Norway
Recent Progress and Approaches on Transition Metal Chalcogenides for Hydrogen Production
Dec 2021
Publication
Development of efficient and affordable photocatalysts is of great significance for energy production and environmental sustainability. Transition metal chalcogenides (TMCs) with particle sizes in the 1–100 nm have been used for various applications such as photocatalysis photovoltaic and energy storage due to their quantum confinement effect optoelectronic behavior and their stability. In particular TMCs and their heterostructures have great potential as an emerging inexpensive and sustainable alternative to metal-based catalysts for hydrogen evolution. Herein the methods used for the fabrication of TMCs characterization techniques employed and the different methods of solar hydrogen production by using different TMCs as photocatalyst are reviewed. This review provides a summary of TMC photocatalysts for hydrogen production.
Hydrogen Fuelling Station, CEP-Berlin – Safety Risk Assessment and Authority Approval Experience and Lessons Learned
Sep 2005
Publication
The CEP (Clean Energy Partnership) – Berlin is one of the most diversified hydrogen demonstration projects at present. The first hydrogen fuelling station serving 16 cars is fully integrated in an ordinary highly frequented Aral service station centrally located at Messedamm in Berlin. Hydro has supplied and is the owner of the electrolyser with ancillary systems. This unit produces gaseous hydrogen at 12 bar with use of renewable energy presently serving 13 of the cars involved. The CEP project is planned to run for a period of five years and is supported by the German Federal Government and is part of the German sustainability strategy. During the planning and design phase there have been done several safety related assessments and analyses:
- Hydro has carried out a HAZOP (HAZard and OPerability) analysis of the electrolyser and ancillary systems delivered by Hydro Electrolysers.
- Hydro arranged with support from the partners a HAZOP analysis of the interface between the electrolyser and the compressor an interface with two different suppliers on each side.
- A QRA (Quantitative Risk Assessment) of the entire fuelling station has been carried out.
- Hydro has carried out a quantitative explosion risk analysis of the electrolyser container supplied by Hydro Electrolysers.
A Socio-technical Perspective on the Scope for Ports to Enable Energy Transition
Jan 2021
Publication
The paper applies the multi-level perspective (MLP) in a descriptive study of three Norwegian ports to shed new light on the sociotechnical processes that structure their efforts to develop into zero emission energy hubs. While exogenous pressures cause tensions over port governance the studied ports utilize their full spectre of functions; as landlords operators authorities and community managers to enable transition. The respective approaches vary related to their local context market situation and social networks including port's relations with their owners. Individual orientations and organizational capacity further influence their engagement with radical innovation niches (e.g. OPS hydrogen LNG). The study highlights the active role of ports in sustainability transition. It shows how the interaction between geographical factors and institutional work influences the scope for new solutions around the individual port and how this makes for different feedback loops and contributions to sustainability transition in wider transport and energy systems.
A Barrier Analysis of a Generic Hydrogen Refuelling Station
Sep 2009
Publication
Any technical installation need appropriate safety barriers installed to prevent or mitigate any adverse effects concerning people property and environment. In this context a safety barrier is a series of elements each consisting of a technical system or human action that implement a planned barrier function to prevent control or mitigate the propagation of a condition or event into an undesired condition or event. This is also important for new technologies as hydrogen refuelling stations being operated at very high pressures up to 900bar. In order to establish the needed barriers a hazard identification of the installation has to be carried out to identify the possible hazardous events. In this study this identification was done using the generic layout of a future large hydrogen refuelling station that has been developed by the EU NoE HySafe. This was based on experiences with smaller scale refuelling stations that has been in operation for several years e.g. being used in the former CUTE and ECTOS projects. Using this approach the object of the study is to support activities to further improve the safety performance of future larger refuelling stations. This will again help to inform the authorities and the public to achieve a proper public awareness and to support building up a realistic risk and safety perception of the safety on such future refuelling stations. In the second step the hazardous events that may take place and the barriers installed to stop hazards and their escalation are analysed also using in-house developed software to model the barriers and to quantify their performance. The paper will present an overview and discuss the state-of-the-art of the barriers established in the generic refuelling station.
Numerical Simulations of a Large Hydrogen Release in a Process Plant
Sep 2009
Publication
This paper describes a series of numerical simulations with release and ignition of hydrogen. The objective of this work was to re-investigate the accidental explosion in an ammonia plant which happened in Norway in 1985 with modern CFD tools. The severe hydrogen-air explosion led to two fatalities and complete destruction of the factory building where the explosion occurred. A case history of the accident was presented at the 1.st ICHS in Pisa 2005.<br/>The numerical simulations have been performed with FLACS a commercial CFD simulation tool for gas dispersion and gas explosions. The code has in the recent years been validated in the area of hydrogen dispersion and explosions.<br/>The factory building was 100 m long 10 m wide and 7 m high. A blown-out gasket in a water pump led to release of hydrogen from a large reservoir storing gaseous hydrogen at 3.0 MPa. The accident report estimated a total mass of released hydrogen between 10 and 20 kg. The location of the faulty gasket is known but the direction of the accidental release is not well known and has been one of the topics of our investigations. Several simulations have been performed to investigate the mixing process of hydrogen-air clouds and the development of a flammable gas cloud inside the factory building resulting in a simulation matrix with dispersions in all axis directions. Simulations of ignition of the different gas clouds were carried out and resulting pressure examined. These results have been compared with the damages observed during the accident investigation.<br/>We have also performed FLACS simulations to study the effect of natural venting and level of congestion. The height of the longitudinal walls has been varied leading to different vent openings at floor level at the ceiling and a combination of the two. This was done to investigate the effects of congestion with regards to gas cloud formation.<br/>The base case simulation appears to be in good accordance to the observed damages from the accident. The simulations also show that the build up of the gas cloud strongly depends on the direction of the jet and degree of ventilation. The CFD study has given new insights to the accident and the results are a clear reminder of the importance of natural venting in hydrogen safety.
Life Cycle Environmental Analysis of a Hydrogen-based Energy Storage System for Remote Applications
Mar 2022
Publication
Energy storage systems are required to address the fluctuating behaviour of variable renewable energy sources. The environmental sustainability of energy storage technologies should be carefully assessed together with their techno-economic feasibility. In this work an environmental analysis of a renewable hydrogen-based energy storage system has been performed making use of input parameters made available in the framework of the European REMOTE project. The analysis is applied to the case study of the Froan islands (Norway) which are representative of many other insular microgrid sites in northern Europe. The REMOTE solution is compared with other scenarios based on fossil fuels and submarine connections to the mainland grid. The highest climate impacts are found in the dieselbased configuration (1090.9 kgCO2eq/MWh) followed by the REMOTE system (148.2 kgCO2eq/MWh) and by the sea cable scenario (113.7 kgCO2eq/MWh). However the latter is biased by the very low carbon intensity of the Norwegian electricity. A sensitivity analysis is then performed on the length of the sea cable and on the CO2 emission intensity of electricity showing that local conditions have a strong impact on the results. The REMOTE system is also found to be the most cost-effective solution to provide electricity to the insular community. The in-depth and comparative (with reference to possible alternatives) assessment of the renewable hydrogen-based system aims to provide a comprehensive overview about the effectiveness and sustainability of these innovative solutions as a support for off-grid remote areas.
Assessment and Evaluation of 3rd Party Risk for Planned Hydrogen Demonstration Facility
Sep 2007
Publication
Potential risk exposure of 3rd parties i.e. people not involved in the actual operation of a plant is often a critical factor to gain authority approval and public acceptance for a development project. This is also highly relevant for development of demonstration facilities for hydrogen production and refuelling infrastructure. This paper presents and discusses results for risk exposure of 3rd parties based on risk assessment studies performed for the planned Hydrogen Technology Research Centre Hytrec in Trondheim. The methodology applied is outlined. Key assumptions and study uncertainties are identified and how these might affect the results are discussed.<br/>The purpose of Hytrec is to build a centre for research development and demonstration of hydrogen as an energy carrier. Hydrogen will be produced both by reforming of natural gas with CO2 capture and by electrolysis of water. The plant also includes a SOFC that will run on natural gas or hydrogen and produce heat and electricity for the Hytrec visitor centre. Hytrec will be located in a populated area without access control. Most of the units will be located within cabinets and modules.<br/>The authors acknowledge the Hytrec project and the Hytrec project partners Statoil Statkraft and DNV for their support and for allowing utilisation of results from the Hytrec QRA in this paper.
Materials Considerations in Hydrogen Production
Sep 2007
Publication
Correct selection and application of materials is essential to ensure safety and economy in production transportation and storage of hydrogen. There are several sources of materials challenges related to hydrogen. Established component producers may have limited experience in this specific field. Process developments may involve new process conditions with new demands on the materials. Further new materials will be added to the engineering toolbox to be used. The behaviour of these materials for hydrogen service may need additional documentation. Finally focus on hydrogen susceptibility and hydrogen damages alone may take away awareness of other subjects as trace elements by-products and change in raw materials which may be of as high importance for safety and quality. This overview of challenges and recommendations is made with emphasis on water electrolysis.
Hytunnel Project to Investigate the Use of Hydrogen Vehicles in Road Tunnels
Sep 2009
Publication
Hydrogen vehicles may emerge as a leading contender to replace today’s internal combustion engine powered vehicles. A Phenomena Identification and Ranking Table exercise conducted as part of the European Network of Excellence on Hydrogen Safety (HySafe) identified the use of hydrogen vehicles in road tunnels as a topic of important concern. An internal project called HyTunnel was duly established within HySafe to review identify and analyse the issues involved and to contribute to the wider activity to establish the true nature of the hazards posed by hydrogen vehicles in the confined space of a tunnel and their relative severity compared to those posed by vehicles powered by conventional fuels including compressed natural gas (CNG). In addition to reviewing current hydrogen vehicle designs tunnel design practice and previous research a programme of experiments and CFD modelling activities was performed for selected scenarios to examine the dispersion and explosion hazards potentially posed by hydrogen vehicles. Releases from compressed gaseous hydrogen (CGH2) and liquid hydrogen (LH2) powered vehicles have been studied under various tunnel geometries and ventilation regimes. The findings drawn from the limited work done so far indicate that under normal circumstances hydrogen powered vehicles do not pose a significantly higher risk than those powered by petrol diesel or CNG but this needs to be confirmed by further research. In particular obstructions at tunnel ceiling level have been identified as a potential hazard in respect to fast deflagration or even detonation in some circumstances which warrants further investigation. The shape of the tunnel tunnel ventilation and vehicle pressure relief device (PRD) operation are potentially important parameters in determining explosion risks and the appropriate mitigation measures.
Risk Modelling of a Hydrogen Refuelling Station Using a Bayesian Network
Sep 2009
Publication
Fault trees and event trees have for decades been the most commonly applied modelling tools in both risk analysis in general and the risk analysis of hydrogen applications including infrastructure in particular. It is sometimes found challenging to make traditional Quantitative Risk Analyses sufficiently transparent and it is frequently challenging for outsiders to verify the probabilistic modelling. Bayesian Networks (BN) are a graphical representation of uncertain quantities and decisions that explicitly reveal the probabilistic dependence between the variables and the related information flow. It has been suggested that BN represent a modelling tool that is superior to both fault trees and event trees with respect to the structuring and modelling of large complex systems. This paper gives an introduction to BN and utilises a case study as a basis for discussing and demonstrating the suitability of BN for modelling the risks associated with the introduction of hydrogen as an energy carrier. In this study we explore the benefits of modelling a hydrogen refuelling station using BN. The study takes its point of departure in input from a traditional detailed Quantitative Risk Analysis conducted by DNV during the HyApproval project. We compare and discuss the two analyses with respect to their advantages and disadvantages. We especially focus on a comparison of transparency and the results that may be extracted from the two alternative procedures.
Mathematical Modeling and Simulation of Hydrogen-fueled Solid Oxide Fuel Cell System for Micro-grid Applications - Effect of Failure and Degradation on Transient Performance
May 2020
Publication
We use a detailed solid oxide fuel cell (SOFC) model for micro-grid applications to analyze the effect of failure and degradation on system performance. Design and operational constraints on a component and system level are presented. A degrees of freedom analysis identifies controlled and manipulated system variables which are important for control. Experimental data are included to model complex degradation phenomena of the SOFC unit. Rather than using a constant value a spatially distributed degradation rate as function of temperature and current density is used that allows to study trajectory based performance deterioration. The SOFC unit is assumed to consist of multiple stacks. The failure scenario studied is the loss of one individual SOFC stack e.g. due to breakage of sealing or a series of fuel cells. Simulations reveal that degradation leads to significant drifts from the design operating point. Moreover failure of individual stacks may bring the still operating power generation unit into a regime where further failures and accelerated degradation is more likely. It is shown that system design dimensioning operation and control are strongly linked. Apart from specific quantitative results perhaps the main practical contribution are the collected constraints and the degrees of freedom analysis.
Dynamic Load Analysis of Explosion in Inhomogeneous Hydrogen-air Mixtures
Sep 2017
Publication
This paper presents results from experiments on gas explosions in inhomogeneous hydrogen-air mixtures. The experimental channel is 3 m with a cross section of 100 mm by 100 mm and a 0.25 mm ID nozzle for hydrogen release into the channel. The channel is open in one end. Spectral analysis of the pressure in the channel is used to determine dynamic load factors for SDOF structures. The explosion pressures in the channel will fluctuate with several frequencies or modes and a theoretical high DLF is seen when the pressure frequencies and eigen frequencies of the structure matches.
A Study of Hydrogen Flame Length with Complex Nozzle Geometry
Sep 2017
Publication
The growing number of hydrogen fillings stations and cars increases the need for accurate models to determine risk. The effect on hydrogen flame length was measured by varying the diameter of the spouting nozzle downstream from the chocked nozzle upstream. The results was compared with an existing model for flame length estimations. The experimental rig was setup with sensors that measured accurately temperature mass flow heat radiation and the pressure range from 0.1 to 11 MPa. The flame length was determined with an in-house developed image-processing tool which analyzed a high-speed film of the each experiment. Results show that the nozzle geometry can cause a deviation as high as 50% compared to estimated flame lengths by the model if wrong assumptions are made. Discharge coefficients for different nozzles has been calculated and presented.
Status, Gaps and Recommendations Regarding Standardisation and the Use of Hydrogen in Sustainable Buildings
Sep 2013
Publication
The use of and interpretation of Regulations Codes and Standards is important input when developing hydrogen systems and applications. This paper presents the work related to standardisation undertaken by DNV as part of the EU supported project H2SusBuild. During the H2SusBuild project a renewable (solar and wind) based full scale energy system with components for hydrogen storage hydrogen production by electrolysis and hydrogen consumption by fuel cell and burner was built and integrated into an existing office building in Lavrion Greece. The relevant standards identified and applied the standardisation gaps identified and the recommendations made for further standardisation activities are presented.
Blind-prediction: Estimating the Consequences of Vented Hydrogen Deflagrations for Homogeneous Mixtures in a 20-foot ISO Container
Sep 2017
Publication
Trygve Skjold,
Helene Hisken,
Sunil Lakshmipathy,
Gordon Atanga,
Marco Carcassi,
Martino Schiavetti,
James R. Stewart,
A. Newton,
James R. Hoyes,
Ilias C. Tolias,
Alexandros G. Venetsanos,
Olav Roald Hansen,
J. Geng,
Asmund Huser,
Sjur Helland,
Romain Jambut,
Ke Ren,
Alexei Kotchourko,
Thomas Jordan,
Jérome Daubech,
Guillaume Lecocq,
Arve Grønsund Hanssen,
Chenthil Kumar,
Laurent Krumenacker,
Simon Jallais,
D. Miller and
Carl Regis Bauwens
This paper summarises the results from a blind-prediction study for models developed for estimating the consequences of vented hydrogen deflagrations. The work is part of the project Improving hydrogen safety for energy applications through pre-normative research on vented deflagrations (HySEA). The scenarios selected for the blind-prediction entailed vented explosions with homogeneous hydrogen-air mixtures in a 20-foot ISO container. The test program included two configurations and six experiments i.e. three repeated tests for each scenario. The comparison between experimental results and model predictions reveals reasonable agreement for some of the models and significant discrepancies for others. It is foreseen that the first blind-prediction study in the HySEA project will motivate developers to improve their models and to update guidelines for users of the models.
The New Oil? The Geopolitics and International Governance of Hydrogen
Jun 2020
Publication
While most hydrogen research focuses on the technical and cost hurdles to a full-scale hydrogen economy little consideration has been given to the geopolitical drivers and consequences of hydrogen developments. The technologies and infrastructures underpinning a hydrogen economy can take markedly different forms and the choice over which pathway to take is the object of competition between different stakeholders and countries. Over time cross-border maritime trade in hydrogen has the potential to fundamentally redraw the geography of global energy trade create a new class of energy exporters and reshape geopolitical relations and alliances between countries. International governance and investments to scale up hydrogen value chains could reduce the risk of market fragmentation carbon lock-in and intensified geo-economic rivalry.
The Influence of H2 Safety Research on Relevant Risk Assessment
Sep 2019
Publication
Hydrogen is a valuable option of clean fuel to keep the global temperature rise below 2°C. However one of the main barriers in its transport and use is to ensure safety levels that are comparable with traditional fuels. In particular liquid hydrogen accidents may not be fully understood (yet) and excluded by relevant risk assessment. For instance as hydrogen is cryogenically liquefied to increase its energy density during transport Boiling Liquid Expanding Vapor Explosions (BLEVE) is a potential and critical event that is important addressing in the hazard identification phase. Two past BLEVE accidents involving liquid hydrogen support such thesis. For this reason results from consequence analysis of hydrogen BLEVE will not only improve the understanding of the related physical phenomenon but also influence future risk assessment studies. This study aims to show the extent of consequence analysis influence on overall quantitative risk assessment of hydrogen technologies and propose a systematic approach for integration of overall results. The Dynamic Procedure for Atypical Scenario Identification (DyPASI) is used for this purpose. The work specifically focuses on consequence models that are originally developed for other substances and adapted for liquid hydrogen. Particular attention is given to the parameters affecting the magnitude of the accident as currently investigated by a number of research projects on hydrogen safety worldwide. A representative example of consequence analysis for liquid hydrogen release is employed in this study. Critical conditions detected by the numerical simulation models are accurately identified and considered for subsequent update of the overall system risk assessment.
Experimental Study of Light Gas Dispersion in a Channel
Sep 2019
Publication
Usage of hydrogen as fuel gives rise to possible accidental risks due to leakage and dispersion. A risk from hydrogen leak is the formation of a large volume of the hydrogen-air mixture which could be ignited and leading up to a severe explosion. Prevention and control of formation and ignition of combustible hydrogen cloud necessitate sufficient knowledge of mechanisms of the hydrogen leak dispersion ignition and over-pressures generated during combustion. This paper aims to investigate the momentum-controlled jet the buoyancy-controlled wave and the parameters influencing hydrogen concentration distribution in an elongated space. It demonstrates experimental results and analysis from helium and hydrogen dispersion in a channel. A set of experiments were carried out for the release of helium and hydrogen jets in a 3 m long channel to record their concentrations in the cloud by concentration sensors at different horizontal and vertical positions. Flow visualization technique was applied using shadowgraph to image the mixing process next to the release point and the helium- hydrogen-air cloud shape at the middle of the channel. Moreover results were used for comparison of helium and hydrogen concentration gradients. The results of the experiments show that swift mixing occurs at higher flow rates smaller nozzle sizes and downward release direction. Higher concentration recorded in the channel with negative inclination. Results also confirmed that hydrogen/helium behavior pattern in the channel accords with mutual intrusion theory about gravity currents.
Probability of Occurrence of ISO 14687-2 Contaminants in Hydrogen: Principles and Examples from Steam Methane Reforming and Electrolysis (Water and Chlor-alkali) Production Processes Model
Apr 2018
Publication
According to European Directive 2014/94/EU hydrogen providers have the responsibility to prove that their hydrogen is of suitable quality for fuel cell vehicles. Contaminants may originate from hydrogen production transportation refuelling station or maintenance operation. This study investigated the probability of presence of the 13 gaseous contaminants (ISO 14687-2) in hydrogen on 3 production processes: steam methane reforming (SMR) process with pressure swing adsorption (PSA) chlor-alkali membrane electrolysis process and water proton exchange membrane electrolysis process with temperature swing adsorption. The rationale behind the probability of contaminant presence according to process knowledge and existing barriers is highlighted. No contaminant was identified as possible or frequent for the three production processes except oxygen (frequent for chlor-alkali membrane process) carbon monoxide (frequent) and nitrogen (possible) for SMR with PSA. Based on it a hydrogen quality assurance plan following ISO 19880-8 can be devised to support hydrogen providers in monitoring the relevant contaminants.
Structural Response for Vented Hydrogen Deflagrations: Coupling CFD and FE Tools
Sep 2017
Publication
This paper describes a methodology for simulating the structural response of vented enclosures during hydrogen deflagrations. The paper also summarises experimental results for the structural response of 20-foot ISO (International Organization for Standardization) containers in a series of vented hydrogen deflagration experiments. The study is part of the project Improving hydrogen safety for energy applications through pre-normative research on vented deflagrations (HySEA). The project is funded by the Fuel Cells and Hydrogen 2 Joint Undertaking under grant agreement No 671461. The HySEA project focuses on vented hydrogen deflagrations in containers and smaller enclosures with internal congestion representative of industrial applications. The structural response modelling involves one-way coupling of pressure loads taken either directly from experiments or from simulations with the computational fluid dynamics (CFD) tool FLACS to the non-linear finite element (FE) IMPETUS Afea Solver. The performance of the FE model is evaluated for a range of experiments from the HySEA project in both small-scale enclosures and 20-foot ISO containers. The paper investigates the sensitivity of results from the FE model to the specific properties of the geometry model. The performance of FLACS is evaluated for a selected set of experiments from the HySEA project. Furthermore the paper discusses uncertainties associated with the combined modelling approach.
No more items...