Norway
Inspection of Hydrogen Transport Equipment: A Data-driven Approach to Predict Fatigue Degradation
Jul 2024
Publication
Hydrogen is an environmentally friendly fuel that can facilitate the upcoming energy transition. The development of an extensive infrastructure for hydrogen transport and storage is crucial. However the mechanical properties of structural materials are significantly degraded in H2 environments leading to early component failures. Pipelines are designed following defect-tolerant principles and are subjected to periodic pressure fluctuations. Hence these systems are potentially prone to fatigue degradation often accelerated in pressurized hydrogen gas. Inspection and maintenance activities are crucial to guarantee the integrity and fitness for service of this infrastructure. This study predicts the severity of hydrogen-enhanced fatigue in low-alloy steels commonly employed for H2 transport and storage equipment. Three machine-learning algorithms i.e. Linear Model Deep Neural Network and Random Forest are used to categorize the severity of the fatigue degradation. The models are critically compared and the best-performing algorithm are trained to predict the Fatigue Acceleration Factor. This approach shows good prediction capability and can estimate the fatigue crack propagation in lowalloy steels. These results allow for estimating the probability of failure of hydrogen pipelines thus facilitating the inspection and maintenance planning.
Technical and Cost Analysis of Zero-emission High-speed Ferries: Retrofitting from Diesel to Green Hydrogen
Feb 2024
Publication
This paper proposes a technical and cost analysis model to assess the change in costs of a zeroemission high-speed ferry when retrofitting from diesel to green hydrogen. Both compressed gas and liquid hydrogen are examined. Different scenarios explore energy demand energy losses fuel consumption and cost-effectiveness. The methodology explores how variation in the ferry's total weight and equipment efficiency across scenarios impact results. Applied to an existing diesel high-speed ferry on one of Norway's longest routes the study under certain assumptions identifies compressed hydrogen gas as the current most economical option despite its higher energy consumption. Although the energy consumption of the compressed hydrogen ferry is slightly more than the liquid hydrogen counterpart its operating expenses are considerably lower and comparable to the existing diesel ferry on the route. However constructing large hydrogen liquefaction plants could reduce liquid hydrogen's cost and make it competitive with both diesel and compressed hydrogen gas. Moreover liquid hydrogen allows the use of a superconducting motor to enhance efficiency. Operating the ferry with liquid hydrogen and a superconducting motor besides its technical advantages offers promising economic viability in the future comparable to diesel and compressed hydrogen gas options. Reducing the ferry's speed and optimizing equipment improves fuel efficiency and economic viability. This research provides valuable insights into sustainable zero-emission high-speed ferries powered by green hydrogen.
Functional Resonance Analysis for Emerging Risks in Hydrogen Handling: An Analysis of an Experimental Test
Oct 2024
Publication
Hydrogen is on the rise as a substitute for fossil fuel in the energy sector. While this substitution does not happen dramatically the steady increase in hydrogen related research might be a good indicator of such desire. As it stands there are issues regarding its safe handling and use; consequently the health and safety subsectors observe the situation conspicuously. As we yet to know the behavior of hydrogen in critical situations uncertainties make these tasks prone to emerging risks. Thus hydrogen safety falls under emerging risk studies. Conventional perspective on safety especially regarding the flammable material focuses on calculating the hypothetical risks of failures in system. Resilience Engineering has another perspective as it focuses on normal operations offering new perspectives to tackle emerging risks from a new angle. Born from the heart of Resilience Engineering the Functional Resonance Analysis Method (FRAM) captures sociotechnical systems’ essence in a tangible way. In this study FRAM has been used to model a series of experiments done on hydrogen management to analyze its jet fire. FRAM is used to test whether the method could be suitable to model a system in which emerging risks are present. It is the conclusion of this study that FRAM seems promising in raising risk awareness especially when available data is limited.
Environmental and Climate Impacts of a Large-scale Deployment of Green Hydrogen in Europe
Apr 2024
Publication
Green hydrogen is expected to play a vital role in decarbonizing the energy system in Europe. However large-scale deployment of green hydrogen has associated potential trade-offs in terms of climate and other environmental impacts. This study aims to shed light on a comprehensive sustainability assessment of this large-scale green hydrogen deployment based on the EMPIRE energy system modeling compared with other decarbonization paths. Process-based Life Cycle Assessment (LCA) is applied and connected with the output of the energy system model revealing 45% extra climate impact caused by the dedicated 50% extra renewable infrastructure to deliver green hydrogen for the demand in the sectors of industry and transport in Europe towards 2050. Whereas the analysis shows that green hydrogen eventually wins on the climate impact within four designed scenarios (with green hydrogen with blue hydrogen without green hydrogen and baseline) mainly compensated by its clean usage and renewable electricity supply. On the other hand green hydrogen has a lower performance in other environmental impacts including human toxicity ecotoxicity mineral use land use and water depletion. Furthermore a monetary valuation of Life Cycle Impact (LCI) is estimated to aggregate 13 categories of environmental impacts between different technologies. Results indicate that the total monetized LCI cost of green hydrogen production is relatively lower than that of blue hydrogen. In overview a large-scale green hydrogen deployment potentially shifts the environmental pressure from climate and fossil resource use to human health mineral resource use and ecosystem damage due to its higher material consumption of the infrastructure.
Investments in Green Hydrogen as a Flexibility Source for the European Power System by 2050: Does it Pay Off?
Oct 2024
Publication
The European Union aims to deploy a high share of renewable energy sources in Europe’s power system by 2050. Large-scale intermittent wind and solar power production requires flexibility to ensure an adequate supply–demand balance. Green hydrogen (GH) can increase power systems’ flexibility and decrease renewable energy production’s curtailment. However investing in GH is costly and dependent on electricity prices which are important for operational costs in electrolysis. Moreover the use of GH for power system flexibility might not be economically viable if there is no hydrogen demand from the hydrogen market. If so questions would arise as to what would be the incentives to introduce GH as a source of flexibility in the power system and how would electrolyzer costs hydrogen demand and other factors affect the economic viability of GH usage for power system flexibility. The paper implements a European power system model formulated as a stochastic program to address these questions. The authors use the model to compare various instances with hydrogen in the power system to a no-hydrogen instance. The results indicate that by 2050 deployment of approximately 140 GW of GH will pay off investments and make the technology economically viable. We find that the price of hydrogen is estimated to be around €30/MWh.
Multiplier Effect on Reducing Carbon Emissions of Joint Demand and Supply Side Measures in the Hydrogen Market
Jun 2024
Publication
Hydrogen energy is critical in replacing fossil fuels and achieving net zero carbon emissions by 2050. Three measures can be implemented to promote hydrogen energy: reduce the cost of low-carbon hydrogen through technological improvements increase the production capacity of low-carbon hydrogen by stimulating investment and enhance hydrogen use as an energy carrier and in industrial processes by demand-side policies. This article examines how effective these measures are if successfully implemented in boosting the hydrogen market and reducing global economy-wide carbon emissions using a global computable general equilibrium model. The results show that all the measures increase the production and use of low-carbon hydrogen whether implemented alone or jointly. Notably the emissions reduced by joint implementation of all the measures in 2050 become 2.5 times the sum of emissions reduced by individual implementation indicating a considerable multiplier effect. This suggests supply and demand side policies be implemented jointly to maximize their impact on reducing emissions.
The Competitive Edge of Norway's Hydrogen by 2030: Socio-environmental Considerations
Aug 2024
Publication
Can Norway be an important hydrogen exporter to the European Union (EU) by 2030? We explore three scenarios in which Norway’s hydrogen export market may develop: A Business-as-usual B Moderate Onshore C Accelerated Offshore. Applying a sector-coupled energy system model we examine the techno-economic viability spatial and socio-economic considerations for blue and green hydrogen export in the form of ammonia by ship. Our results estimate the costs of low-carbon hydrogen to be 3.5–7.3€/kg hydrogen. While Norway may be cost-competitive in blue hydrogen exports to the EU its sustainability is limited by the reliance on natural gas and the nascent infrastructure for carbon transport and storage. For green hydrogen exports Norway may leverage its strong relations with the EU but is less cost-competitive than countries like Chile and Morocco which benefit from cheaper solar power. For all scenarios significant land use is needed to generate enough renewable energy. Developing a green hydrogen-based export market requires policy support and strategic investments in technology infrastructure and stakeholder engagement ensuring a more equitable distribution of renewable installations across Norway and national security in the north. Using carbon capture and storage technologies and offshore wind to decarbonise the offshore platforms is a win-win solution that would leave more electricity for developing new industries and demonstrate the economic viability of these technologies. Finally for Norway to become a key hydrogen exporter to the EU will require a balanced approach that emphasises public acceptance and careful land use management to avoid costly consequences.
Hydrogen Sampling Systems Adapted to Heavy-duty Refuelling Stations' Current and Future Specifications - A Review
Sep 2024
Publication
To meet the new regulation for the deployment of alternative fuels infrastructure which sets targets for electric recharging and hydrogen refuelling infrastructure by 2025 or 2030 a large infrastructure comprising trucksuitable hydrogen refuelling stations will soon be required. However further standardisation is required to support the uptake of hydrogen for heavy-duty transport for Europe’s green energy future. Hydrogen-powered vehicles require pure hydrogen as some contaminants can reduce the performance of the fuel cell even at very low levels. Even if previous projects have paved the way for the development of the European quality infrastructure for hydrogen conformity assessment sampling systems and methods have yet to be developed for heavy-duty hydrogen refuelling stations (HD-HRS). This study reviews different aspects of the sampling of hydrogen at heavy-duty hydrogen refuelling stations for purity assessment with a focus on the current and future specifications and operations at HD-HRS. This study describes the state-of-the art of sampling systems currently under development for use at HD-HRS and highlights a number of aspects which must be taken into consideration to ensure safe and accurate sampling: risk assessment for the whole sampling exercise selection of cylinders methods to prepare cylinders before the sampling filling pressure and venting of the sampling systems.
Analysis of Hydrogen Value Chain Events: Implications for Hydrogen Refueling Stations’ Safety
Apr 2024
Publication
Renewable hydrogen is emerging as the key to a sustainable energy transition with multiple applications and uses. In the field of transport in addition to fuel cell vehicles it is necessary to develop an extensive network of hydrogen refueling stations (hereafter HRSs). The characteristics and properties of hydrogen make ensuring the safe operation of these facilities a crucial element for their successful deployment and implementation. This paper shows the outcomes of an analysis of hydrogen incidents and accidents considering their potential application to HRSs. For this purpose the HIAD 2.0 was reviewed and a total of 224 events that could be repeated in any of the major industrial processes related to hydrogen refueling stations were analyzed. This analysis was carried out using a mixed methodology of quantitative and qualitative techniques considering the following hydrogen value chain: production storage delivery and industrial use. The results provide general information segmented by event frequency damage classes and failure typology. The analysis shows the main processes of the value chain allow the identification of key aspects for the safety management of refueling facilities.
No more items...