Mexico
Multi-Objective Optimal Design of a Hydrogen Supply Chain Powered with Agro-Industrial Wastes from the Sugarcane Industry: A Mexican Case Study
Jan 2022
Publication
This paper presents an optimization modeling approach to support strategic planning for designing hydrogen supply chain (HSC) networks. The energy source for hydrogen production is proposed to be electricity generated at Mexican sugar factories. This study considers the utilization of existing infrastructure in strategic areas of the country which brings several advantages in terms of possible solutions. This study aims to evaluate the economic and environmental implications of using biomass wastes for energy generation and its integration to the national energy grid where the problem is addressed as a mixed-integer linear program (MILP) adopting maximization of annual profit and minimization of greenhouse gas emissions as optimization criteria. Input data is provided by sugar companies and the national transport and energy information platform and were represented by probability distributions to consider variability in key parameters. Independent solutions show similarities in terms of resource utilization while also significant differences regarding economic and environmental indicators. Multi-objective optimization was performed by a genetic algorithm (GA). The optimal HSC network configuration is selected using a multi-criteria decision technique i.e. TOPSIS. An uncertainty analysis is performed and main economic indicators are estimated by investment assessment. Main results show the trade-off interactions between the HSC elements and optimization criteria. The average internal rate of return (IRR) is estimated to be 21.5% and average payback period is 5.02 years.
Corrosion Study of Pipeline Steel under Stress at Different Cathodic Potentials by EIS
Dec 2019
Publication
The effect of different cathodic potentials applied to the X70 pipeline steel immersed in acidified and aerated synthetic soil solution under stress using a slow strain rate test (SSRT) and electrochemical impedance spectroscopy (EIS) was studied. According to SSRT results and the fracture surface analysis by scanning electron microscopy (SEM) the steel susceptibility to stress corrosion cracking (SCC) increased as the cathodic polarization increased (Ecp). This behavior is attributed to the anodic dissolution at the tip of the crack and the increment of the cathodic reaction (hydrogen evolution) producing hydrogen embrittlement. Nevertheless when the Ecp was subjected to the maximum cathodic potential applied (−970 mV) the susceptibility decreased; this behavior is attributed to the fact that the anodic dissolution was suppressed and the process of the SCC was dominated only by hydrogen embrittlement (HE). The EIS results showed that the cathodic process was influenced by the mass transport (hydrogen diffusion) due to the steel undergoing so many changes in the metallic surface as a result of the applied strain that it generated active sites at the surface.
Combustion Features of CH4/NH3/H2 Ternary Blends
Mar 2022
Publication
The use of so-called “green” hydrogen for decarbonisation of the energy and propulsion sectors has attracted considerable attention over the last couple of decades. Although advancements are achieved hydrogen still presents some constraints when used directly in power systems such as gas turbines. Therefore another vector such as ammonia can serve as a chemical to transport and distribute green hydrogen whilst its use in gas turbines can limit combustion reactivity compared to hydrogen for better operability. However pure ammonia on its own shows slow complex reaction kinetics which requires its doping by more reactive molecules thus ensuring greater flame stability. It is expected that in forthcoming years ammonia will replace natural gas (with ~ 90% methane in volume) in power and heat production units thus making the co-firing of ammonia/methane a clear path towards replacement of CH4 as fossil fuel. Hydrogen can be obtained from the precracking of ammonia thus denoting a clear path towards decarbonisation by the use of ammonia/hydrogen blends. Therefore ammonia/methane/hydrogen might be co-fired at some stage in current combustion units hence requiring a more intrinsic analysis of the stability emissions and flame features that these ternary blends produce. In return this will ensure that transition from natural gas to renewable energy generated e-fuels such as so-called “green” hydrogen and ammonia is accomplished with minor detrimentals towards equipment and processes. For this reason this work presents the analysis of combustion properties of ammonia/methane/hydrogen blends at different concentrations. A generic tangential swirl burner was employed at constant power and various equivalence ratios. Emissions OH*/NH*/NH2*/CH* chemiluminescence operability maps and spectral signatures were obtained and are discussed. The extinction behaviour has also been investigated for strained laminar premixed flames. Overall the change from fossils to e-fuels is led by the shift in reactivity of radicals such as OH CH CN and NH2 with an increase of emissions under low and high ammonia content. Simultaneously hydrogen addition improves operability when injected up to 30% (vol) an amount at which the hydrogen starts governing the reactivity of the blends. Extinction strain rates confirm phenomena found in the experiments with high ammonia blends showing large discrepancies between values at different hydrogen contents. Finally a 20/55/25% (vol) methane/ammonia/hydrogen blend seems to be the most promising at high equivalence ratios (1.2) with no apparent flashback low emissions and moderate formation of NH2/OH radicals for good operability.
Analysis of the Physicochemical, Mechanical, and Electrochemical Parameters and Their Impact on the Internal and External SCC of Carbon Steel Pipelines
Dec 2020
Publication
The review presented herein is regarding the stress corrosion cracking (SCC) phenomena of carbon steel pipelines affected by the corrosive electrolytes that comes from external (E) and internal (I) environments as well as the susceptibility and tensile stress on the SCC. Some useful tools are presented including essential aspects for determining and describing the E-SCC and I-SCC in oil and gas pipelines. Therefore this study aims to present a comprehensive and critical review of a brief experimental summary and a comparison of physicochemical mechanical and electrochemical data affecting external and internal SCC in carbon steel pipelines exposed to corrosive media have been conducted. The SCC hydrogen-induced cracking (HIC) hydrogen embrittlement and sulfide stress cracking (SSC) are attributed to the pH and to hydrogen becoming more corrosive by combining external and internal sources promoting cracking such as sulfide compounds acidic soils acidic atmospheric compounds hydrochloric acid sulfuric acid sodium hydroxide organic acids (acetic acid mainly) bacteria induced corrosion cathodic polarization among others. SCC growth is a reaction between the microstructural chemical and mechanical effects and it depends on the external and internal environmental sources promoting unpredictable cracks and fractures. In some cases E-SCC could be initiated by hydrogen that comes from the over-voltage during the cathodic protection processes. I-SCC could be activated by over-operating pressure and temperature at flowing media during the production gathering storage and transportation of wet hydrocarbons through pipelines. The mechanical properties related to I-SCC were higher in comparison with those reviewed by E-SCC suggesting that pipelines suffer more susceptibility to I-SCC. When a pipeline is designed the internal fluid being transported (changes of environments) and the external environment concerning SCC should be considered. This review offers a good starting point for newcomers into the field it is written as a tutorial and covers a large number of basic standards in the area.
Analysis of Stand-Alone Photovoltaic—Marine Current Hybrid System and the Influence on Daily and Seasonal Energy Storage
Jan 2022
Publication
Stand-alone systems in remote regions require the utilization of renewable resources; however their natural intermittence requires the implementation of energy-storage systems that allow a continuous power supply. More than one renewable source is usually available at the same site. Thus the choice of a hybrid system seems viable. It is relevant to study hybrid systems as they could reduce energy storage; however sizing the hybrid system might have several implications not only for the available daily energy but also for the required daily energy storage and surplus seasonal energy. In this work we present a case study of a stand-alone conventional household powered by photovoltaic and marine-current-energy systems in Cozumel Mexico. The analysis of different hybridization degrees serves as a guidance tool to decide whether hybrid systems are required for a specific situation; in contrast to previous approaches where ideal consumption and generation profiles have been utilized yearlong profiles were utilized here. The renewable potential data were obtained on site at an hourly resolution; requirements such as size of and cycles in the daily and seasonal energy storage were analyzed according to the degree of participation or hybridization of the proposed renewable systems through an algorithm that evaluates power generation and daily consumption throughout the year. A further analysis indicated that marine-current-energy implementation reduces the size of the daily energy-storage system by 79% in comparison to the use of only a photovoltaic system due to the similarity between the energy-demand profile and the marine-current-energy production profile. The results indicate that a greater participation of marine currents can help decrease daily storage while increasing seasonal storage by 16% compared to using only solar energy. On the other hand hybridization enabled a reduction in the number of daily charge and discharge cycles at 0.2 hybridization degrees. It also allowed us to reduce the seasonal energy storage by 38% at 0.6 hybridization degrees with respect to only using energy from marine currents. Afterwards energy-storage technologies were evaluated using the TOPSIS Multi-Criteria Decision Analysis to validate the best-suited technology for the energy-storage system. The evaluation considered the characteristics of the technology and the periods of energy storage. In this work hybrid storage systems were mandatory since for daily storage lithium-ion batteries are better suited while for seasonal storage hydrogen-producing systems are more suitable to manage the amount of energy and the storage duration due to the high seasonal renewable-energy variations.
Microalloyed Steels through History until 2018: Review of Chemical Composition, Processing and Hydrogen Service
May 2018
Publication
Microalloyed steels have evolved in terms of their chemical composition processing and metallurgical characteristics since the beginning of the 20th century in the function of fabrication costs and mechanical properties required to obtain high-performance materials needed to accommodate for the growing demands of gas and hydrocarbons transport. As a result of this microalloyed steels present a good combination of high strength and ductility obtained through the addition of microalloying elements thermomechanical processing and controlled cooling processes capable of producing complex microstructures that improve the mechanical properties of steels. These controlled microstructures can be severely affected and result in catastrophic failures due to the atomic hydrogen diffusion that occurs during the corrosion process of pipeline steel. Recently a martensite–bainite microstructure with acicular ferrite has been chosen as a viable candidate to be used in environments with the presence of hydrogen. The aim of this review is to summarize the main changes of chemical composition processing techniques and the evolution of the mechanical properties throughout recent history on the use of microalloying in high strength low alloy steels as well as the effects of hydrogen in newly created pipelines examining the causes behind the mechanisms of hydrogen embrittlement in these steels.
Modeling of Hydrogen Pressurization and Extraction in Cryogenic Pressure Vessels Due to Vacuum Insulation Failure
Sep 2017
Publication
We have analyzed vacuum insulation failure in an automotive cryogenic pressure vessel (also known as cryo-compressed vessel) storing hydrogen (H2). Vacuum insulation failure increases heat transfer into cryogenic vessels by about a factor of 100 potentially leading to rapid pressurization and venting to avoid exceeding maximum allowable working pressure (MAWP). H2 release to the environment may be dangerous if the vehicle is located in a closed space (e.g. a garage or tunnel) at the moment of insulation failure. We therefore consider utilization of the hydrogen in the vehicle fuel cell and electricity dissipation through operation of vehicle accessories or battery charging as an alternative to releasing hydrogen to the environment. We consider two strategies: initiating hydrogen extraction immediately after vacuum insulation failure or waiting until MAWP is reached before extraction. The results indicate that cryogenic pressure vessels have thermodynamic advantages that enable slowing down hydrogen release to moderate levels that can be consumed in the fuel cell and dissipated onboard the vehicle even in the worst case when the vacuum fails with a vessel storing hydrogen at maximum refuel density (70 g/L at 300 bar). The two proposed strategies are therefore feasible and the best alternative can be chosen based on economic and/or implementation constraints.
Photocatalytic Hydrogen Production by Biomimetic Indium Sulfide Using Mimosa Pudica Leaves as Template
Jan 2019
Publication
Biomimetic sulfur-deficient indium sulfide (In2.77S4) was synthesized by a template-assisted hydrothermal method using leaves of Mimosa pudica as a template for the first time. The effect of this template in modifying the morphology of the semiconductor particles was determined by physicochemical characterization revealing an increase in surface area decrease in microsphere size and pore size and an increase in pore volume density in samples synthesized with the template. X-ray photoelectron spectroscopy (XPS) analysis showed the presence of organic sulfur (Ssingle bondO/Ssingle bondC/Ssingle bondH) and sulfur oxide species (single bondSO2 SO32− SO42−) at the surface of the indium sulfide in samples synthesized with the template. Biomimetic indium sulfide also showed significant amounts of Fe introduced as a contaminant present on the Mimosa pudica leaves. The presence of these sulfur and iron species favors the photocatalytic activity for hydrogen production by their acting as a sacrificial reagent and promoting water oxidation on the surface of the templated particles respectively. The photocatalytic hydrogen production rates over optimally-prepared biomimetic indium sulfide and indium sulfide synthesized without the organic template were 73 and 22 μmol g−1 respectively indicating an improvement by a factor of three in the templated sample.
Nickel-Based Electrocatalysts for Water Electrolysis
Feb 2022
Publication
Currently hydrogen production is based on the reforming process leading to the emission of pollutants; therefore a substitute production method is imminently required. Water electrolysis is an ideal alternative for large-scale hydrogen production as it does not produce any carbon-based pollutant byproducts. The production of green hydrogen from water electrolysis using intermittent sources (e.g. solar and eolic sources) would facilitate clean energy storage. However the electrocatalysts currently required for water electrolysis are noble metals making this potential option expensive and inaccessible for industrial applications. Therefore there is a need to develop electrocatalysts based on earth-abundant and low-cost metals. Nickel-based electrocatalysts are a fitting alternative because they are economically accessible. Extensive research has focused on developing nickel-based electrocatalysts for hydrogen and oxygen evolution. Theoretical and experimental work have addressed the elucidation of these electrochemical processes and the role of heteroatoms structure and morphology. Even though some works tend to be contradictory they have lit up the path for the development of efficient nickel-based electrocatalysts. For these reasons a review of recent progress is presented herein.
Energy Optimization of a Sulfur-Iodine Thermochemical Nuclear Hydrogen Production Cycle
Dec 2021
Publication
The use of nuclear reactors is a large studied possible solution for thermochemical water splitting cycles. Nevertheless there are several problems that have to be solved. One of them is to increase the efficiency of the cycles. Hence in this paper a thermal energy optimization of a SulfureIodine nuclear hydrogen production cycle was performed by means a heuristic method with the aim of minimizing the energy targets of the heat exchanger network at different minimum temperature differences. With this method four different heat exchanger networks are proposed. A reduction of the energy requirements for cooling ranges between 58.9-59.8% and 52.6-53.3% heating compared to the reference design with no heat exchanger network. With this reduction the thermal efficiency of the cycle increased in about 10% in average compared to the reference efficiency. This improves the use of thermal energy of the cycle.
Energy Recovery from Wastewater in Mexico: A Systematic Review
Feb 2023
Publication
The usage of fossil fuels to generate energy and the lack of wastewater treatment in Mexico are two issues that can be addressed at the same time while developing wastewater treatment technologies that incorporate energy recovery in their process train. We carried out a systematic review based on the PRISMA methodology to identify and review studies regarding energy recovery using wastewater as a substrate in Mexico. Peer-reviewed papers were identified through Scopus Web of Knowledge and Google Scholar using a timeframe of 22 years that represented from 2000 to 2022. After applying the selection criteria we identified 31 studies to be included in the final review starting from 2007. The kind of energy product type of technology used substrate wastewater amount of energy produced and main parameters for the operation of the technology were extracted from the papers. The results show that methane is the most researched energy recovery product from wastewater followed by hydrogen and electricity and the technology used to archive it is an up-flow anaerobic sludge bed (UASB) reactor to produce methane and hydrogen. In addition microbial fuel cells (MFCs) were preferred to produce electricity. According to our data more energy per kgCOD removed could be obtained with methane-recovering technologies in the Mexican peer-reviewed studies compared with hydrogen recovery and electricity production.
Optimal Incorporation of Intermittent Renewable Energy Storage Units and Green Hydrogen Production in the Electrical Sector
Mar 2023
Publication
This paper presents a mathematical programming approach for the strategic planning of hydrogen production from renewable energies and its use in electric power generation in conventional technologies. The proposed approach aims to determine the optimal selection of the different types of technologies electrolyzers and storage units (energy and hydrogen). The approach considers the implementation of an optimization methodology to select a representative data set that characterizes the total annual demand. The economic objective aims to determine the minimum cost which is composed of the capital costs in the acquisition of units operating costs of such units costs of production and transmission of energy as well as the cost associated with the emissions generated which is related to an environmental tax. A specific case study is presented in the Mexican peninsula and the results show that it is possible to produce hydrogen at a minimum sale price of 4200 $/tonH2 with a total cost of $5.1687 × 106 and 2.5243 × 105 tonCO2eq. In addition the financial break-even point corresponds to a sale price of 6600 $/tonH2 . The proposed model determines the trade-offs between the cost and the emissions generated.
Numerical Predictions of a Swirl Combustor Using Complex Chemistry Fueled with Ammonia/Hydrogen Blends
Jan 2020
Publication
Ammonia a chemical that contains high hydrogen quantities has been presented as a candidate for the production of clean power generation and aerospace propulsion. Although ammonia can deliver more hydrogen per unit volume than liquid hydrogen itself the use of ammonia in combustion systems comes with the detrimental production of nitrogen oxides which are emissions that have up to 300 times the greenhouse potential of carbon dioxide. This factor combined with the lower energy density of ammonia makes new studies crucial to enable the use of the molecule through methods that reduce emissions whilst ensuring that enough power is produced to support high-energy intensive applications. Thus this paper presents a numerical study based on the use of novel reaction models employed to characterize ammonia combustion systems. The models are used to obtain Reynolds Averaged Navier-Stokes (RANS) simulations via Star-CCM+ with complex chemistry of a 70%–30% (mol) ammonia–hydrogen blend that is currently under investigations elsewhere. A fixed equivalence ratio (1.2) medium swirl (0.8) and confined conditions are employed to determine the flame and species propagation at various operating atmospheres and temperature inlet values. The study is then expanded to high inlet temperatures high pressures and high flowrates at different confinement boundary conditions. The results denote how the production of NOx emissions remains stable and under 400 ppm whilst higher concentrations of both hydrogen and unreacted ammonia are found in the flue gases under high power conditions. The reduction of heat losses (thus higher temperature boundary conditions) has a crucial impact on further destruction of ammonia post-flame with a raise in hydrogen water and nitrogen through the system thus presenting an opportunity of combustion efficiency improvement of this blend by reducing heat losses. Final discussions are presented as a method to raise power whilst employing ammonia for gas turbine systems.
The Role of Hydrogen in a Decarbonised Future Transport Sector: A Case Study of Mexico
Sep 2023
Publication
In recent years several approaches and pathways have been discussed to decarbonise the transport sector; however any effort to reduce emissions might be complex due to specific socio-economic and technical characteristics of different regions. In Mexico the transport sector is the highest energy consumer representing 38.9% of the national final energy demand with gasoline and diesel representing 90% of the sector´s total fuel consumption. Energy systems models are powerful tools to obtain insights into decarbonisation pathways to understand costs emissions and rate of deployment that could serve for energy policy development. This paper focuses on the modelling of the current Mexican transport system using the MUSE-MX multi-regional model with the aim to project a decarbonisation pathway through two different scenarios. The first approach being business as usual (BAU) which aims to analyse current policies implementation and the second being a goal of net zero carbon emissions by 2050. Under the considered net zero scenario results show potential deployment of hydrogen-based transport technologies especially for subsectors such as lorries (100% H2 by 2050) and freight train (25% H2 by 2050) while cars and buses tend to full electrification by 2050.
Modelling Large-scale Hydrogen Uptake in the Mexican Refinery and Power Sectors
Sep 2023
Publication
Due to the emissions reduction commitments that Mexico compromised in the Paris Agreement several clean fuel and renewable energy technologies need to penetrate the market to accomplish the environmental goals. Therefore there is a need to develop achievable and realistic policies for such technologies to ease the decision-making on national energy strategies. Several countries are starting to develop large-scale green hydrogen production projects to reduce the carbon footprint of the multiple sectors within the country. The conversion sectors namely power and refinery are fundamental sectors to decarbonise due to their energy supply role. Nowadays the highest energy consumables of the country are hydrocarbons (more than 90%) causing a particular challenge for deep decarbonisation. The purpose of this study is to use a multi-regional energy system model of Mexico to analyse a decarbonisation scenario in line with the latest National Energy System Development Program. Results show that if the country wants to succeed in reducing 22% of its GHG emissions and 51% of its short-lived climate pollutants emissions green hydrogen could play a role in power generation in regions with higher energy demand growth rates. These results show regarding the power sector that H2 could represent 13.8 GW or 5.1% of the total installed capacity by 2050 while for the refinery sector H2 could reach a capacity of 157 PJ/y which is around 31.8% of the total share and it is mainly driven by the increasing demands of the transport industry and power sectors. Nevertheless as oil would still represent the largest energy commodity CCS technologies would have to be deployed for new and retrofitted refinery facilities.
Experimental Study on the Performance of Controllers for the Hydrogen Gas Production Demanded by an Internal Combustion Engine
Aug 2018
Publication
This work presents the design and application of two control techniques—a model predictive control (MPC) and a proportional integral derivative control (PID) both in combination with a multilayer perceptron neural network—to produce hydrogen gas on-demand in order to use it as an additive in a spark ignition internal combustion engine. For the design of the controllers a control-oriented model identified with the Hammerstein technique was used. For the implementation of both controllers only 1% of the overall air entering through the throttle valve reacted with hydrogen gas allowing maintenance of the hydrogen–air stoichiometric ratio at 34.3 and the air–gasoline ratio at 14.6. Experimental results showed that the average settling time of the MPC controller was 1 s faster than the settling time of the PID controller. Additionally MPC presented better reference tracking error rates and standard deviation of 1.03 × 10−7 and 1.06 × 10−14 and had a greater insensitivity to measurement noise resulting in greater robustness to disturbances. Finally with the use of hydrogen as an additive to gasoline there was an improvement in thermal and combustion efficiency of 4% and 0.6% respectively and an increase in power of 545 W translating into a reduction of fossil fuel use.
Hydrogen Technology for Supply Chain Sustainability: The Mexican Transportation Impacts on Society
Mar 2022
Publication
This study sheds light on the Hydrogen technology in transportation for reaching the sustainability goals of societies illustrated by the case of Mexico. In terms of the affected supply chains the study explores how the packaging and distribution of a fuel-saving tool that allows the adoption of hydrogen as complementary energy for maritime transportation to improve economic and environmental performance in Mexico. This exploratory study performs interviews observations simulations and tests involving producers suppliers and users at 26 ports in Mexico. The study shows that environmental and economic performance are related to key processes in Supply Chain Management (SCM) in which packaging and distribution are critical for achieving logistics and transportation sustainability goals. Reusable packaging and the distribution of a fuel-saving tool can help decrease costs - of transport and downstream/upstream processes in SCM while at the same time increasing the environmental performance.
Optimal Dispatch Model for PV-electrolysis Plants in Self-consumption Regime to Produce Green Hydrogen: A Spanish Case Study
May 2022
Publication
The production of green hydrogen from renewable energy by means of water electrolysis is a promising approach to support energy sector decarbonization. This paper presents a techno-economic model of plants with PV sources connected to electrolysis in self-consumption regime that considers the dynamics of electrolysis systems. The model calculates the optimal hourly dispatch of the electrolysis system including the operational states (production standby and idle) the load factor in production and the energy imports and exports to the electricity grid. Results indicate that the model is a useful decision support tool to operate electrolysis plants connected to PV plants in self-consumption regimes with the target of reducing hydrogen production costs.
The Challenges of Integrating the Principles of Green Chemistry and Green Engineering to Heterogeneous Photocatalysis to Treat Water and Produce Green H2
Jan 2023
Publication
Nowadays heterogeneous photocatalysis for water treatment and hydrogen production are topics gaining interest for scientists and developers from different areas such as environmental technology and material science. Most of the efforts and resources are devoted to the development of new photocatalyst materials while the modeling and development of reaction systems allowing for upscaling the process to pilot or industrial scale are scarce. In this work we present what is known on the upscaling of heterogeneous photocatalysis to purify water and to produce green H2. The types of reactors successfully used in water treatment plants are presented as study cases. The challenges of upscaling the photocatalysis process to produce green H2 are explored from the perspectives of (a) the adaptation of photoreactors (b) the competitiveness of the process and (c) safety. Throughout the text Green Chemistry and Engineering Principles are described and discussed on how they are currently being applied to the heterogeneous photocatalysis process along with the challenges that are ahead. Lastly the role of automation and high-throughput methods in the upscaling following the Green Principles is discussed.
FPGA-Based Implementation of an Optimization Algorithm to Maximize the Productivity of a Microbial Electrolysis Cell
Jun 2021
Publication
In this work the design of the hardware architecture to implement an algorithm for optimizing the Hydrogen Productivity Rate (HPR) in a Microbial Electrolysis Cell (MEC) is presented. The HPR in the MEC is maximized by the golden section search algorithm in conjunction with a super-twisting controller. The development of the digital architecture in the implementation step of the optimization algorithm was developed in the Very High Description Language (VHDL) and synthesized in a Field Programmable Gate Array (FPGA). Numerical simulations demonstrated the feasibility of the proposed optimization strategy embedded in an FPGA Cyclone II. Results showed that only.
Review on Ammonia as a Potential Fuel: From Synthesis to Economics
Feb 2021
Publication
Ammonia a molecule that is gaining more interest as a fueling vector has been considered as a candidate to power transport produce energy and support heating applications for decades. However the particular characteristics of the molecule always made it a chemical with low if any benefit once compared to conventional fossil fuels. Still the current need to decarbonize our economy makes the search of new methods crucial to use chemicals such as ammonia that can be produced and employed without incurring in the emission of carbon oxides. Therefore current efforts in this field are leading scientists industries and governments to seriously invest efforts in the development of holistic solutions capable of making ammonia a viable fuel for the transition toward a clean future. On that basis this review has approached the subject gathering inputs from scientists actively working on the topic. The review starts from the importance of ammonia as an energy vector moving through all of the steps in the production distribution utilization safety legal considerations and economic aspects of the use of such a molecule to support the future energy mix. Fundamentals of combustion and practical cases for the recovery of energy of ammonia are also addressed thus providing a complete view of what potentially could become a vector of crucial importance to the mitigation of carbon emissions. Different from other works this review seeks to provide a holistic perspective of ammonia as a chemical that presents benefits and constraints for storing energy from sustainable sources. State-of-the-art knowledge provided by academics actively engaged with the topic at various fronts also enables a clear vision of the progress in each of the branches of ammonia as an energy carrier. Further the fundamental boundaries of the use of the molecule are expanded to real technical issues for all potential technologies capable of using it for energy purposes legal barriers that will be faced to achieve its deployment safety and environmental considerations that impose a critical aspect for acceptance and wellbeing and economic implications for the use of ammonia across all aspects approached for the production and implementation of this chemical as a fueling source. Herein this work sets the principles research practicalities and future views of a transition toward a future where ammonia will be a major energy player.
An Overview of the Efficiency and Long-Term Viability of Powered Hydrogen Production
Jun 2024
Publication
This work studies the efficiency and long-term viability of powered hydrogen production. For this purpose a detailed exploration of hydrogen production techniques has been undertaken involving data collection information authentication data organization and analysis. The efficiency trends environmental impact and hydrogen production costs in a landscape marked by limited data availability were investigated. The main contribution of this work is to reduce the existing data gap in the field of hydrogen production by compiling and summarizing dispersed data. The findings are expected to facilitate the decision-making process by considering regional variations energy source availability and the potential for technological advancements that may further enhance the economic viability of electrolysis. The results show that hydrogen production methods can be identified that do not cause significant harm to the environment. Photolysis stands out as the least serious offender producing 0 kg of CO2 per kg of H2 while thermolysis emerges as the major contributor to emissions with 20 kg of CO2 per kg of H2 produced.
No more items...