature and has a strong momentum. Public procurement and other policy instruments have been crucial for developments to date and will be important for these technologies to become viable options for shipping more generally.
Accidental Hydrogen Release in Gc-laboratory: A Case Study
Oct 2015
Publication
A 50-litre standard hydrogen gas cylinder was temporarily placed in a laboratory to supply hydrogen gas to a flame ionization detector (FID) for use in gas chromatography (GC). On 20 January 2015 the safety relief valve on the pressure regulator failed and released about 0.34 kg of hydrogen into the laboratory. The gas cloud did not ignite so there was no injury or damage. The results of a full investigation with a complete course of action and reconstruction are presented that verify the cause of the leakage and estimate the gas concentration of the dispersion and gas cloud. A preliminary simulation of the likely explosion is provided. If the gas cloud had ignited the explosion would most likely have caused significant structural damage to doors windows and possibly the walls.
Comparing Exergy Losses and Evaluating the Potential of Catalyst-filled Plate-fin and Spiral-wound Heat Exchangers in a Large-scale Claude Hydrogen Liquefaction Process
Jan 2020
Publication
Detailed heat exchanger designs are determined by matching intermediate temperatures in a large-scale Claude refrigeration process for liquefaction of hydrogen with a capacity of 125 tons/day. A comparison is made of catalyst filled plate-fin and spiral-wound heat exchangers by use of a flexible and robust modelling framework for multi-stream heat exchangers that incorporates conversion of ortho-to para-hydrogen in the hydrogen feed stream accurate thermophysical models and a distributed resolution of all streams and wall temperatures. Maps of the local exergy destruction in the heat exchangers are presented which enable the identification of several avenues to improve their performances.<br/>The heat exchanger duties vary between 1 and 31 MW and their second law energy efficiencies vary between 72.3% and 96.6%. Due to geometrical constraints imposed by the heat exchanger manufacturers it is necessary to employ between one to four parallel plate-fin heat exchanger modules while it is possible to use single modules in series for the spiral-wound heat exchangers. Due to the lower surface density and heat transfer coefficients in the spiral-wound heat exchangers their weights are 2–14 times higher than those of the plate-fin heat exchangers.<br/>In the first heat exchanger hydrogen feed gas is cooled from ambient temperature to about 120 K by use of a single mixed refrigerant cycle. Here most of the exergy destruction occurs when the high-pressure mixed refrigerant enters the single-phase regime. A dual mixed refrigerant or a cascade process holds the potential to remove a large part of this exergy destruction and improve the efficiency. In many of the heat exchangers uneven local exergy destruction reveals a potential for further optimization of geometrical parameters in combination with process parameters and constraints.<br/>The framework presented makes it possible to compare different sources of exergy destruction on equal terms and enables a qualified specification on the maximum allowed pressure drops in the streams. The mole fraction of para-hydrogen is significantly closer to the equilibrium composition through the entire process for the spiral-wound heat exchangers due to the longer residence time. This reduces the exergy destruction from the conversion of ortho-hydrogen and results in a higher outlet mole fraction of para-hydrogen from the process.<br/>Because of the higher surface densities of the plate-fin heat exchangers they are the preferred technology for hydrogen liquefaction unless a higher conversion to heat exchange ratio is desired.
Gas Switching Reforming for Flexible Power and Hydrogen Production to Balance Variable Renewables
May 2019
Publication
Variable renewable energy (VRE) is expected to play a major role in the decarbonization of the electricity sector. However decarbonization via VRE requires a fleet of flexible dispatchable plants with low CO2 emissions to supply clean power during times with limited wind and sunlight. These plants will need to operate at reduced capacity factors with frequent ramps in electricity output posing techno-economic challenges. This study therefore presents an economic assessment of a new near-zero emission power plant designed for this purpose. The gas switching reforming combined cycle (GSR-CC) plant can produce electricity during times of low VRE output and hydrogen during times of high VRE output. This product flexibility allows the plant to operate continuously even when high VRE output makes electricity production uneconomical. Although the CO2 avoidance cost of the GSR-CC plant (€61/ton) was similar to the benchmark post-combustion CO2 capture plant under baseload operation GSR-CC clearly outperformed the benchmark in a more realistic scenario where continued VRE expansion forces power plants into mid-load operation (45% capacity factor). In this scenario GSR-CC promises a 5 %-point higher annualized investment return than the post-combustion benchmark. GSR-CC therefore appears to be a promising concept for a future scenario with high VRE market share and CO2 prices provided that a large market for clean hydrogen is established.
Magnesium Based Materials for Hydrogen Based Energy Storage: Past, Present and Future
Jan 2019
Publication
Volodymyr A. Yartys,
Mykhaylo V. Lototskyy,
Etsuo Akiba,
Rene Albert,
V. E. Antonov,
Jose-Ramón Ares,
Marcello Baricco,
Natacha Bourgeois,
Craig Buckley,
José Bellosta von Colbe,
Jean-Claude Crivello,
Fermin Cuevas,
Roman V. Denys,
Martin Dornheim,
Michael Felderhoff,
David M. Grant,
Bjørn Christian Hauback,
Terry D. Humphries,
Isaac Jacob,
Petra E. de Jongh,
Jean-Marc Joubert,
Mikhail A. Kuzovnikov,
Michel Latroche,
Mark Paskevicius,
Luca Pasquini,
L. Popilevsky,
Vladimir M. Skripnyuk,
Eugene I. Rabkin,
M. Veronica Sofianos,
Alastair D. Stuart,
Gavin Walker,
Hui Wang,
Colin Webb,
Min Zhu and
Torben R. Jensen
Magnesium hydride owns the largest share of publications on solid materials for hydrogen storage. The “Magnesium group” of international experts contributing to IEA Task 32 “Hydrogen Based Energy Storage” recently published two review papers presenting the activities of the group focused on magnesium hydride based materials and on Mg based compounds for hydrogen and energy storage. This review article not only overviews the latest activities on both fundamental aspects of Mg-based hydrides and their applications but also presents a historic overview on the topic and outlines projected future developments. Particular attention is paid to the theoretical and experimental studies of Mg-H system at extreme pressures kinetics and thermodynamics of the systems based on MgH2 nanostructuring new Mg-based compounds and novel composites and catalysis in the Mg based H storage systems. Finally thermal energy storage and upscaled H storage systems accommodating MgH2 are presented.
Modelling and Numerical Simulation of Hydrogen Jet Fires for Industrial Safety Analyses – Comparison with Large-scale Experiments
Sep 2019
Publication
Reliable predictive tools for hydrogen safety engineering are needed to meet increased and more widespread use of hydrogen in the society. Industrial models and methods used to establish thermal radiation hazard safety distances from hydrogen jet fires are often based on models previously developed for hydrocarbon jet fires. Their capability of predicting radiative heat fluxes from hydrogen jet fires has often only been validated against small-scale or medium-scale jet flame experiments. However large-scale hydrogen jet fire experiments have shown that thermal radiation levels can be significantly higher than one might expect from extrapolation of experience on smaller hydrogen flames. Here two large-scale horizontal hydrogen jet fires (from a 20.9 mm and a 52.5 mm diameter release respectively) have been modelled and simulated with the advanced industrial CFD code KAMELEON FIREEX KFX® based on the Eddy Dissipation Concept by Magnussen for turbulent combustion modelling. The modelling of the high-pressure hydrogen gas releases is based on a pseudo-source concept using real-gas thermodynamic data for hydrogen. The discrete transport method of Lockwood and Shah is used to calculate the radiative heat transfer and radiative properties of water vapour are modelled according to Leckner. The predicted thermal radiation is compared to data from large-scale hydrogen jet fire experiments and discussed. This work was conducted as part of a KFX-H2 R&D project supported by the Research Council of Norway.
A Hydrogen-Air Explosion in a Process Plant: A Case History
Sep 2005
Publication
In the summer of 1985 a severe hydrogen-air explosion occurred in an ammonia plant in Norway. The accident resulted in two fatalities and the destruction of the building where the explosion took place. This paper presents the main findings from an investigation in 1985 and 1986 of the gas explosion and its consequences. The event started when a gasket in a water pump was blown out. The water pump was situated inside a 100 m long 10 m wide and 7 m high building. The pump was feeding water to a vessel containing hydrogen gas at pressure of 30 bars. This pressure caused a back flow of water flow through the pump and out through the failed gasket. The hydrogen reached the leakage point after about 3 minutes. The discharge of gas lasted some 20 to 30 seconds before the explosion occurred. The total mass of the hydrogen discharge was estimated at 10 to 20 kg hydrogen. The main explosion was very violent and it is likely that the gas cloud detonated. The ignition source was almost certainly a hot bearing. Several damage indicators were used to estimate the amount of hydrogen that exploded. The indicators include deflection of pipes and panels distances traveled by fragments and the distribution of glass breakage. We found that 3.5 to 7 kg of hydrogen must have been burning violently in the explosion. Window glass was broken up to 700 m from the centre of the explosion. Concrete blocks originally part of the north wall of the building and weighing 1.2 metric tons were thrown up to 16 meters. The roof of the building was lifted by an estimated 1.5 meters before resettling. The displacement of the roof caused a guillotine break of a 350 mm diameter pipe connected to the vessel that was the source of the original gas discharge. The gas composition in the vessel was 65 - 95 % hydrogen. This resulted in a large horizontal jet fire lasting about 30 seconds. Minor explosions occurred in the plant culvert system.<br/><br/>To our knowledge this gas explosion is one of the largest industrial hydrogen explosions reported. We believe this case history is a valuable reference for those who are investigating the nature of accidental<br/>hydrogen explosions.
Validation of Flacs-Hydrogen CFD Consequence Prediction Model Against Large Scale H2 Explosion Experiments in the Flame Facility
Sep 2005
Publication
The FLACS CFD-tool for consequence prediction has been developed continuously since 1980. The initial focus was explosion safety on offshore oil platforms in recent years the tool is also applied to study dispersion hydrogen safety dust explosions and more. A development project sponsored by Norsk Hydro Statoil and Ishikawajima Heavy Industries (IHI) was carried out to improve the modelling and validation of hydrogen dispersion and explosions. In this project GexCon carried out 200 small-scale experiments on dispersion and explosion with H2 and mixtures with H2 and CO or N2. Experiments with varying confinement congestion concentration and ignition location were performed. Since the main purpose of the tests was to produce good validation data all tests were simulated with the FLACS-HYDROGEN tool. The simulations confirmed the ability to predict explosions effects for the wide range of scenarios studied. A few examples of comparisons will be shown. To build confidence in a consequence prediction model it is important that the scales used for validation are as close as possible to reality. Since the hazard to people and facilities and the risk will generally increase with scale validation against large-scale experiments is important. In the 1980s a series of large-scale explosion experiments with H2 was carried out in the Sandia FLAME facility and sponsored by the US Nuclear Regulatory Commission. The FLAME facility is a 30.5m x 1.83m x 2.44m channel tests were performed with H2 concentrations from 7% to 30% with varying degree of top venting (0% 13% and 50%) and congestion (with or without baffles blocking 33% of the channel cross-section). A wide range of flame speeds and overpressures were observed. Comparisons are made between FLACS simulations and FLAME tests. The main conclusion from this validation study is that the precision when predicting H2 explosion consequences with FLACS has been improved to a very acceptable level
Simulation of Flame Acceleration and DDT in H2-air Mixture with a Flux Limiter Centred Method
Sep 2005
Publication
Flame acceleration and deflagration to detonation transition (DDT) is simulated with a numerical code based on a flux limiter centred method for hyperbolic differential equations. The energy source term is calculated by a Riemann solver for the in homogeneous Euler equations for the turbulent combustion and a two-step reaction model for hydrogen-air. The transport equations are filtered for large eddy simulation (LES) and the sub filter turbulence is modelled by a transport equation for the the turbulent kinetic energy. The flame tracking is handled by the G-equation for turbulent flames. Numerical results are compared to pressure histories from physical experiments. These experiments are performed in a closed circular 4m long tube with inner diameter of 0.107m. The tube is filled with hydrogen-air mixture at 1atm which is at rest when ignited. The ignition is located at one end of the tube. The tube is fitted with an obstruction with circular opening 1m down the tube from the ignition point. The obstruction has a blockage ratio of 0.92 and a thickness of 0.01m. The obstruction creates high pressures in the ignition end of the tube and very high gas velocities in and behind the obstruction opening. The flame experiences a detonation to deflagration transition (DDT) in the super sonic jet created by the obstruction. Pressure build-up in the ignition end of the tube is simulated with some discrepancies. The DDT in the supersonic jet is simulated but the position of the DDT is strongly dependent on the simulated pressure in the ignition end.
A Microstructure Informed and Mixed-mode Cohesive Zone Approach to Simulating Hydrogen Embrittlement
Mar 2022
Publication
Hydrogen induced failure under uniaxial tension is simulated in a duplex stainless steel considering microstructural feature of the material. There are three key ingredients in the modelling approach: image processing and finite element representation of the experimentally observed microstructure stress driven hydrogen diffusion and diffusion coupled cohesive zone modelling of fracture considering mixed failure mode. The microstructure used as basis for the modelling work is obtained from specimens cut in the transverse and longitudinal directions. It is found that the microstructure significantly influences hydrogen diffusion and fracture. The austenite phase is polygonal and randomly distributed in the transverse direction where a larger effective hydrogen diffusion coefficient and a lower hydrogen fracture resistance is found compared to the specimen in the longitudinal direction where the austenite phase is slender and laminated. This indicates that the proper design and control of the austenite phase help improve hydrogen resistance of duplex stainless steel. The strength of the interface in the shear direction is found to dominate the fracture mode and initiation site which reveals the importance of considering mixed failure mode and calibrating the hydrogen induced strength reduction in shear.
Safety Distances- Definition and Values
Sep 2005
Publication
In order to facilitate the introduction of a new technology as it is the utilization of hydrogen as an energy carrier development of safety codes and standards besides the conduction of demonstrative projects becomes a very important action to be realized. Useful tools of work could be the existing gaseous fuel codes (natural gas and propane) regulating the stationary and automotive applications. Some safety codes have been updated to include hydrogen but they have been based on criteria and/or data applicable for large industrial facilities making the realization of public hydrogen infrastructures prohibitive in terms of space. In order to solve the above mentioned problems others questions come out: how these safety distances have been defined? Which hazard events have been taken as reference for calculation? Is it possible to reduce the safety distances through an appropriate design of systems and components or through the predisposition of adequate mitigation measures? This paper presents an analysis of the definitions of “safety distances” and “hazardous locations” as well as a synoptic analysis of the different values in force in several States for hydrogen and natural gas. The above mentioned synoptic table will highlight the lacks and so some fields that need to be investigated in order to produce a suitable hydrogen standard.
An Inter-Comparison Exercise on the Capabilities of CFD Models to Predict the Short and Long Term Distribution and Mixing of Hydrogen in a Garage
Sep 2007
Publication
Alexandros G. Venetsanos,
E. Papanikolaou,
J. García,
Olav Roald Hansen,
Matthias Heitsch,
Asmund Huser,
Wilfried Jahn,
Jean-Marc Lacome,
Thomas Jordan,
H. S. Ledin,
Dmitry Makarov,
Prankul Middha,
Etienne Studer,
Andrei V. Tchouvelev,
Franck Verbecke,
M. M. Voort,
Andrzej Teodorczyk and
M. A. Delichatsios
The paper presents the results of the CFD inter-comparison exercise SBEP-V3 performed within the activity InsHyde internal project of the HYSAFE network of excellence in the framework of evaluating the capability of various CFD tools and modelling approaches in predicting the physical phenomena associated to the short and long term mixing and distribution of hydrogen releases in confined spaces. The experiment simulated was INERIS-TEST-6C performed within the InsHyde project by INERIS consisting of a 1 g/s vertical hydrogen release for 240 s from an orifice of 20 mm diameter into a rectangular room (garage) of dimensions 3.78x7.2x2.88 m in width length and height respectively. Two small openings at the front and bottom side of the room assured constant pressure conditions. During the test hydrogen concentration time histories were measured at 12 positions in the room for a period up to 5160 s after the end of release covering both the release and the subsequent diffusion phases. The benchmark was organized in two phases. The first phase consisted of blind simulations performed prior to the execution of the tests. The second phase consisted of post calculations performed after the tests were concluded and the experimental results made available. The participation in the benchmark was high: 12 different organizations (2 non-HYSAFE partners) 10 different CFD codes and 8 different turbulence models. Large variation in predicted results was found in the first phase of the benchmark between the various modelling approaches. This was attributed mainly to differences in turbulence models and numerical accuracy options (time/space resolution and discretization schemes). During the second phase of the benchmark the variation between predicted results was reduced.
An Intercomparison Exercise on the Capabilities of CFD Models to Predict Distribution and Mixing of H2 in a Closed Vessel.
Sep 2005
Publication
This paper presents a compilation and discussion of the results supplied by HySafe partners participating in the Standard Benchmark Exercise Problem (SBEP) V1 which is based on an experiment on hydrogen release mixing and distribution inside a vessel. Each partner has his own point of view of the problem and uses a different approach to the solution. The main characteristics of the models employed for the calculations are compared. The comparison between results together with the experimental data when available is made. Relative deviations of each model from the experimental values are also included. Explanations and interpretations of the results are presented together with some useful conclusions for future work.
Determination Of Hazardous Zones For A Generic Hydrogen Station – A Case Study
Sep 2007
Publication
A method for determination of hazardous zones for hydrogen installations has been studied. This work has been carried out within the NoE HySafe. The method is based on the Italian Method outlined in Guide 31-30(2004) Guide 31–35(2001) Guide 31-35/A(2001) and Guide 31-35/A; V1(2003). Hazardous zones for a “generic hydrogen refuelling station”(HRS) are assessed based on this method. The method is consistent with the EU directive 1999/92/EC “Safety and Health Protection of Workers potentially at risk from explosive atmospheres” which is the basis for determination of hazardous zones in Europe. This regulation is focused on protection of workers and is relevant for hydrogen installations such as hydrogen refuelling stations repair shops and other stationary installations where some type of work operations will be involved. The method is also based on the IEC standard and European norm IEC/EN60079-10 “Electrical apparatus for explosive gas atmospheres. Part 10 Classification of hazardous areas”. This is a widely acknowledged international standard/norm and it is accepted/approved by Fire and Safety Authorities in Europe and also internationally. Results from the HySafe work and other studies relevant for hydrogen and hydrogen installations have been included in the case study. Sensitivity studies have been carried out to examine the effect of varying equipment failure frequencies and leak sizes as well as environmental condition (ventilation obstacles etc.). The discharge and gas dispersion calculations in the Italian Method are based on simple mathematical formulas. However in this work also CFD (Computational Fluid Dynamics) and other simpler numerical tools have been used to quantitatively estimate the effect of ventilation and of different release locations on the size of the flammable gas cloud. Concentration limits for hydrogen to be used as basis for the extent of the hazardous zones in different situations are discussed.
Development of Tools for Risk Assessment and Risk Communication for Hydrogen Applications
Sep 2005
Publication
For decades risk assessment has been an important tool in risk management of activities in several industries world wide. It provides among others authorities and stakeholders with a sound basis for creating awareness about existing and potential hazards and risks and making decisions related to how they can prioritise and plan expenditures on risk reduction. The overall goal of the ongoing HySafe project is to contribute to the safe transition to a more sustainable development in Europe by facilitating the safe introduction of hydrogen technologies and applications. An essential element in this is the demonstration of safety: that all safety aspects related to production transportation and public use are controlled to avoid that introducing hydrogen as energy carrier should pose unacceptable risk to the society.<br/>History has proven that introducing risk analysis to new industries is beneficial e.g. in transportation and power production and distribution. However this will require existing methods and standards to be adapted to the specific applications. Furthermore when trying to quantify risk it is of utmost importance to have access to relevant accident and incident information. Such data may in many cases not be readily available and the utilisation of them will then require specific and long lasting data collection initiatives.<br/>In this paper we will present the work that has been undertaken in the HySafe project in developing methodologies and collecting data for risk management of hydrogen infrastructure. Focus is laid on the development of risk acceptance criteria and on the demonstration of safety and benefits to the public. A trustworthy demonstration of safety will have to be based on facts especially on facts widely known and emphasis will thus be put on the efforts taken to establish and operate a database containing hydrogen accident and incident information which can be utilised in risk assessment of hydrogen applications. A demonstration of safety will also have to include a demonstration of risk control measures and the paper will also present work carried out on safety distances and ignition source control.
Stress Corrosion Cracking Of Stainless Steels In High Pressure Alkaline Electrolysers
Sep 2005
Publication
Hydrogen-producing high-pressure electrolysers operating with 40% potassium hydroxide solution and an applied oxygen pressure up to 30 barg have been developed. Austenitic stainless steels of type AISI316L are deemed resistant to stress corrosion cracking (SCC) in concentrated KOH solutions. However SCC has on some occasions been observed on the oxygen side of the high-pressure electrolysers thereby representing a safety risk in the operation. Several materials have been tested for resistance to SCC using C-ring specimens in autoclaves under conditions similar to the high-pressure electrolysers and at temperatures up to 120°C. The tests confirmed the observed susceptibility of austenitic stainless steels to SCC in concentrated KOH solutions. Higher alloyed austenitic stainless steels also showed SCC. Duplex stainless steel and nickel based Alloy 28 showed good resistance to SCC in the given environment. Further tests are needed to define the optimum weld procedure.
Heading for Hydrogen - The Oil and Gas Industry’s Outlook for Hydrogen, From Ambition to Reality
May 2020
Publication
The future of hydrogen energy is wrapped up with the future of natural gas renewable energy and carbon capture and storage (CCS). This yields useful synergies but also political economic and technical complexity. Nevertheless our survey of more than 1000 senior oil and gas professionals suggests a more certain future for hydrogen and that the time is right to begin scaling the hydrogen economy.
Enhancing the Efficiency of Power- and Biomass-to-liquid Fuel Processes Using Fuel-assisted Solid Oxide Electrolysis Cells
Apr 2022
Publication
Power- and biomass-to-liquid fuel processes (PBtL) can utilize renewable energy and residual forestry waste to produce liquid synthetic fuels which have the potential to mitigate the climate impacts of the current transportation infrastructure including the long-haul aviation sector. In a previous study we demonstrated that implementing a solid oxide electrolysis cell (SOEC) in the PBtL process can significantly increase the energy efficiency of fuel production by supplying the produced hydrogen to a reverse water gas shift (RWGS) reactor to generate syngas which is then fed downstream to a Fischer–Tropsch (FT) reactor. The tail gas emitted from the FT reactor consists primarily of a mixture of hydrogen carbon monoxide and methane and is often recycled to the entrained flow gasifier located at the beginning of the process. In this analysis we investigate the efficiency gains of the PBtL process as a result of redirecting the tail gas of the FT reactor to the anode of an SOEC to serve as fuel. Supplying fuel to an SOEC can lower the electrical work input required to facilitate steam electrolysis when reacting electrochemically with oxide ions in the anode which in turn can reduce oxygen partial pressures and thus alleviate material degradation. Accordingly we develop a thermodynamic framework to reveal the performance limits of fuel-assisted SOECs (FASOECs) and provide strategies to minimize oxygen partial pressures in the SOEC anode. Additionally we elucidate how much fuel is required to match the heating demands of a cell when steam is supplied to the cathode over a broad range of inlet temperatures and demonstrate the influence of a set of reaction pathways of the supplied fuel on the operating potential of an FASOEC and the corresponding efficiency gain of the PBtL process. Based on preliminary calculations we estimate that implementing an FASOEC in the PBtL process can increase the energy efficiency of fuel production to more than 90% depending on the amount of FT tail gas available to the system.
CFD Simulation Study to Investigate the Risk from Hydrogen Vehicles in Tunnels
Sep 2007
Publication
When introducing hydrogen-fuelled vehicles an evaluation of the potential change in risk level should be performed. It is widely accepted that outdoor accidental releases of hydrogen from single vehicles will disperse quickly and not lead to any significant explosion hazard. The situation may be different for more confined situations such as parking garages workshops or tunnels. Experiments and computer modelling are both important for understanding the situation better. This paper reports a simulation study to examine what if any is the explosion risk associated with hydrogen vehicles in tunnels. Its aim was to further our understanding of the phenomena surrounding hydrogen releases and combustion inside road tunnels and furthermore to demonstrate how a risk assessment methodology developed for the offshore industry could be applied to the current task. This work is contributing to the EU Sixth Framework (Network of Excellence) project HySafe aiding the overall understanding that is also being collected from previous studies new experiments and other modelling activities. Releases from hydrogen cars (containing 700 bar gas tanks releasing either upwards or downwards or liquid hydrogen tanks releasing only upwards) and buses (containing 350 bar gas tanks releasing upwards) for two different tunnel layouts and a range of longitudinal ventilation conditions have been studied. The largest release modelled was 20 kg H2 from four cylinders in a bus (via one vent) in 50 seconds with an initial release rate around 1000 g/s. Comparisons with natural gas (CNG) fuelled vehicles have also been performed. The study suggests that for hydrogen vehicles a typical worst-case risk assessment approach assuming the full gas inventory being mixed homogeneously at stoichiometry could lead to severe explosion loads. However a more extensive study with more realistic release scenarios reduced the predicted hazard significantly. The flammable gas cloud sizes were still large for some of the scenarios but if the actual reactivity of the predicted clouds is taken into account very moderate worst-case explosion pressures are predicted. As a final step of the risk assessment approach a probabilistic QRA study is performed in which probabilities are assigned to different scenarios time dependent ignition modelling is applied and equivalent stoichiometric gas clouds are used to translate reactivity of dispersed nonhomogeneous clouds. The probabilistic risk assessment study is based on over 200 dispersion and explosion CFD calculations using the commercially available tool FLACS. The risk assessment suggested a maximum likely pressure level of 0.1-0.3 barg at the pressure sensors that were used in the study. Somewhat higher pressures are seen elsewhere due to reflections (e.g. under the vehicles). Several other interesting observations were found in the study. For example the study suggests that for hydrogen releases the level of longitudinal tunnel ventilation has only a marginal impact on the predicted risk since the momentum of the releases and buoyancy of hydrogen dominates the mixing and dilution processes.
An Intercomparison Exercise on the Capabilities of CFD Models to Predict Deflagration of a Large-Scale H2-Air Mixture in Open Atmosphere
Sep 2005
Publication
This paper presents a compilation of the results supplied by HySafe partners participating in the Standard Benchmark Exercise Problem (SBEP) V2 which is based on an experiment on hydrogen combustion that is first described. A list of the results requested from participants is also included. The main characteristics of the models used for the calculations are compared in a very succinct way by using tables. The comparison between results together with the experimental data when available is made through a series of graphs. The results show quite good agreement with the experimental data. The calculations have demonstrated to be sensitive to computational domain size and far field boundary condition.
Current Status of Automotive Fuel Cells for Sustainable Transport
May 2019
Publication
Automotive proton-exchange membrane fuel cells (PEMFCs) have finally reached a state of technological readiness where several major automotive companies are commercially leasing and selling fuel cell electric vehicles including Toyota Honda and Hyundai. These now claim vehicle speed and acceleration refueling time driving range and durability that rival conventional internal combustion engines and in most cases outperform battery electric vehicles. The residual challenges and areas of improvement which remain for PEMFCs are performance at high current density durability and cost. These are expected to be resolved over the coming decade while hydrogen infrastructure needs to become widely available. Here we briefly discuss the status of automotive PEMFCs misconceptions about the barriers that platinum usage creates and the remaining hurdles for the technology to become broadly accepted and implemented.
No more items...