Netherlands
Thermodynamic Evaluation of Bi-directional Solid Oxide Cell Systems Including Year-round Cumulative Exergy Analysis
Jun 2018
Publication
Bi-directional solid oxide cell systems (Bi-SOC) are being increasingly considered as an electrical energy storage method and consequently as a means to boost the penetration of renewable energy (RE) and to improve the grid flexibility by power-to-gas electrochemical conversion. A major advantage of these systems is that the same SOC stack operates as both energy storage device (SOEC) and energy producing device (SOFC) based on the energy demand and production. SOEC and SOFC systems are now well-optimised as individual systems; this work studies the effect of using the bi-directionality of the SOC at a system level. Since the system performance is highly dependent on the cell-stack operating conditions this study improves the stack parameters for both operation modes. Moreover the year-round cumulative exergy method (CE) is introduced in the solid oxide cell (SOC) context for estimating the system exergy efficiencies. This method is an attempt to obtain more insightful exergy assessments since it takes into account the operational hours of the SOC system in both modes. The CE method therefore helps to predict more accurately the most efficient configuration and operating parameters based on the power production and consumption curves in a year. Variation of operating conditions configurations and SOC parameters show a variation of Bi-SOC system year-round cumulative exergy efficiency from 33% to 73%. The obtained thermodynamic performance shows that the Bi-SOC when feasible can prove to be a highly efficient flexible power plant as well as an energy storage system.
Sector Coupling via Hydrogen to Lower the Cost of Energy System Decarbonization
Aug 2021
Publication
There is growing interest in using hydrogen (H2) as a long-duration energy storage resource in a future electric grid dominated by variable renewable energy (VRE) generation. Modeling H2 use exclusively for grid-scale energy storage often referred to as ‘‘power-to-gas-to-power (P2G2P)’’ overlooks the cost-sharing and CO2 emission benefits from using the deployed H2 assets to decarbonize other end-use sectors where direct electrification is challenging. Here we develop a generalized framework for co-optimizing infrastructure investments across the electricity and H2 supply chains accounting for the spatio-temporal variations in energy demand and supply. We apply this sector-coupling framework to the U.S. Northeast under a range of technology cost and carbon price scenarios and find greater value of power-to-H2 (P2G) vs. P2G2P routes. Specifically P2G provides grid flexibility to support VRE integration without the round-trip efficiency penalty and additional cost incurred by P2G2P routes. This form of sector coupling leads to: (a) VRE generation increase by 13–56% and (b) total system cost (and levelized costs of energy) reduction by 7–16% under deep decarbonization scenarios. Both effects increase as H2 demand for other end-uses increases more than doubling for a 97% decarbonization scenario as H2 demand quadruples. We also find that the grid flexibility enabled by sector coupling makes deployment of carbon capture and storage (CCS) for power generation less cost-effective than its use for low-carbon H2 production. These findings highlight the importance of using an integrated energy system framework with multiple energy vectors in planning cost-effective energy system decarbonization
A Review of Recent Developments in Molecular Dynamics Simulations of the Photoelectrochemical Water Splitting Process
Jun 2021
Publication
In this review we provide a short overview of the Molecular Dynamics (MD) method and how it can be used to model the water splitting process in photoelectrochemical hydrogen production. We cover classical non-reactive and reactive MD techniques as well as multiscale extensions combining classical MD with quantum chemical and continuum methods. Selected examples of MD investigations of various aqueous semiconductor interfaces with a special focus on TiO2 are discussed. Finally we identify gaps in the current state-of-the-art where further developments will be needed for better utilization of MD techniques in the field of water splitting.
Technical Potential of On-site Wind Powered Hydrogen Producing Refuelling Stations in the Netherlands
Aug 2020
Publication
This study assesses the technical potential of wind turbines to be installed next to existing fuelling stations in order to produce hydrogen. Hydrogen will be used for Fuel Cell Vehicle refuelling and feed-in existing local gas grids. The suitable fuelling stations are selected through a GIS assessment applying buffer zones and taking into account risks associated with wind turbine installation next to built-up areas critical infrastructures and ecological networks. It was found that 4.6% of existing fuelling stations are suitable. Further a hydrogen production potential assessment was made using weather station datasets land cover data and was expressed as potential future Fuel Cell Electric Vehicle demand coverage. It was found that for a 30% FCEV drivetrain scenario these stations can produce 2.3% of this demand. Finally a case study was made for the proximity of those stations in existing gas distribution grids.
Perspective on the Hydrogen Economy as a Pathway to Reach Net-zero CO2 Emissions in Europe
Jan 2022
Publication
The envisioned role of hydrogen in the energy transition – or the concept of a hydrogen economy – has varied through the years. In the past hydrogen was mainly considered a clean fuel for cars and/or electricity production; but the current renewed interest stems from the versatility of hydrogen in aiding the transition to CO2 neutrality where the capability to tackle emissions from distributed applications and complex industrial processes is of paramount importance. However the hydrogen economy will not materialise without strong political support and robust infrastructure design. Hydrogen deployment needs to address multiple barriers at once including technology development for hydrogen production and conversion infrastructure co-creation policy market design and business model development. In light of these challenges we have brought together a group of hydrogen researchers who study the multiple interconnected disciplines to offer a perspective on what is needed to deploy the hydrogen economy as part of the drive towards net-zero-CO2 societies. We do this by analysing (i) hydrogen end-use technologies and applications (ii) hydrogen production methods (iii) hydrogen transport and storage networks (iv) legal and regulatory aspects and (v) business models. For each of these we provide key take home messages ranging from the current status to the outlook and needs for further research. Overall we provide the reader with a thorough understanding of the elements in the hydrogen economy state of play and gaps to be filled.
Dynamic Operation of Water Electrolyzers: A Review for Applications in Photovoltaic Systems Integration
May 2023
Publication
This review provides a comprehensive overview of the dynamics of low-temperature water electrolyzers and their influence on coupling the three major technologies alkaline Proton Exchange Membrane (PEM) and Anion Exchange Membrane (AEM) with photovoltaic (PV) systems. Hydrogen technology is experiencing considerable interest as a way to accelerate the energy transition. With no associated CO2 emissions and fast response water electrolyzers are an attractive option for producing green hydrogen on an industrial scale. This can be seen by the ambitious goals and large-scale projects being announced for hydrogen especially with solar energy dedicated entirely to drive the process. The electrical response of water electrolyzers is extremely fast making the slower variables such as temperature and pressure the limiting factors for variable operation typically associated with PV-powered electrolysis systems. The practical solar-to-hydrogen efficiency of these systems is in the range of 10% even with a very high coupling factor exceeding 99% for directly coupled systems. The solar-to-hydrogen efficiency can be boosted with a battery potentially sacrificing the cost. The intermittency of solar irradiance rather than its variability is the biggest challenge for PV-hydrogen systems regarding operation and degradation.
Hydrogen Bubble Growth in Alkaline Water Electrolysis: An Immersed Boundary Simulation Study
Nov 2022
Publication
Enhancing the efficiency of industrial water electrolysis for hydrogen production is important for the energy transition. In electrolysis hydrogen is produced at the cathode which forms bubbles due to the diffusion of dissolved hydrogen in the surrounding supersaturated electrolyte. Hydrogen (and oxygen) bubbles play an important role in the achievable electrolysis efficiency. The growth of the bubbles is determined by diffusive and convective mass transfer. In turn the presence and the growth of the hydrogen bubbles affect the electrolysis process at the cathode.<br/>In the present study we simulate the growth of a single hydrogen bubble attached to a vertical cathode in a 30 wt KOH solution in a cathodic compartment represented by a narrow channel. We solve the Navier-Stokes equations mass transport equations and potential equation for a tertiary current distribution. A sharp interface immersed boundary method with an artificial compressibility method for the pressure is employed. To verify the numerical accuracy of the method we performed a grid refinement study and checked the global momentum and hydrogen mass balances. We investigate the effects of flow rate and operation pressure upon bubble growth behaviour species concentrations potential and current density. We compare different cases in two ways: for the same time and for the same bubble radius. We observe that increasing the flow velocity leads to a small increase in efficiency. Increasing the operation pressure causes higher hydrogen density which slows down the bubble growth. It is remarkable that for a given bubble radius increasing the pressure leads to a small decrease in efficiency.
A Review of Fuel Cell Systems for Maritime Applications
Jul 2016
Publication
Progressing limits on pollutant emissions oblige ship owners to reduce the environmental impact of their operations. Fuel cells may provide a suitable solution since they are fuel efficient while they emit few hazardous compounds. Various choices can be made with regard to the type of fuel cell system and logistic fuel and it is unclear which have the best prospects for maritime application. An overview of fuel cell types and fuel processing equipment is presented and maritime fuel cell application is reviewed with regard to efficiency gravimetric and volumetric density dynamic behaviour environmental impact safety and economics. It is shown that low temperature fuel cells using liquefied hydrogen provide a compact solution for ships with a refuelling interval up to a tens of hours but may result in total system sizes up to five times larger than high temperature fuel cells and more energy dense fuels for vessels with longer mission requirements. The expanding infrastructure of liquefied natural gas and development state of natural gas-fuelled fuel cell systems can facilitate the introduction of gaseous fuels and fuel cells on ships. Fuel cell combined cycles hybridisation with auxiliary electricity storage systems and redundancy improvements are identified as topics for further study
Optimal Design of Multi-energy Systems with Seasonal Storage
Oct 2017
Publication
Optimal design and operation of multi-energy systems involving seasonal energy storage are often hindered by the complexity of the optimization problem. Indeed the description of seasonal cycles requires a year-long time horizon while the system operation calls for hourly resolution; this turns into a large number of decision variables including binary variables when large systems are analyzed. This work presents novel mixed integer linear program methodologies that allow considering a year time horizon with hour resolution while significantly reducing the complexity of the optimization problem. First the validity of the proposed techniques is tested by considering a simple system that can be solved in a reasonable computational time without resorting to design days. Findings show that the results of the proposed approaches are in good agreement with the full-scale optimization thus allowing to correctly size the energy storage and to operate the system with a long-term policy while significantly simplifying the optimization problem. Furthermore the developed methodology is adopted to design a multi-energy system based on a neighborhood in Zurich Switzerland which is optimized in terms of total annual costs and carbon dioxide emissions. Finally the system behavior is revealed by performing a sensitivity analysis on different features of the energy system and by looking at the topology of the energy hub along the Pareto sets.
Opportunities for Production and Utilization of Green Hydrogen in the Philippines
Jun 2021
Publication
The Philippines is exploring different alternative sources of energy to become energy-independent while significantly reducing the country’s greenhouse gas emissions. Green hydrogen from renewable energy is one of the most sustainable alternatives with its application as an energy carrier and as a source of clean and sustainable energy as well as raw material for various industrial processes. As a preliminary study in the country this paper aims to explore different production and utilization routes for a green hydrogen economy in the Philippines. Production from electrolysis includes various available renewable sources consisting of geothermal hydropower wind solar and biomass as well as ocean technology and nuclear energy when they become available in the future. Different utilization routes include the application of green hydrogen in the transportation power generation industry and utility sectors. The results of this study can be incorporated in the development of the pathways for hydrogen economy in the Philippines and can be applied in other emerging economies.
Renewable Hydrogen Production: A Techno-economic Comparison of Photoelectrochemical Cells and Photovoltaic-electrolysis
Aug 2020
Publication
The present paper reports a techno-economic analysis of two solar assisted hydrogen production technologies: a photoelectrochemical (PEC) system and its major competitor a photovoltaic system connected to a conventional water electrolyzer (PV-E system). A comparison between these two types was performed to identify the more promising technology based on the levelized cost of hydrogen (LCOH). The technical evaluation was carried out by considering proven designs and materials for the PV-E system and a conceptually design for the PEC system extrapolated to future commercial scale. The LCOH for the off-grid PV-E system was found to be 6.22 $/kgH2 with a solar to hydrogen efficiency of 10.9%. For the PEC system with a similar efficiency of 10% the LCOH was calculated to be much higher namely 8.43 $/kgH2. A sensitivity analysis reveals a great uncertainty in the LCOH of the prospective PEC system. This implies that much effort would be needed for this technology to become competitive on the market. Therefore we conclude that the potential techno-economic benefits that PEC systems offer over PV-E are uncertain and even in the best case limited. While research into photoelectrochemical cells remains of interest it presents a poor case for dedicated investment in the technology’s development and scale-up.
Hydrogen Fuel Quality from Two Main Production Processes: Steam Methane Reforming and Proton Exchange Membrane Water Electrolysis
Oct 2019
Publication
Thomas Bacquart,
Karine Arrhenius,
Stefan Persijn,
Andrés Rojo,
Fabien Auprêtre,
Bruno Gozlan,
Abigail Morris,
Andreas Fischer,
Arul Murugan,
Sam Bartlett,
Niamh Moore,
Guillaume Doucet,
François Laridant,
Eric Gernot,
Teresa E. Fernandez,
Concepcion Gomez,
Martine Carré,
Guy De Reals and
Frédérique Haloua
The absence of contaminants in the hydrogen delivered at the hydrogen refuelling station is critical to ensure the length life of FCEV. Hydrogen quality has to be ensured according to the two international standards ISO 14687–2:2012 and ISO/DIS 19880-8. Amount fraction of contaminants from the two hydrogen production processes steam methane reforming and PEM water electrolyser is not clearly documented. Twenty five different hydrogen samples were taken and analysed for all contaminants listed in ISO 14687-2. The first results of hydrogen quality from production processes: PEM water electrolysis with TSA and SMR with PSA are presented. The results on more than 16 different plants or occasions demonstrated that in all cases the 13 compounds listed in ISO 14687 were below the threshold of the international standards. Several contaminated hydrogen samples demonstrated the needs for validated and standardised sampling system and procedure. The results validated the probability of contaminants presence proposed in ISO/DIS 19880-8. It will support the implementation of ISO/ DIS 19880-8 and the development of hydrogen quality control monitoring plan. It is recommended to extend the study to other production method (i.e. alkaline electrolysis) the HRS supply chain (i.e. compressor) to support the technology growth.
Investigation of an Intensified Thermo-Chemical Experimental Set-Up for Hydrogen Production from Biomass: Gasification Process Integrated to a Portable Purification System—Part II
Jun 2022
Publication
Biomass gasification is a versatile thermochemical process that can be used for direct energy applications and the production of advanced liquid and gaseous energy carriers. In the present work the results are presented concerning the H2 production at a high purity grade from biomass feedstocks via steam/oxygen gasification. The data demonstrating such a process chain were collected at an innovative gasification prototype plant coupled to a portable purification system (PPS). The overall integration was designed for gas conditioning and purification to hydrogen. By using almond shells as the biomass feedstock from a product gas with an average and stable composition of 40%-v H2 21%-v CO 35%-v CO2 2.5%-v CH4 the PPS unit provided a hydrogen stream with a final concentration of 99.99%-v and a gas yield of 66.4%.
Vision for a European Metrology Network for Energy Gases
Mar 2022
Publication
As Europe moves towards decarbonising its energy infrastructure new measurement needs will arise that require collaborative efforts between European National Metrology Institutes and Designated Institutes to tackle. Such measurement needs include flow metering of hydrogen or hydrogen enriched natural gas in the gas grid for billing quality assurance of hydrogen at refuelling stations and equations of state for carbon dioxide in carbon capture and storage facilities. The European metrology network for energy gases for the first time provides a platform where metrology institutes can work together to develop a harmonised strategy prioritise new challenges and share expertise and capabilities to support the European energy gas industry to meet stringent EU targets for climate change and emissions reductions
The Role of Hydrogen in Heavy Transport to Operate within Planetary Boundaries
Jul 2021
Publication
Green hydrogen i.e. produced from renewable resources is attracting attention as an alternative fuel for the future of heavy road transport and long-distance driving. However the benefits linked to zero pollution at the usage stage can be overturned when considering the upstream processes linked to the raw materials and energy requirements. To better understand the global environmental implications of fuelling heavy transport with hydrogen we quantified the environmental impacts over the full life cycle of hydrogen use in the context of the Planetary Boundaries (PBs). The scenarios assessed cover hydrogen from biomass gasification (with and without carbon capture and storage [CCS]) and electrolysis powered by wind solar bioenergy with CCS nuclear and grid electricity. Our results show that the current diesel-based-heavy transport sector is unsustainable due to the transgression of the climate change-related PBs (exceeding standalone by two times the global climate-change budget). Hydrogen-fuelled heavy transport would reduce the global pressure on the climate change-related PBs helping the transport sector to stay within the safe operating space (i.e. below one-third of the global ecological budget in all the scenarios analysed). However the best scenarios in terms of climate change which are biomass-based would shift burdens to the biosphere integrity and nitrogen flow PBs. In contrast burden shifting in the electrolytic scenarios would be negligible with hydrogen from wind electricity emerging as an appealing technology despite attaining higher carbon emissions than the biomass routes
Benefits of an Integrated Power and Hydrogen Offshore Grid in a Net-zero North Sea Energy System
Jun 2022
Publication
The North Sea Offshore Grid concept has been envisioned as a promising alternative to: 1) ease the integration of offshore wind and onshore energy systems and 2) increase the cross-border capacity between the North Sea region countries at low cost. In this paper we explore the techno-economic benefits of the North Sea Offshore Grid using two case studies: a power-based offshore grid where only investments in power assets are allowed (i.e. offshore wind HVDC/HVAC interconnectors); and a power-and-hydrogen offshore grid where investments in offshore hydrogen assets are also permitted (i.e. offshore electrolysers new hydrogen pipelines and retrofitted natural gas pipelines). In this paper we present a novel methodology in which extensive offshore spatial data is analysed to define meaningful regions via data clustering. These regions are incorporated to the Integrated Energy System Analysis for the North Sea region (IESA-NS) model. In this optimization model the scenarios are run without any specific technology ban and under open optimization. The scenario results show that the deployment of an offshore grid provides relevant cost savings ranging from 1% to 4.1% of relative cost decrease (2.3 bn € to 8.7 bn €) in the power-based and ranging from 2.8% to 7% of relative cost decrease (6 bn € to 14.9 bn €) in the power-and-hydrogen based. In the most extreme scenario an offshore grid permits to integrate 283 GW of HVDC connected offshore wind and 196 GW of HVDC meshed interconnectors. Even in the most conservative scenario the offshore grid integrates 59 GW of HVDC connected offshore wind capacity and 92 GW of HVDC meshed interconnectors. When allowed the deployment of offshore electrolysis is considerable ranging from 61 GW to 96 GW with capacity factors of around 30%.
Hydrogen-based Integrated Energy and Mobility System for a Real-life Office Environment
Mar 2020
Publication
The current focus on the massive CO2 reduction highlights the need for the rapid development of technology for the production storage transportation and distribution of renewable energy. In addition to electricity we need other forms of energy carriers that are more suitable for energy storage and transportation. Hydrogen is one of the main candidates for this purpose since it can be produced from solar or wind energy and then stored; once needed it can be converted back to electricity using fuel cells. Another important aspect of future energy systems is sector coupling where different sectors e.g. mobility and energy work together to provide better services. In such an integrated system electric vehicles – both battery and hydrogen-based fuel cell – can provide when parked electricity services such as backup power and balancing; when driving they produce no emissions. In this paper we present the concept design and energy management of such an integrated energy and mobility system in a real-life environment at the Shell Technology Centre in Amsterdam. Our results show that storage using hydrogen and salt caverns is much cheaper than using large battery storage systems. We also show that the integration of electric vehicles into the electricity network is technically and economically feasible and that they can provide a flexible energy buffer. Ultimately the results of this study show that using both electricity and hydrogen as energy carriers can create a more flexible reliable and cheaper energy system at an office building.
Life Cycle Assessment Integration into Energy System Models: An Application for Power-to-Methane in the EU
Nov 2019
Publication
As the EU energy system transitions to low carbon the technology choices should consider a broader set of criteria. The use of Life Cycle Assessment (LCA) prevents burden shift across life cycle stages or impact categories while the use of Energy System Models (ESM) allows evaluating alternative policies capacity evolution and covering all the sectors. This study does an ex-post LCA analysis of results from JRC-EU-TIMES and estimates the environmental impact indicators across 18 categories in scenarios that achieve 80–95% CO2 emission reduction by 2050. Results indicate that indirect CO2 emissions can be as large as direct ones for an 80% CO2 reduction target and up to three times as large for 95% CO2 reduction. Impact across most categories decreases by 20–40% as the CO2 emission target becomes stricter. However toxicity related impacts can become 35–100% higher. The integrated framework was also used to evaluate the Power-to-Methane (PtM) system to relate the electricity mix and various CO2 sources to the PtM environmental impact. To be more attractive than natural gas the climate change impact of the electricity used for PtM should be 123–181 gCO2eq/kWh when the CO2 comes from air or biogenic sources and 4–62 gCO2eq/kWh if the CO2 is from fossil fuels. PtM can have an impact up to 10 times larger for impact categories other than climate change. A system without PtM results in ~4% higher climate change impact and 9% higher fossil depletion while having 5–15% lower impact for most of the other categories. This is based on a scenario where 9 parameters favor PtM deployment and establishes the upper bound of the environmental impact PtM can have. Further studies should work towards integrating LCA feedback into ESM and standardizing the methodology.
Energy Transition in Aviation: The Role of Cryogenic Fuels
Dec 2020
Publication
Aviation is the backbone of our modern society. In 2019 around 4.5 billion passengers travelled through the air. However at the same time aviation was also responsible for around 5% of anthropogenic causes of global warming. The impact of the COVID-19 pandemic on the aviation sector in the short term is clearly very high but the long-term effects are still unknown. However with the increase in global GDP the number of travelers is expected to increase between three- to four-fold by the middle of this century. While other sectors of transportation are making steady progress in decarbonizing aviation is falling behind. This paper explores some of the various options for energy carriers in aviation and particularly highlights the possibilities and challenges of using cryogenic fuels/energy carriers such as liquid hydrogen (LH2) and liquefied natural gas (LNG).
Model Supported Business Case Scenario Analysis for Decentral Hydrogen Conversion, Storage and Consumption within Energy Hubs
Mar 2022
Publication
Recently smart energy hubs with hydrogen conversion and storage have received increased attention in the Netherlands. The hydrogen is to be used for vehicle filling stations industrial processes and heating. The scientific problem addressed in this paper is the proper sizing of capacities for renewable energy generation hydrogen conversion and storage in relation to a feasible business case for the energy hub while achieving security of supply. Scenario analysis is often used during the early stages of the energy planning process and for this an easy-to-use analysis model is required. This paper investigates available modelling approaches and develops an algorithmic modelling method which is worked out in Microsoft Excel and offers ease of use for scenario analysis purposes. The model is applied to case study which leads to important insights such as the expected price of hydrogen and the proper sizing of electrolyser and hydrogen storage for that case. The model is made available open-source. Future work is proposed in the direction of application of the model for other project cases and comparison of results with other available modelling tools.
No more items...