Korea, Republic of
Numerical Analysis of the Effects of Ship Motion on Hydrogen Release and Dispersion in an Enclosed Area
Jan 2022
Publication
Hydrogen is an alternative to conventional heavy marine fuel oil following the initial strategy of the International Maritime Organization (IMO) for reducing greenhouse gas emissions. Although hydrogen energy has many advantages (zero-emission high efficiency and low noise) it has considerable fire and explosion risks due to its thermal and chemical characteristics (wide flammable concentration range and low ignition energy). Thus safety is a key concern related to the use of hydrogen. Whereas most previous studies focused on the terrestrial environment we aim to analyze the effects of the ship’s motion on hydrogen dispersion (using commercial FLUENT code) in an enclosed area. When compared to the steady state our results revealed that hydrogen reached specific sensors in 63% and 52% less time depending on vessel motion type and direction. Since ships carry and use a large amount of hydrogen as a power source the risk of hydrogen leakage from collision or damage necessitates studying the correspondence between leakage diffusion and motion characteristics of the ship to position the sensor correctly.
Volumetric Analysis Technique for Analyzing the Transport Properties of Hydrogen Gas in Cylindrical-shaped Rubbery Polymers
Mar 2021
Publication
We report volumetric analysis techniques to analyze the transport properties of hydrogen dissolved in cylindrical-shaped polymers. The techniques utilize the volume measurement of the released hydrogen from rubber by gas collection in a graduated cylinder after charging sample with high-pressure hydrogen and subsequent decompression. We further improve the graduated cylinder with some modifications such as reading the electrical capacitance of the water level using electrodes and changing the sample loading position. From the measurement results the uptake (C∞) diffusion coefficient (D) and solubility (S) of hydrogen are quantified with an upgraded diffusion analysis program. These methods are applied to three cylindrical rubbers. Dual adsorption behaviors with increasing pressure are observed for all the samples. C∞ follows Henry’s law up to ~15 MPa whereas Langmuir model applies up to 90 MPa. D shows Knudsen and bulk diffusion behavior below and above pressure respectively. A COMSOL simulation is compared with experimental observations.
Advanced Sizing Methodology for a Multi-Mode eVTOL UAV Powered by a Hydrogen Fuel Cell and Battery
Jan 2022
Publication
A critical drawback of battery-powered eVTOL UAVs is their limited range and endurance and this drawback could be solved by using a combination of hydrogen fuel cells and batteries. The objective of this paper is to develop a sizing methodology for the lift+cruise-type eVTOL UAV powered by a hydrogen fuel cell and battery. This paper presents the constraints analysis method for forward flight/VTOL multi-mode UAV the regression model for electric propulsion system sizing a sizing method for an electric propulsion system and hydrogen fuel cell system and a transition analysis method. The total mass of the UAV is iteratively calculated until convergence and the optimization method is used to ensure that the sizing results satisfy the design requirements. The sizing results are the UAV’s geometry mass and power data. To verify the accuracy of the proposed sizing methodology the sizing and the conceptual design phase results of a 25 kg hydrogen fuel-cell-powered UAV are compared. All parameters had an error within 10% and satisfied the design requirements.
Prediction of Hydrogen Concentration in Containment During Severe Accidents Using Fuzzy Neural Network
Jan 2015
Publication
Recently severe accidents in nuclear power plants (NPPs) have become a global concern. The aim of this paper is to predict the hydrogen buildup within containment resulting from severe accidents. The prediction was based on NPPs of an optimized power reactor 1000. The increase in the hydrogen concentration in severe accidents is one of the major factors that threaten the integrity of the containment. A method using a fuzzy neural network (FNN) was applied to predict the hydrogen concentration in the containment. The FNN model was developed and verified based on simulation data acquired by simulating MAAP4 code for optimized power reactor 1000. The FNN model is expected to assist operators to prevent a hydrogen explosion in severe accident situations and manage the accident properly because they are able to predict the changes in the trend of hydrogen concentration at the beginning of real accidents by using the developed FNN model.
Risk Assessment Method Combining Independent Protection Layers (IPL) of Layer of Protection Analysis (LOPA) and RISKCURVES Software: Case Study of Hydrogen Refueling Stations in Urban Areas
Jul 2021
Publication
The commercialization of eco-friendly hydrogen vehicles has elicited attempts to expand hydrogen refueling stations in urban areas; however safety measures to reduce the risk of jet fires have not been established. The RISKCURVES software was used to evaluate the individual and societal risks of hydrogen refueling stations in urban areas and the F–N (Frequency–Number of fatalities) curve was used to compare whether the safety measures satisfied international standards. From the results of the analysis it was found that there is a risk of explosion in the expansion of hydrogen refueling stations in urban areas and safety measures should be considered. To lower the risk of hydrogen refueling stations this study applied the passive and active independent protection layers (IPLs) of LOPA (Layer of Protection Analysis) and confirmed that these measures significantly reduced societal risk as well as individual risk and met international standards. In particular such measures could effectively reduce the impact of jet fire in dispensers and tube trailers that had a high risk. Measures employing both IPL types were efficient in meeting international standard criteria; however passive IPLs were found to have a greater risk reduction effect than active IPLs. The combination of RISKCURVES and LOPA is an appropriate risk assessment method that can reduce work time and mitigate risks through protective measures compared to existing risk assessment methods. This method can be applied to risk assessment and risk mitigation not only for hydrogen facilities but also for hazardous materials with high fire or explosion risk.
Evaluation Techniques of Hydrogen Permeation in Sealing Rubber Materials
Dec 2020
Publication
Three techniques for determining the hydrogen permeation properties of rubber samples were developed based on the volumetric and gravimetric measurements of released H2 gas after sample decompression. These methods include gas chromatography (GC) by thermal desorption analysis (TDA) volumetric collection (VC) measurement of hydrogen by graduated cylinder and gravimetric (GM) measurement by electronic balance. By measuring the released hydrogen against elapsed time after the decompression of pressure the charging amount (C0) and diffusivity (D) were obtained with the developed diffusion analysis program. From these values the solubility (S) and permeability (P) of polymers were evaluated through the relations of Henry's law and P=SD respectively. The developed techniques were applied to three kinds of spherically shaped sealing rubber materials. D S and P were analyzed as a function of pressure. The transport behaviors obtained in the three methods are discussed and compared with the characteristics of each measuring technique. The correlations between transport parameters and carbon black filler or density are discussed.
UV Assisted on Titanium Doped Electrode for Hydrogen Evolution from Artificial Wastewater
Jul 2018
Publication
Formaldehyde (H2CO) is the harmful chemical that used in variety of industries. However there are many difficulties to treat discharged H2CO in the wastewater. Hydrogen energy is arising as a one of the renewable energy that can replace fossil fuel. Many researches have been conducted on hydrogen production from electrolysis using expensive metal electrodes and catalysts such as platinum (Pt) and palladium (Pd). However they are expensive and have obstacles to directly use from the production. We used copper (Cu) as an electrode substrate because it has a good current density. To avoid corrosion issue of Cu substrate we used commercially available carbon (C) coated Cu substrate and synthesized titanium (Ti) on C/Cu substrate. We found that Ti was well synthesized and stayed on substrate after hydrogen evolution reaction (HER) in artificial wastewater. Moreover we quantified hydrogen production from the wastewater and compared it to pure water. Hydrogen production was enhanced in wastewater and H2CO was decomposed after reaction. We expected to use Ti-C/Cu electrode for hydrogen production of wastewater by electrolysis.
Numerical Analysis for Hydrogen Flame Acceleration during a Severe Accident in the APR1400 Containment Using a Multi-Dimensional Hydrogen Analysis System
Nov 2020
Publication
Korea Atomic Energy Research Institute (KAERI) established a multi-dimensional hydrogen analysis system to evaluate hydrogen release distribution and combustion in the containment of a Nuclear Power Plant (NPP) using MAAP GASFLOW and COM3D. In particular KAERI developed an analysis methodology for a hydrogen flame acceleration on the basis of the COM3D validation results against measured data of the hydrogen combustion tests in the ENACCEF and THAI facilities. The proposed analysis methodology accurately predicted the peak overpressure with an error range of approximately ±10% using the Kawanabe model used for a turbulent flame speed in the COM3D. KAERI performed a hydrogen flame acceleration analysis using the multi-dimensional hydrogen analysis system for a severe accident initiated by a station blackout (SBO) under the assumption of 100% metal–water reaction in the Reactor Pressure Vessel (RPV) to evaluate an overpressure buildup in the containment of the Advanced Power Reactor 1400 MWe (APR1400). The magnitude of the overpressure buildup in the APR1400 containment might be used as a criterion to judge whether the containment integrity is maintained or not when the hydrogen combustion occurs during a severe accident. The COM3D calculation results using the established analysis methodology showed that the calculated peak pressure in the containment was lower than the fracture pressure of the APR1400 containment. This calculation result might have resulted from a large air volume of the containment a reduced hydrogen concentration owing to passive auto-catalytic recombiners installed in the containment during the hydrogen release from the RPV and a lot of stem presence during the hydrogen combustion period in the containment. Therefore we found that the current design of the APR1400 containment maintained its integrity when the flame acceleration occurred during the severe accident initiated by the SBO accident.
Simulator Development of Virtual Experience and Accident Scenarios of Hydrogen Stations for Safety
Sep 2007
Publication
Nowadays 4 type hydrogen stations have been demonstrated in Korea for preparing hydrogen economy. This simulator is consists of virtual experience modules and virtual accident scenarios of 4 type hydrogen stations. Virtual experience modules show the performance properties through a movie or a virtual reality technology. Also they provide an explanation of hydrogen station equipment and a guide for operators immediately after the accident. Virtual accident scenario modules show accident simulations based on modelling equations as 3D virtual reality. These modules could choose the sham accident for every kind of a station after categorizing all possible accidents in a station A Commercialized CFD program based on hydrogen dispersion model theory shows a movie of accident simulations. The result of a simulator has been developed as web applications. And will be applied to training materials and public relations for a user concerned about hydrogen stations.
Effect of Copper Cobalt Oxide Composition on Oxygen Evolution Electrocatalysts for Anion Exchange Membrane Water Electrolysis
Nov 2020
Publication
Copper cobalt oxide nanoparticles (CCO NPs) were synthesized as an oxygen evolution electrocatalyst via a simple co-precipitation method with the composition being controlled by altering the precursor ratio to 1:1 1:2 and 1:3 (Cu:Co) to investigate the effects of composition changes. The effect of the ratio of Cu2+/Co3+ and the degree of oxidation during the co-precipitation and annealing steps on the crystal structure morphology and electrocatalytic properties of the produced CCO NPs were studied. The CCO1:2 electrode exhibited an outstanding performance and high stability owing to the suitable electrochemical kinetics which was provided by the presence of sufficient Co3+ as active sites for oxygen evolution and the uniform sizes of the NPs in the half cell. Furthermore single cell tests were performed to confirm the possibility of using the synthesized electrocatalyst in a practical water splitting system. The CCO1:2 electrocatalyst was used as an anode to develop an anion exchange membrane water electrolyzer (AEMWE) cell. The full cell showed stable hydrogen production for 100 h with an energetic efficiency of >71%. In addition it was possible tomass produce the uniform highly active electrocatalyst for such applications through the co-precipitation method.
Layered Transition Metal Selenophosphites for Visible Light Photoelectrochemical Production of Hydrogen
Jun 2021
Publication
The growing consumption of global energy has posed serious challenges to environmental protection and energy supplies. A promising solution is via introducing clean and sustainable energy sources including photoelectrochemical hydrogen fuel production. 2D materials such as transition metal trichalcogenphosphites (MPCh3) are gaining more and more interest for their potential as photocatalysts. Crystals of transition metal selenophosphites namely MnPSe3 FePSe3 and ZnPSe3 were tested as photocatalysts for the hydrogen evolution reaction (HER). ZnPSe3 is the one that exhibited the lowest overpotential and the higher response to the light during photocurrent experiments in acidic media. For this reason among the crystals in this work it is the most promising for the photocatalyzed production of hydrogen.
Potential Liquid-Organic Hydrogen Carrier (LOHC) Systems: A Review on Recent Progress
Nov 2020
Publication
The depletion of fossil fuels and rising global warming challenges encourage to find safe and viable energy storage and delivery technologies. Hydrogen is a clean efficient energy carrier in various mobile fuel-cell applications and owned no adverse effects on the environment and human health. However hydrogen storage is considered a bottleneck problem for the progress of the hydrogen economy. Liquid-organic hydrogen carriers (LOHCs) are organic substances in liquid or semi-solid states that store hydrogen by catalytic hydrogenation and dehydrogenation processes over multiple cycles and may support a future hydrogen economy. Remarkably hydrogen storage in LOHC systems has attracted dramatically more attention than conventional storage systems such as high-pressure compression liquefaction and absorption/adsorption techniques. Potential LOHC media must provide fully reversible hydrogen storage via catalytic processes thermal stability low melting points favorable hydrogenation thermodynamics and kinetics large-scale availability and compatibility with current fuel energy infrastructure to practically employ these molecules in various applications. In this review we present various considerable aspects for the development of ideal LOHC systems. We highlight the recent progress of LOHC candidates and their catalytic approach as well as briefly discuss the theoretical insights for understanding the reaction mechanism.
Development and Future Scope of Renewable Energy and Energy Storage Systems
May 2022
Publication
This review study attempts to summarize available energy storage systems in order to accelerate the adoption of renewable energy. Inefficient energy storage systems have been shown to function as a deterrent to the implementation of sustainable development. It is therefore critical to conduct a thorough examination of existing and soon-to-be-developed energy storage technologies. Various scholarly publications in the fields of energy storage systems and renewable energy have been reviewed and summarized. Data and themes have been further highlighted with the use of appropriate figures and tables. Case studies and examples of major projects have also been researched to gain a better understanding of the energy storage technologies evaluated. An insightful analysis of present energy storage technologies and other possible innovations have been discovered with the use of suitable literature review and illustrations. This report also emphasizes the critical necessity for an efficient storage system if renewable energy is to be widely adopted.
Preference Structure on the Design of Hydrogen Refueling Stations to Activate Energy Transition
Aug 2020
Publication
As a countermeasure to the greenhouse gas problem the world is focusing on alternative fuel vehicles (AFVs). The most prominent alternatives are battery electric vehicles (BEV) and fuel cell electric vehicles (FCEVs). This study examines FCEVs especially considering hydrogen refueling stations to fill the gap in the research. Many studies suggest the important impact that infrastructure has on the diffusion of AFVs but they do not provide quantitative preferences for the design of hydrogen refueling stations. This study analyzes and presents a consumer preference structure for hydrogen refueling stations considering the production method distance probability of failure to refuel number of dispensers and fuel costs as core attributes. For the analysis stated preference data are applied to choice experiments and mixed logit is used for the estimation. Results indicate that the supply stability of hydrogen refueling stations is the second most important attribute following fuel price. Consumers are willing to pay more for green hydrogen compared to gray hydrogen which is hydrogen produced by fossil fuels. Driver fuel type and perception of hydrogen energy influence structure preference. Our results suggest a specific design for hydrogen refueling stations based on the characteristics of user groups.
Greenhouse Gas Emissions of Conventional and Alternative Vehicles: Predictions Based on Energy Policy Analysis in South Korea
Mar 2020
Publication
This paper compares the well-to-wheel (WTW) greenhouse gas (GHG) emissions of representative vehicle types–internal combustion engine vehicle (ICEV) hybrid electric vehicle (HEV) plug-in hybrid electric vehicle (PHEV) battery electric vehicle (BEV) and fuel cell electric vehicle (FCEV)–in the future (2030) based on a WTW analysis for the present (2017) and an analysis of various energy policies that could affect future emissions. South Korea was selected as the target region because it has detailed energy policies related to alternative vehicles. The WTW analysis for the present was performed based on three sets of subordinate analyses: (1) life cycle analyses of eight base fuels; (2) life cycle analyses of electricity and hydrogen; and (3) analyses of the fuel economies of seven vehicle types. From the WTW analysis for the present the national average WTW GHG emissions of ICEV-gasoline ICEV-diesel ICEV-liquefied petroleum gas HEV PHEV BEV and FCEV were calculated as 225 233 201 159 133 109 and 55 g-CO2-eq./km respectively. For calculating the WTW GHG emissions in the future two policies regarding electricity production and three policies regarding hydrogen production were analysed. Three cases with varying the degrees of improvements in fuel economies were considered. Six future scenarios were constructed and each scenario represented the case in which each energy policy is enacted. In the reference scenario for compact car the WTW GHG emissions of ICEVs-gasoline HEV PHEV BEV-200 mile FCEV were analysed as 161 110 97 86 and 91 g-CO2-eq./km respectively. The differences between ICEV/HEV and BEV were predicted to decrease in the future mainly due to larger improvements of ICEV/HEV in fuel economies compared to that of BEV. The future life cycle GHG emissions of electricity and hydrogen were calculated according to energy policy. Both two policies regarding power generation were confirmed to increase the benefits of utilizing BEVs but current energy policy regarding hydrogen production were confirmed to decrease the benefits of utilizing FCEVs. Based on the comprehensive results of this study a framework was proposed to evaluate the impacts of an energy policy regarding electricity and hydrogen production on the benefits of using BEVs and FCEVs compared to using HEVs and ICEVs. This framework can also be utilized in other countries when they assess and establish their energy policies.
Bench-Scale Steam Reforming of Methane for Hydrogen Production
Jul 2019
Publication
The effects of reaction parameters including reaction temperature and space velocity on hydrogen production via steam reforming of methane (SRM) were investigated using lab- and bench-scale reactors to identify critical factors for the design of large-scale processes. Based on thermodynamic and kinetic data obtained using the lab-scale reactor a series of SRM reactions were performed using a pelletized catalyst in the bench-scale reactor with a hydrogen production capacity of 10 L/min. Various temperature profiles were tested for the bench-scale reactor which was surrounded by three successive cylindrical furnaces to simulate the actual SRM conditions. The temperature at the reactor bottom was crucial for determining the methane conversion and hydrogen production rates when a sufficiently high reaction temperature was maintained (>800 ◦C) to reach thermodynamic equilibrium at the gas-hourly space velocity of 2.0 L CH4/(h·gcat). However if the temperature of one or more of the furnaces decreased below 700 ◦C the reaction was not equilibrated at the given space velocity. The effectiveness factor (0.143) of the pelletized catalyst was calculated based on the deviation of methane conversion between the lab- and bench-scale reactions at various space velocities. Finally an idling procedure was proposed so that catalytic activity was not affected by discontinuous operation.
Synthesis of Spherical V-Nb-Mo-Ta-W High-Entropy Alloy Powder Using Hydrogen Embrittlement and Spheroidization by Thermal Plasma
Dec 2019
Publication
V-Nb-Mo-Ta-W high-entropy alloy (HEA) one of the refractory HEAs is considered as a next-generation structural material for ultra-high temperature uses. Refractory HEAs have low castability and machinability due to their high melting temperature and low thermal conductivity. Thus powder metallurgy becomes a promising method for fabricating components with refractory HEAs. Therefore in this study we fabricated spherical V-Nb-Mo-Ta-W HEA powder using hydrogen embrittlement and spheroidization by thermal plasma. The HEA ingot was prepared by vacuum arc melting and revealed to have a single body-centered cubic phase. Hydrogen embrittlement which could be achieved by annealing in a hydrogen atmosphere was introduced to get the ingot pulverized easily to a fine powder having an angular shape. Then the powder was annealed in a vacuum atmosphere to eliminate the hydrogen from the hydrogenated HEA resulting in a decrease in the hydrogen concentration from 0.1033 wt% to 0.0003 wt%. The angular shape of the HEA powder was turned into a spherical one by inductively-coupled thermal plasma allowing to fabricate spherical V-Nb-Mo-Ta-W HEA powder with a d50 value of 28.0 μm.
Comparison of Solutions for a Liquid Pool Spreading Model with Continuous and Instantaneous Spills
Sep 2013
Publication
In this study a solution for a liquid pool spreading model with a continuous spill is compared with that for a liquid pool spreading model with an instantaneous spill under the same total release volume. As reducing spill time in completely releasing liquid from a tank it is evaluated whether the solution for a continuous spill approaches to that for an instantaneous spill or not. Also effects of the viscous term in the liquid pool spreading model with continuous and instantaneous spills on the liquid pool spreading behaviour are investigated.
Hydrogen Embrittlement Behavior of 18Ni 300 Maraging Steel Produced by Selective Laser Melting
Jul 2019
Publication
A study was performed to investigate the hydrogen embrittlement behavior of 18-Ni 300 maraging steel produced by selective laser melting and subjected to different heat treatment strategies. Hydrogen was pre-charged into the tensile samples by an electro-chemical method at the constant current density of 1 A m−2 and 50 A m−2 for 48 h at room temperature. Charged and uncharged specimens were subjected to tensile tests and the hydrogen concentration was eventually analysed using quadrupole mass spectroscopy. After tensile tests uncharged maraging samples showed fracture surfaces with dimples. Conversely in H-charged alloys quasi-cleavage mode fractures occurred. A lower concentration of trapped hydrogen atoms and higher elongation at fracture were measured in the H-charged samples that were subjected to solution treatment prior to hydrogen charging compared to the as-built counterparts. Isothermal aging treatment performed at 460 °C for 8 h before hydrogen charging increased the concentration of trapped hydrogen giving rise to higher hydrogen embrittlement susceptibility.
MELCOR Analysis of a SPARC Experiment for Spray-PAR Interaction During a Hydrogen Release
Oct 2020
Publication
A series of experiments were performed in the SPARC (spray-aerosol-recombiner-combustion) test facility to simulate a hydrogen mitigation system with the actuation of a PAR (passive auto-catalytic re-combiner) and spray system. In this study the SPARC-SPRAY-PAR (SSP1) experiment is chosen to benchmark the MELCOR (a lumped-parameter code for severe accident analysis) predictions against test data. For this purpose firstly we prepared the base input model of the SPARC test vessel and tested it by a simple verification problem with well-defined boundary conditions. The implementation of a currently used PAR correlation in MELCOR is shown to be appropriate for the simulation of a PAR actuation experiment. In an SSP1 experiment the PAR is reacting with hydrogen and the spray actuation starts as soon as hydrogen injection is complete. The MELCOR simulation well predicts the pressure behavior and the gas flow affected by operating both a PAR and spray system. However the local hydrogen concentration measurement near the inlet nozzle is much higher than the volume average-value by MELCOR since high jet flow from the nozzle is dispersed in the corresponding cell volume. The experimental reproduction of the phenomena we expect or conversely the identification of phenomena we do not understand will continue to support the verification of analytical models using experimental data and to analyze the impact of spray on PAR operations in severe accident conditions.
No more items...