Japan
Feasibility Study of "CO2 Free Hydrogen Chain" Utilizing Australian Brown Coal Linked with CCS
Nov 2012
Publication
We had investigated feasible measures to reduce CO2 emission and came to conclusion that introduction of new fuel such as hydrogen with near zero CO2 emission is required for achieving Japan’s commitment of 80% CO2 reduction by 2050. Under this background we are proposing and aiming to realize “CO2 free hydrogen chain” utilizing Australian brown coal linked with CCS. In this chain hydrogen produced from brown coal is liquefied and transported to Japan by liquid hydrogen carrier. We have conducted feasibility study of commercial scale “CO2 free hydrogen chain” whose result shows the chain is technically and economically feasible.
Effect of Carbon Monoxide on Polymer Electrolyte Fuel Cell Performance with a Hydrogen Circulation System
Feb 2022
Publication
The effect of carbon monoxide (CO) on the performance of polymer electrolyte fuel cells (PEFCs) with either a hydrogen circulation system or a hydrogen one-way pass system is investigated and compared. The voltage drop induced by adding 0.2 ppm of CO to the PEFC with the hydrogen circulation system was less than one-tenth of that observed in the PEFC with the hydrogen one-way pass system at 1000 mA cm–2 and a cell temperature of 60 °C. Gas analysis results showed that CO concentration in the hydrogen circulation system was lower than the initially supplied CO concentration. In the hydrogen circulation system permeated oxygen from the cathode should enhance CO oxidation. This should lead to decrease the CO concentration and mitigate the voltage drop in the hydrogen circulation system.
Life-cycle Assessment of Hydrogen Utilization in Power Generation: A Systematic Review of Technological and Methodological Choices
Jul 2022
Publication
Interest in reducing the greenhouse gas emissions from conventional power generation has increased the focus on the potential use of hydrogen to produce electricity. Numerous life-cycle assessment (LCA) studies of hydrogen-based power generation have been published. This study reviews the technological and methodological choices made in hydrogen-based power generation LCAs. A systematic review was chosen as the research method to achieve a comprehensive and minimally biased overview of hydrogen-based power generation LCAs. Relevant articles published between 2004 and 2021 were identified by searching the Scopus and Web of Science databases. Electrolysis from renewable energy resources was the most widely considered type of hydrogen production in the LCAs analyzed. Fuel cell technology was the most common conversion equipment used in hydrogen-based electricity LCAs. A significant number of scenarios examine the use of hydrogen for energy storage and co-generation purposes. Based on qualitative analysis the methodological choices of LCAs vary between studies in terms of the functional units allocations system boundaries and life-cycle impact assessment methods chosen. These discrepancies were likely to influence the value of the environmental impact results. The findings of the reviewed LCAs could provide an environmental profile of hydrogen-based electricity systems identify hotspots drive future research define performance goals and establish a baseline for their large-scale deployment.
Potential Renewable Hydrogen from Curtailed Electricity to Decarbonize ASEAN’s Emissions: Policy Implications
Dec 2020
Publication
The power generation mix of the Association of Southeast Asian Nations (ASEAN) is dominated by fossil fuels which accounted for almost 80% in 2017 and are expected to account for 82% in 2050 if the region does not transition to cleaner energy systems. Solar and wind power are the most abundant energy resources but contribute negligibly to the power mix. Investors in solar or wind farms face high risks from electricity curtailment if surplus electricity is not used. Employing the policy scenario analysis of the energy outlook modelling results this paper examines the potential scalability of renewable hydrogen production from curtailed electricity in scenarios of high share of variable renewable energy in the power generation mix. The study found that ASEAN has high potential in developing renewable hydrogen production from curtailed electricity. The study further found that the falling cost of renewable hydrogen production could be a game changer to upscaling the large-scale hydrogen production in ASEAN through policy support. The results implied a future role of renewable hydrogen in energy transition to decarbonize ASEAN’s emissions.
Cold Start Cycling Durability of Fuel Cell Stacks for Commercial Automotive Applications
Sep 2022
Publication
System durability is crucial for the successful commercialization of polymer electrolyte fuel cells (PEFCs) in fuel cell electric vehicles (FCEVs). Besides conventional electrochemical cycling durability during long-term operation the effect of operation in cold climates must also be considered. Ice formation during start up in sub-zero conditions may result in damage to the electrocatalyst layer and the polymer electrolyte membrane (PEM). Here we conduct accelerated cold start cycling tests on prototype fuel cell stacks intended for incorporation into commercial FCEVs. The effect of this on the stack performance is evaluated the resulting mechanical damage is investigated and degradation mechanisms are proposed. Overall only a small voltage drop is observed after the durability tests only minor damage occurs in the electrocatalyst layer and no increase in gas crossover is observed. This indicates that these prototype fuel cell stacks successfully meet the cold start durability targets for automotive applications in FCEVs.
Techno-Economic Analysis of Solar Thermal Hydrogen Production in the United Arab Emirates
Oct 2022
Publication
Solar thermal technology can provide the United Arab Emirates and the Middle East region with abundant clean electricity to mitigate the rising levels of carbon dioxide and satisfy future demand. Hydrogen can play a key role in the large-scale application of solar thermal technologies such as concentrated solar plants in the region by storing the surplus electricity and exporting it to needed countries for profit placing the Middle East and the United Arab Emirates as major future green hydrogen suppliers. However a hydrogen supply chain comparison between hydrogen from CSP and other renewable under the UAE’s technical and economic conditions for hydrogen export is yet to be fully considered. Therefore in this study we provide a techno-economic analysis for well-to-ship solar hydrogen supply chain that compares CSP and PV technologies with a solid oxide water electrolyzer for hydrogen production assuming four different hydrogen delivery pathways based on the location of electrolyzer and source of electricity assuming the SOEC can be coupled to the CSP plant when placed at the same site or provided with electric heaters when placed at PV plant site or port sites. The results show that the PV plant achieves a lower levelized cost of electricity than that of the CSP plant with 5.08 ¢/kWh and 8.6 ¢/kWh respectively. Hydrogen production results show that the scenario where SOEC is coupled to the CSP plant is the most competitive scenario as it achieves the payback period in the shortest period compared to the other scenarios and also provides higher revenues and a cheaper LCOH of 7.85 $/kgH2.
Quantitive Risk Assessment of the Model Representing Latest Japanese Hydrogen Refuelling Stations
Sep 2021
Publication
Current safety codes and technical standards related to Japanese hydrogen refueling stations (HRSs) have been established based on qualitative risk assessment and quantitative effectiveness validation of safety measures for more than ten years. In the last decade there has been significant development in the technologies and significant increment in operational experience related to HRSs. We performed a quantitative risk assessment (QRA) of the HRS model representing Japanese HRSs with the latest information in the previous study. The QRA results were obtained by summing risk contours derived from each process unit. They showed that the risk contours of 10-3 and 10-4 per year were confined within the HRS boundaries whereas those of 10-5 and 10-6 per year are still present outside the HRS boundaries. Therefore we analyzed the summation of risk contours derived from each unit and identified the largest risk scenarios outside the station. The HRS model in the previous study did not consider fire and blast protection walls which could reduce the risks outside the station. Therefore we conducted a detailed risk analysis of the identified scenarios using 3D structure modeling. The heat radiation and temperature rise of jet fire scenarios that pose the greatest risk to the physical surroundings in the HRS model were estimated in detail based on computational fluid dynamics with 3D structures including fire protection walls. Results show that the risks spreading outside the north- west- and east-side station boundaries are expected to be acceptable by incorporating the fire protection wall into the Japanese HRS model.
The Potential Role of Flying Vehicles in Progressing the Energy Transition
Oct 2022
Publication
An energy transition is in progress around the globe notably led by an increase in the deployment of renewable energy and a shift toward less emissions-intense options notably in the transportation sector. This research investigates the potential role that new transportation options namely flying vehicles may play toward progressing the energy transition. As flying vehicles are a relatively new technology yet to penetrate the market it is also prudent to consider the ethical legal and social issues (ELSI) associated with their implementation alongside the potential energy and environmental impacts. Through a review of ELSI and energy and environmental literature we identify research gaps and identify how flying vehicles may impact upon the energy transition over time. Our research identifies several critical aspects of both ELSI and energy and environmental academia relevant to the future deployment of flying vehicles and describes a deployment timeline and the resultant societal outcomes. We find that flying vehicles could drive the energy transition and the hydrogen economy and that their widespread adoption could engender shared socio-environmental benefits. Our findings are relevant to transportation and environmental policymakers and identify critical considerations for the planned introduction of new shared transportation options to the market conducive to a sustainable energy transition.
The Roles of Nuclear Energy in Hydrogen Production
Dec 2021
Publication
Fossil resources are unevenly distributed on the earth and are finite primary energy which is widely used in the fields of industry transportation and power generation etc.<br/>Primary energies that can replace fossil resources include renewable energy and nuclear energy. Hydrogen has the potential to be secondary energy that can be widely used in industry for various purposes. Nuclear energy can be used for producing hydrogen; it is becoming more important to convert this primary energies into hydrogen. This paper describes the roles of nuclear energy as a primary energy in hydrogen production from the viewpoint of the basics of energy form conversion.
Hydrogen Production by Water Electrolysis Technologies: A Review
Sep 2023
Publication
Hydrogen as an energy source has been identified as an optimal pathway for mitigating climate change by combining renewable electricity with water electrolysis systems. Proton exchange membrane (PEM) technology has received a substantial amount of attention because of its ability to efficiently produce high-purity hydrogen while minimising challenges associated with handling and maintenance. Another hydrogen generation technology alkaline water electrolysis (AWE) has been widely used in commercial hydrogen production applications. Anion exchange membrane (AEM) technology can produce hydrogen at relatively low costs because the noble metal catalysts used in PEM and AWE systems are replaced with conventional low-cost electrocatalysts. Solid oxide electrolyzer cell (SOEC) technology is another electrolysis technology for producing hydrogen at relatively high conversion efficiencies low cost and with low associated emissions. However the operating temperatures of SOECs are high which necessitates long startup times. This review addresses the current state of technologies capable of using impure water in water electrolysis systems. Commercially available water electrolysis systems were extensively discussed and compared. The technical barriers of hydrogen production by PEM and AEM were also investigated. Furthermore commercial PEM stack electrolyzer performance was evaluated using artificial river water (soft water). An integrated system approach was recommended for meeting the power and pure water demands using reversible seawater by combining renewable electricity water electrolysis and fuel cells. AEM performance was considered to be low requiring further developments to enhance the membrane’s lifetime.
Hydrogen Production Technologies Overview
Jan 2019
Publication
Hydrogen energy became the most significant energy as the current demand gradually starts to increase. Hydrogen energy is an important key solution to tackle the global temperature rise. The key important factor of hydrogen production is the hydrogen economy. Hydrogen production technologies are commercially available while some of these technologies are still under development. This paper reviews the hydrogen production technologies from both fossil and non-fossil fuels such as (steam reforming partial oxidation auto thermal pyrolysis and plasma technology). Additionally water electrolysis technology was reviewed. Water electrolysis can be combined with the renewable energy to get eco-friendly technology. Currently the maximum hydrogen fuel productions were registered from the steam reforming gasification and partial oxidation technologies using fossil fuels. These technologies have different challenges such as the total energy consumption and carbon emissions to the environment are still too high. A novel non-fossil fuel method [ammonia NH3] for hydrogen production using plasma technology was reviewed. Ammonia decomposition using plasma technology without and with a catalyst to produce pure hydrogen was considered as compared case studies. It was showed that the efficiency of ammonia decomposition using the catalyst was higher than ammonia decomposition without the catalyst. The maximum hydrogen energy efficiency obtained from the developed ammonia decomposition system was 28.3% with a hydrogen purity of 99.99%. The development of ammonia decomposition processes is continues for hydrogen production and it will likely become commercial and be used as a pure hydrogen energy source.
Energy-Efficient Distributed Carbon Capture in Hydrogen Production from Natural Gas
Apr 2011
Publication
Lowering the energy penalty associated with CO2 capture is one of the key issues of Carbon Capture and Storage (CCS) technologies. The efficiency of carbon capture must be improved to reduce the energy penalty because capture stage is the most energy-consuming stage in the entire process of CCS. Energy-efficient distributed carbon capture in hydrogen production has been demonstrated with an advanced membrane reformer system. We have already developed and operated an advanced 40 Nm3 /h-class membrane reformer system and demonstrated its high hydrogen production efficiency of 81.4% (HHV) which is the world highest efficiency in terms of hydrogen production from natural gas. The system has another significant feature that the CO2 concentration in the reactor off-gas is as high as 70~90% and CO2 can be liquefied and separated easily with little energy loss. An apparatus for CO2 capture was combined to the membrane reformer system and over 90% of CO2 in the reactor off-gas was captured by cryogenic separation. The total energy efficiency of hydrogen production even with CO2 capture was still as high as 78.6% (HHV) which is 510% higher than the conventional reforming technologies. The total CO2 emission from hydrogen production was decreased by 50% with only a 3% energy loss. A sensitivity analysis was also carried out to evaluate the effects of the operating conditions of the system on hydrogen production efficiency and CO2 reduction rate.
Techno-Economic Analysis of a Novel Hydrogen-Based Hybrid Renewable Energy System for Both Grid-Tied and Off-Grid Power Supply in Japan: The Case of Fukushima Prefecture
Jun 2020
Publication
After the Great East Japan Earthquake energy security and vulnerability have become critical issues facing the Japanese energy system. The integration of renewable energy sources to meet specific regional energy demand is a promising scenario to overcome these challenges. To this aim this paper proposes a novel hydrogen-based hybrid renewable energy system (HRES) in which hydrogen fuel can be produced using both the methods of solar electrolysis and supercritical water gasification (SCWG) of biomass feedstock. The produced hydrogen is considered to function as an energy storage medium by storing renewable energy until the fuel cell converts it to electricity. The proposed HRES is used to meet the electricity demand load requirements for a typical household in a selected residential area located in Shinchi-machi in Fukuoka prefecture Japan. The techno-economic assessment of deploying the proposed systems was conducted using an integrated simulation-optimization modeling framework considering two scenarios: (1) minimization of the total cost of the system in an off-grid mode and (2) maximization of the total profit obtained from using renewable electricity and selling surplus solar electricity to the grid considering the feed-in-tariff (FiT) scheme in a grid-tied mode. As indicated by the model results the proposed HRES can generate about 47.3 MWh of electricity in all scenarios which is needed to meet the external load requirement in the selected study area. The levelized cost of energy (LCOE) of the system in scenarios 1 and 2 was estimated at 55.92 JPY/kWh and 56.47 JPY/kWh respectively
CFD Simulation of Pressure Reduction Inside Large-scale Liquefied Hydrogen Tank
Sep 2021
Publication
Building the international hydrogen supply chain requires the large-scale liquefied hydrogen(LH2) carrier. During shipping LH2 with LH2 Carrier the tank is pressurized by LH2 evaporation due to heat ingress from outside. Before unloading LH2 at the receiving terminal reducing the tank pressure is essential for the safe tank operation. However pressure reduction might cause flashing leading to rapid vaporization of liquefied hydrogen liquid leakage. Moreover it was considered that pressure recovery phenomenon which was not preferred in terms of tank pressure management occurred at the beginning of pressure reduction. Hence the purpose of our research is to clarify the phenomenon inside the cargo tank during pressure reduction. The CFD analysis of the pressure reduction phenomenon was conducted with the VOF based in-house CFD code utilizing the C-CUP scheme combined with the hybrid Level Set and MARS method. In our previous research the pressure reduction experiments with the 30 m³ LH2 tank were simulated and the results showed that the pressure recovery was caused by the boiling delay and the tank pressure followed the saturation pressure after the liquid was fully stirred. In this paper the results were re-evaluated in terms of temperature. While pressure reduction was dominant the temperature of vapor-liquid interface decreased. Once the boiling bubble stirred the interface its temperature reached the saturation temperature after pressure recovery occurred. Moreover it was found that the liquid temperature during pressure reduction could not be measured because of the boiling from the wall of the thermometer. The CFD analysis on pressure reduction of 1250 m³ tank for the LH2 Carrier was also very could occur in the case of the 1250 m³ tank in a certain condition. These results provide new insight into the development of the LH2 carrier.
Study on Introduction of CO2 Free Energy to Japan with Liquid Hydrogen
Jul 2015
Publication
In Japan both CO2 (Carbon dioxide) emission reduction and energy security are the very important social issues after Fukushima Daiichi accident. On the other hand FCV (Fuel Cell Vehicle) using hydrogen will be on the market in 2015. Introducing large mass hydrogen energy is being expected as expanding hydrogen applications or solution to energy issues of Japan. And then the Japanese government announced the road map for introducing hydrogen energy supply chain in this June2014. Under these circumstances imported CO2 free hydrogen will be one of the solutions for energy security and CO2 reduction if the hydrogen price is affordable. To achieve this Kawasaki Heavy Industries Ltd. (KHI) performed a feasibility study on CO2-free hydrogen energy supply chain from Australian brown coal linked with CCS (Carbon dioxide Capture and Storage) to Japan. In the study hydrogen production systems utilizing brown coal gasification and LH2 (liquid hydrogen) systems as storing and transporting hydrogen are examined. This paper shows the possibility of realizing the CO2 free hydrogen supply chain the cost breakdown of imported hydrogen cost its cost competitiveness with conventional fossil and LH2 systems as key technologies of the hydrogen energy chain.
Precooling Temperature Relaxation Technology in Hydrogen Refueling for Fuel-Cell Vehicles
Aug 2021
Publication
The dissemination of fuel-cell vehicles requires cost reduction of hydrogen refueling stations. The temperature of the supplied hydrogen has currently been cooled to approximately 40 C. This has led to larger equipment and increased electric power consumption. This study achieves a relaxation of the precooling temperature to the 20 C level while maintaining the refueling time. (1) Adoption of an MC formula that can flexibly change the refueling rate according to the precooling temperature. (2) Measurement of thermal capacity of refueling system parts and re-evaluation. Selection from multiple refueling control maps according to the dispenser design (Mathison et al. 2015). (3) Calculation of the effective thermal capacity and reselection of the map in real time when the line is cooled from refueling of the previous vehicle (Mathison and Handa 2015). (4) Addition of maps in which the minimum assumed pressures are 10 and 15 MPa. The new method is named MC Multi Map
Greedy Energy Management Strategy and Sizing Method for a Stand-alone Microgrid with Hydrogen Storage
Nov 2021
Publication
This paper presents a greedy energy management strategy based on model predictive control (MPC) for a stand-alone microgrid powered by photovoltaic (PV) arrays and equipped with batteries and a power-to-hydrogen-to-power (P2H2P) system. The proposed strategy consists of a day-ahead plan and an intra-day dispatch method. In the planning stage the sequence of plan is to determine the power of each storage device for a certain period which is initially generated under the principle that PV arrays have the highest priority followed by the batteries and finally the P2H2P system using short-term forecast data of both load and solar irradiance. The initial plan can be optimized with objectives of harvesting more PV generation in storage and minimizing unmet load through rescheduling P2H2P system and batteries. Three parameters including reserved capacity of batteries predischarge coefficient of fuel cell (FC) and greedy coefficient of electrolyzer (EL) are introduced during plan optimization process to enhance the robustness against forecast errors. In the dispatching stage the energy dispatch is subject to the scheduled plan and the operational constraints. To demonstrate the capabilities of the proposed strategy a case study is performed for a hotel with a mean power consumption of 1567 kWh/day based on the system configuration optimized by HOMER software in comparison with the load following (LF) strategy and the global optimum solution solved by mixed integer linear programing (MILP). The simulation results show that the annual unmet load using the proposed strategy is reduced from 13434 kWh to 2370 kWh which is 528 kWh lower than the optimum solution. Meanwhile the cost of energy (COE) of the proposed strategy decreases by US$ 0.08/kWh compared to the LF strategy and is equal to the optimum solution. Finally the performance of configuration optimization employing genetic algorithm (GA) under different energy management strategies is investigated with the objective function of minimizing the net present cost (NPC). Furthermore the robustness of the proposed strategy is studied. The results show that the proposed strategy gives an NPC and COE of US$ 2.4 million (Mn) and US$ 0.43/kWh which are 23.4% and 9.7% lower than those of systems utilizing the SoC-based strategy and the LF strategy respectively. The results also demonstrate that the strategy is robust against forecast errors especially for overestimated forecast models.
Simulation of Hydrogen Mixing and Par Operation During Accidental Release in an LH2 Carrier Engine Room
Sep 2021
Publication
Next-generation LH2 carriers may use the boil-off gas from the cargo tanks as additional fuel for the engine. As a consequence hydrogen pipes will enter the room of the ship’s propulsion system and transport hydrogen to the main engine. The hydrogen distribution resulting from a postulated hydrogen leak inside the room of the propulsion system has been analyzed by means of Computational Fluid Dynamics (CFD). In a subsequent step simulations with passive auto-catalytic recombiners (PARs) were carried out in order to investigate if the recombiners can increase the safety margins during such accident scenarios. CFD enables a 3D prediction of the transient distribution with a high resolution allowing to identify local accumulation of hydrogen and consequently to identify optimal PAR positions as well as to demonstrate the efficiency of the PARs. The simulation of the unmitigated reference case reveals a strong natural circulation driven by the density difference of hydrogen and the incoming cold air from the ventilation system. Globally this natural circulation dilutes the hydrogen and removes a considerable amount from the room of the ship’s propulsion system via the ventilation ducts. However a hydrogen accumulation beyond the flammability limit is identified below the first ceiling above the leak position and the back-side wall of the engine room. Based on these findings suitable positions for recombiners were identified. The design objectives of the PAR system were on the one hand to provide both high instantaneous and integral removal rate and on the other hand to limit build-up of flammable clouds by means of depletion and PAR induced mixing processes. The simulations performed with three different PAR arrangements (variation of large and<br/>small PAR units at different positions) confirm that the PARs reduce efficiently the hydrogen<br/>accumulations.
Thermodynamic Assessment of a Solar-Driven Integrated Membrane Reactor for Ethanol Steam Reforming
Nov 2020
Publication
To efficiently convert and utilize intermittent solar energy a novel solar-driven ethanol steam reforming (ESR) system integrated with a membrane reactor is proposed. It has the potential to convert low-grade solar thermal energy into high energy level chemical energy. Driven by chemical potential hydrogen permeation membranes (HPM) can separate the generated hydrogen and shift the ESR equilibrium forward to increase conversion and thermodynamic efficiency. The thermodynamic and environmental performances are analyzed via numerical simulation under a reaction temperature range of 100–400 ◦C with permeate pressures of 0.01–0.75 bar. The highest theoretical conversion rate is 98.3% at 100 ◦C and 0.01 bar while the highest first-law efficiency solar-to-fuel efficiency and exergy efficiency are 82.3% 45.3% and 70.4% at 215 ◦C and 0.20 bar. The standard coal saving rate (SCSR) and carbon dioxide reduction rate (CDRR) are maximums of 101 g·m−2 ·h −1 and 247 g·m−2 ·h −1 at 200 ◦C and 0.20 bar with a hydrogen generation rate of 22.4 mol·m−2 ·h −1 . This study illustrates the feasibility of solar-driven ESR integrated with a membrane reactor and distinguishes a novel approach for distributed hydrogen generation and solar energy utilization and upgradation.
Effect of Flow Speed on Ignition Characteristics of Hydrogen/air Mixtures
Sep 2021
Publication
A fuel cell vehicle has a purging system for exhausting contaminated hydrogen gas. Notwithstanding the allowable hydrogen emissions levels in the purging system are regulated by the GTR a further research on the safety requirement of emissions concentrations is therefore needed for the vehicle design into a more rational system. In the present study the effects of flow speed concentration humidity on ignition characteristics of hydrogen/air mixtures were experimentally investigated. The results demonstrate that the value of Lower Flammable Limit increased with an increase in the velocity of hydrogen/air mixtures and slightly increased with a decrease in oxygen concentration.
Economic Dispatch Model of Nuclear High-Temperature Reactor with Hydrogen Cogeneration in Electricity Market
Dec 2021
Publication
Hydrogen produced without carbon emissions could be a useful fuel as nations look to decarbonize their electricity transport and industry sectors. Using the iodine–sulfur (IS) cycle coupled with a nuclear heat source is one method for producing hydrogen without the use of fossil fuels. An economic dispatch model was developed for a nuclear-driven IS system to determine hydrogen sale prices that would make such a system profitable. The system studied is the HTTR GT/H2 a design for power and hydrogen cogeneration at the Japan Atomic Energy Agency’s High Temperature Engineering Test Reactor. This study focuses on the development of the economic model and the role that input data plays in the final calculated values. Using a historical price duration curve shows that the levelized cost of hydrogen (LCOH) or breakeven sale price of hydrogen would need to be 98.1 JPY/m3 or greater. Synthetic time histories were also used and found the LCOH to be 67.5 JPY/m3 . The price duration input was found to have a significant effect on the LCOH. As such great care should be used in these economic dispatch analyses to select reasonable input assumptions.
Numerical Analysis on the Mechanism of Blast Mitigation by Water Droplets
Sep 2021
Publication
Hydrogen has a high risk of ignition owing to its extremely low ignition energy and wide range of flammability. Therefore acquiring parameters relating to safe usage is of particular interest. The ignition of hydrogen generates combustion processes such as detonation and deflagration which may produce a blast wave. The severity of injuries sustained from a blast wave is determined by its strength. To reduce the physical hazards caused by explosion there is a need for some concepts for attenuating explosions and blast waves. In the present study we used water droplets as a material to reduce the blast wave strength. Numerical analysis of the interaction between blast waves and water droplets in a shock tube was conducted to understand the mitigation mechanism of blast wave. In this report we numerically modelled the experiment conducted by Mataradze et al. [1] to understand the main factor of blast mitigation by water droplets. In order to quantitatively clarify the mitigation effect of water droplets on the blast wave especially by quasi-steady drag here we conducted parameter studies on water droplet sprayed region. From this calculation it was suggested that the location of water droplet sprayed layer did not affect the blast mitigation effect at far side of the high explosives.
Fundamentals, Materials, and Machine Learning of Polymer Electrolyte Membrane Fuel Cell Technology
Jun 2020
Publication
Polymer electrolyte membrane (PEM) fuel cells are electrochemical devices that directly convert the chemical energy stored in fuel into electrical energy with a practical conversion efficiency as high as 65%. In the past years significant progress has been made in PEM fuel cell commercialization. By 2019 there were over 19000 fuel cell electric vehicles (FCEV) and 340 hydrogen refueling stations (HRF) in the U.S. (~8000 and 44 respectively) Japan (~3600 and 112 respectively) South Korea (~5000 and 34 respectively) Europe (~2500 and 140 respectively) and China (~110 and 12 respectively). Japan South Korea and China plan to build approximately 3000 HRF stations by 2030. In 2019 Hyundai Nexo and Toyota Mirai accounted for approximately 63% and 32% of the total sales with a driving range of 380 and 312 miles and a mile per gallon (MPGe) of 65 and 67 respectively. Fundamentals of PEM fuel cells play a crucial role in the technological advancement to improve fuel cell performance/durability and reduce cost. Several key aspects for fuel cell design operational control and material development such as durability electrocatalyst materials water and thermal management dynamic operation and cold start are briefly explained in this work. Machine learning and artificial intelligence (AI) have received increasing attention in material/energy development. This review also discusses their applications and potential in the development of fundamental knowledge and correlations material selection and improvement cell design and optimization system control power management and monitoring of operation health for PEM fuel cells along with main physics in PEM fuel cells for physics-informed machine learning. The objective of this review is three fold: (1) to present the most recent status of PEM fuel cell applications in the portable stationary and transportation sectors; (2) to describe the important fundamentals for the further advancement of fuel cell technology in terms of design and control optimization cost reduction and durability improvement; and (3) to explain machine learning physics-informed deep learning and AI methods and describe their significant potentials in PEM fuel cell research and development (R&D).
Economic Analysis of a Photovoltaic Hydrogen Refueling Station Based on Hydrogen Load
Sep 2023
Publication
With the goal of achieving “carbon peak in 2030 and carbon neutrality in 2060” as clearly proposed by China the transportation sector will face long–term pressure on carbon emissions and the application of hydrogen fuel cell vehicles will usher in a rapid growth period. However true “zero carbon” emissions cannot be separated from “green hydrogen”. Therefore it is of practical significance to explore the feasibility of renewable energy hydrogen production in the context of hydrogen refueling stations especially photovoltaic hydrogen production which is applied to hydrogen refueling stations (hereinafter referred to “photovoltaic hydrogen refueling stations”). This paper takes a hydrogen refueling station in Shanghai with a supply capacity of 500 kg/day as the research object. Based on a characteristic analysis of the hydrogen demand of the hydrogen refueling station throughout the day this paper studies and analyzes the system configuration operation strategy environmental effects and economics of the photovoltaic hydrogen refueling station. It is estimated that when the hydrogen price is no less than 6.23 USD the photovoltaic hydrogen refueling station has good economic benefits. Additionally compared with the conventional hydrogen refueling station it can reduce carbon emissions by approximately 1237.28 tons per year with good environmental benefits.
Phasing Out Steam Methane Reformers with Water Electrolysis in Producing Renewable Hydrogen and Ammonia: A Case Study Based on the Spanish Energy Markets
Jul 2023
Publication
Deploying renewable hydrogen presents a significant challenge in accessing off-takers who are willing to make long-term investments. To address this challenge current projects focus on large-scale deployment to replace the demand for non-renewable hydrogen particularly in ammonia synthesis for fertiliser production plants. The traditional process involving Steam Methane Reformers (SMR) connected to Haber-Bosch synthesis could potentially transition towards decarbonisation by gradually integrating water electrolysis. However the coexistence of these processes poses limitations in accommodating the integration of renewable hydrogen thereby creating operational challenges for industrial hubs. To tackle this issue this paper proposes an optimal dispatch model for producing green hydrogen and ammonia while considering the coexistence of different processes. Furthermore the objective is to analyse external factors that could determine the appropriate regulatory and pricing framework to facilitate the phase-out of SMR in favour of renewable hydrogen production. The paper presents a case study based in Spain utilising data from 2018 2022 and 2030 perspectives on the country's renewable resources gas and electricity wholesale markets pricing ranges and regulatory constraints to validate the model. The findings indicate that carbon emissions taxation and the availability and pricing of Power Purchase Agreements (PPAs) will play crucial roles in this transition - the carbon emission price required for total phasing out SMR with water electrolysis would be around 550 EUR/ton CO2.
Selected Materials and Technologies for Electrical Energy Sector
Jun 2023
Publication
Ensuring the energy transition in order to decrease CO2 and volatile organic compounds emissions and improve the efficiency of energy processes requires the development of advanced materials and technologies for the electrical energy sector. The article reviews superconducting materials functional nanomaterials used in the power industry mainly due to their magnetic electrical optical and dielectric properties and the thin layers of amorphous carbon nitride which properties make them an important material from the point of view of environmental protection optoelectronic photovoltaic and energy storage. The superconductivity-based technologies material processing and thermal and nonthermal plasma generation have been reviewed as technologies that can be a solution to chosen problems in the electrical energy sector and environment. The study explains directly both—the basics and application potential of low and high-temperature superconductors as well as peculiarities of the related manufacturing technologies for Roebel cables 1G and 2G HTS tapes and superconductor coil systems. Among the superconducting materials particular attention was paid to the magnesium di-boride MgB2 and its potential applications in the power industry. The benefits of the use of carbon films with amorphous structures in electronics sensing technologies solar cells FETs and memory devices were discussed. The article provides the information about most interesting from the R&D point of view groups of materials for PV applications. It summarises the advantages and disadvantages of their use regarding commercial requirements such as efficiency lifetime light absorption impact on the environment costs of production and weather dependency. Silicon processing inkjet printing vacuum deposition and evaporation technologies that allow obtaining improved and strengthened materials for solar cell manufacturing are also described. In the case of the widely developed plasma generation field waste-to-hydrogen technology including both thermal and non-thermal plasma techniques has been discussed. The review aims to draw attention to the problems faced by the modern power industry and to encourage research in this area because many of these problems can only be solved within the framework of interdisciplinary and international cooperation.
Accelerating the Green Hydrogen Revolution: A Comprehensive Analysis of Technological Advancements and Policy Interventions
Apr 2024
Publication
Promoting green hydrogen has emerged as a pivotal discourse in the contemporary energy landscape driven by pressing environmental concerns and the quest for sustainable energy solutions. This paper delves into the multifaceted domain of C-Suite issues about green hydrogen encompassing both technological advancements and policy considerations. The question of whether green hydrogen is poised to become the focal point of the upcoming energy race is explored through an extensive analysis of its potential as a clean and versatile energy carrier. The transition from conventional fossil fuels to green hydrogen is considered a fundamental shift in energy paradigms with far-reaching implications for global energy markets. The paper provides a comprehensive overview of state-of-the-art green hydrogen technologies including fuel cells photocatalysts photo electrocatalysts and hydrogen panels. In tandem with technological advancements the role of policy and strategy in fostering the development of green hydrogen energy assumes paramount significance. The paper elucidates the critical interplay between government policies market dynamics and corporate strategies in shaping the green hydrogen landscape. It delves into policy mechanisms such as subsidies carbon pricing and renewable energy mandates shedding light on their potential to incentivize the production and adoption of green hydrogen. This paper offers a nuanced exploration of C-Suite issues surrounding green hydrogen painting a comprehensive picture of the technological and policy considerations that underpin its emergence as a transformative energy source. As the global community grapples with the imperatives of climate change mitigation and the pursuit of sustainable energy solutions understanding these issues becomes imperative for executives policymakers and stakeholders alike.
Future Swiss Energy Economy: The Challenge of Storing Renewable Energy
Feb 2022
Publication
Fossil fuels and materials on Earth are a finite resource and the disposal of waste into the air on land and into water has an impact on our environment on a global level. Using Switzerland as an example the energy demand and the technical challenges and the economic feasibility of a transition to an energy economy based entirely on renewable energy were analyzed. Three approaches for the complete substitution of fossil fuels with renewable energy from photovoltaics called energy systems (ES) were considered i.e. a purely electric system with battery storage (ELC) hydrogen (HYS) and synthetic hydrocarbons (HCR). ELC is the most energy efficient solution; however it requires seasonal electricity storage to meet year-round energy needs. Meeting this need through batteries has a significant capital cost and is not feasible at current rates of battery production and expanding pumped hydropower to the extent necessary will have a big impact on the environment. The HYS allows underground hydrogen storage to balance seasonal demand but requires building of a hydrogen infrastructure and applications working with hydrogen. Finally the HCR requires the largest photovoltaic (PV) field but the infrastructure and the applications already exist. The model for Switzerland can be applied to other countries adapting the solar irradiation the energy demand and the storage options.
Advances in Hydrogen Storage Materials: Harnessing Innovative Technology, from Machine Learning to Computational Chemistry, for Energy Storage Solutions
Mar 2024
Publication
The demand for clean and sustainable energy solutions is escalating as the global population grows and economies develop. Fossil fuels which currently dominate the energy sector contribute to greenhouse gas emissions and environmental degradation. In response to these challenges hydrogen storage technologies have emerged as a promising avenue for achieving energy sustainability. This review provides an overview of recent advancements in hydrogen storage materials and technologies emphasizing the importance of efficient storage for maximizing hydrogen’s potential. The review highlights physical storage methods such as compressed hydrogen (reaching pressures of up to 70 MPa) and material-based approaches utilizing metal hydrides and carboncontaining substances. It also explores design considerations computational chemistry high-throughput screening and machine-learning techniques employed in developing efficient hydrogen storage materials. This comprehensive analysis showcases the potential of hydrogen storage in addressing energy demands reducing greenhouse gas emissions and driving clean energy innovation.
Renewable Energy Pathways toward Accelerating Hydrogen Fuel Production: Evidence from Global Hydrogen Modeling
Dec 2022
Publication
Fossil fuel consumption has triggered worries about energy security and climate change; this has promoted hydrogen as a viable option to aid in decarbonizing global energy systems. Hydrogen could substitute for fossil fuels in the future due to the economic political and environmental concerns related to energy production using fossil fuels. However currently the majority of hydrogen is produced using fossil fuels particularly natural gas which is not a renewable source of energy. It is therefore crucial to increase the efforts to produce hydrogen from renewable sources rather from the existing fossil-based approaches. Thus this study investigates how renewable energy can accelerate the production of hydrogen fuel in the future under three hydrogen economy-related energy regimes including nuclear restrictions hydrogen and city gas blending and in the scenarios which consider the geographic distribution of carbon reduction targets. A random effects regression model has been utilized employing panel data from a global energy system which optimizes for cost and carbon targets. The results of this study demonstrate that an increase in renewable energy sources has the potential to significantly accelerate the growth of future hydrogen production under all the considered policy regimes. The policy implications of this paper suggest that promoting renewable energy investments in line with a fairer allocation of carbon reduction efforts will help to ensure a future hydrogen economy which engenders a sustainable low carbon society.
An Analysis of the Potential of Hydrogen Energy Technology on Demand Side Based on a Carbon Tax: A Case Study in Japan
Dec 2022
Publication
Hydrogen energy is considered one of the main measures of zero carbonization in energy systems but high equipment and hydrogen costs hinder the development of hydrogen energy technology. The objectives of this study are to quantify the environmental advantages of hydrogen energy through a carbon tax and study the application potential of hydrogen energy technology in a regional distributed energy system (RDES). In this study various building types in the smart community covered by Japan’s first hydrogen energy pipeline are used as an example. First ten buildings of five types are selected as the research objectives. Subsequently two comparative system models of a regional distributed hydrogen energy system (RDHES) and an RDES were established. Then by studying the optimal RDHES and RDES configuration and combining the prediction of future downward trends of fuel cell (FC) costs and energy carbon emissions the application effect of FC and hydrogen storage (HS) technologies on the demand side was analyzed. Finally the adaptability of the demand-side hydrogen energy system was studied by analyzing the load characteristics of different types of buildings. The results show that when the FC price is reduced to 1.5 times that of the internal combustion engine (ICE) the existing carbon tax system can sufficiently support the RDHES in gaining economic advantages in some regions. Notably when the carbon emissions of the urban energy system are reduced the RDHES demonstrates stronger anti-risk ability and has greater suitability for promotion in museums and shopping malls. The conclusions obtained in this study provide quantitative support for hydrogen energy promotion policies on the regional demand side and serve as a theoretical reference for the design and adaptability research of RDHESs.
A Systematic Review of the Techno-economic Assessment of Various Hydrogen Production Methods of Power Generation
Oct 2022
Publication
Hydrogen is a low or zero-carbon energy source that is considered the most promising and potential energy carrier of the future. In this study the energy sources feedstocks and various methods of hydrogen production from power generation are comparatively investigated in detail. In addition this study presents an economic assessment to evaluate cost-effectiveness based on different economic indicators including sensitivity analysis and uncertainty analysis. Proton exchange membrane fuel cell (PEMFCs) technology has the most potential to be developed compared to several other technologies. PEMFCs have been widely used in various fields and have advantages (i.e. start-up zero-emissions high power density). Among the various sources of uncertainty in the sensitivity analysis the cost estimation method shows inflationary deviations from the proposed cost of capital. This is due to the selection process and untested technology. In addition the cost of electricity and raw materials as the main factors that are unpredictable.
Transition Analysis of Budgetary Allocation for Projects on Hydrogen-Related Technologies in Japan
Oct 2020
Publication
Hydrogen technologies are promising candidates of new energy technologies for electric power load smoothing. However regardless of long-term public investment hydrogen economy has not been realized. In Japan the National Research and Development Institute of New Energy and Industrial Technology Development Organization (NEDO) a public research-funding agency has invested more than 200 billion yen in the technical development of hydrogen-related technologies. However hydrogen technologies such as fuel cell vehicles (FCVs) have not been disseminated yet. Continuous and strategic research and development (R&D) are needed but there is a lack of expertise in this field. In this study the transition of the budgetary allocations by NEDO were analyzed by classifying NEDO projects along the hydrogen supply chain and research stage. We found a different R&D focus in different periods. From 2004 to 2007 empirical research on fuel cells increased with the majority of research focusing on standardization. From 2008 to 2011 investment in basic research of fuel cells increased again the research for verification of fuel cells continued and no allocation for research on hydrogen production was confirmed. Thereafter the investment trend did not change until around 2013 when practical application of household fuel cells (ENE-FARM) started selling in 2009 in terms of hydrogen supply chain. Hydrogen economy requires a different hydrogen supply infrastructure that is an existing infrastructure of city gas for ENE-FARM and a dedicated infrastructure for FCVs (e.g. hydrogen stations). We discussed the possibility that structural inertia could prevent the transition to investing more in hydrogen infrastructure from hydrogen utilization technology. This work has significant implications for designing national research projects to realize hydrogen economy.
Reduction in Greenhouse Gas and Other Emissions from Ship Engines: Current Trends and Future Options
Nov 2022
Publication
The impact of ship emission reductions can be maximised by considering climate health and environmental effects simultaneously and using solutions fitting into existing marine engines and infrastructure. Several options available enable selecting optimum solutions for different ships routes and regions. Carbon-neutral fuels including low-carbon and carbon-negative fuels from biogenic or non-biogenic origin (biomass waste renewable hydrogen) could resemble current marine fuels (diesel-type methane and methanol). The carbon-neutrality of fuels depends on their Well-to-Wake (WtW) emissions of greenhouse gases (GHG) including carbon dioxide (CO2) methane (CH4) and nitrous oxide emissions (N2O). Additionally non-gaseous black carbon (BC) emissions have high global warming potential (GWP). Exhaust emissions which are harmful to health or the environment need to be equally removed using emission control achieved by fuel engine or exhaust aftertreatment technologies. Harmful emission species include nitrogen oxides (NOx) sulphur oxides (SOx) ammonia (NH3) formaldehyde particle mass (PM) and number emissions (PN). Particles may carry polyaromatic hydrocarbons (PAHs) and heavy metals which cause serious adverse health issues. Carbon-neutral fuels are typically sulphur-free enabling negligible SOx emissions and efficient exhaust aftertreatment technologies such as particle filtration. The combinations of carbon-neutral drop-in fuels and efficient emission control technologies would enable (near-)zero-emission shipping and these could be adaptable in the short- to mid-term. Substantial savings in external costs on society caused by ship emissions give arguments for regulations policies and investments needed to support this development.
Techno-Economic Analysis of Grid-Connected Hydrogen Production via Water Electrolysis
Mar 2024
Publication
As the global energy landscape transitions towards a more sustainable future hydrogen has emerged as a promising energy carrier due to its potential to decarbonize various sectors. However the economic competitiveness of hydrogen production by water electrolysis strongly depends on renewable energy source (RES) availability. Thus it is necessary to overcome the challenges related to the intermittent nature of RESs. This paper presents a comprehensive techno-economic analysis of complementing green hydrogen production with grid electricity. An evaluation model for the levelized cost of hydrogen (LCOH) is proposed considering both CO2 emissions and the influence of RES fluctuations on electrolyzers. A minimum load restriction is required to avoid crossover gas. Moreover a new operation strategy is developed for hydrogen production plants to determine optimal bidding in the grid electricity market to minimize the LCOH. We evaluate the feasibility of the proposed approach with a case study based on data from the Kyushu area in Japan. The results show that the proposed method can reduce the LCOH by 11% to 33% and increase hydrogen productivity by 86% to 140% without significantly increasing CO2 emission levels.
Influence of Renewable Energy Power Fluctuations on Water Electrolysis for Green Hydrogen Production
Nov 2022
Publication
The development of renewable energy technologies is essential to achieve carbon neutrality. Hydrogen can be stably stored and transported in large quantities to maximize power utilization. Detailed understanding of the characteristics and operating methods of water electrolysis technologies in which naturally intermittent fluctuating power is used directly is required for green hydrogen production because fluctuating power-driven water electrolysis processes significantly differ from industrial water electrolysis processes driven by steady grid power. Thus it is necessary to overcome several issues related to the direct use of fluctuating power. This article reviews the characteristics of fluctuating power and its generation as well as the current status and issues related to the operation conditions water electrolyzer configuration system requirements stack/catalyst durability and degradation mechanisms under the direct use of fluctuating power sources. It also provides an accelerated degradation test protocol method for fair catalyst performance comparison and share of effective design directions. Finally it discusses potential challenges and recommendations for further improvements in water electrolyzer components and systems suitable for practical use suggesting that a breakthrough could be realized toward the achievement of a sustainable hydrogen-based society.
Study of Heat Loss Mechanism in Argon-circulated Hydrogen Engine Combustion Chamber Wall Surface Conditions
Jul 2022
Publication
Hydrogen fuel in internal combustion engine gives a very big advantage to the transportation sector especially in solving the greenhouse emission problem. However there are only few research discovered the ability of argon as a working gas in hydrogen combustion in internal combustion engine. The high temperature rises from the argon compression tend to result in heat loss problem. This research aims to study the heat loss mechanism on wall surface condition in the combustion chamber. Experiments were conducted to study the effects of different heat flux sensor locations and the effect of ignition delay on heat flux. Local heat flux measurement was collected and images were observed using high speed shadowgraph images. The ignition delay that occurred near the combustion wall will result in larger heat loss throughout the combustion process. Higher ambient pressure results in a bigger amount of heat flux value. Other fundamental characteristics were obtained and discussed which may help in contributing the local heat loss data of an argon-circulated hydrogen engine in future engine operation.
Life Cycle Costing Approaches of Fuel Cell and Hydrogen Systems: A Literature Review
Apr 2023
Publication
Hydrogen is a versatile energy carrier which can be produced from variety of feedstocks stored and transported in various forms for multi-functional end-uses in transportation energy and manufacturing sectors. Several regional national and supra-national climate policy frameworks emphasize the need value and importance of Fuel cell and Hydrogen (FCH) technologies for deep and sector-wide decarbonization. Despite these multi-faceted advantages familiar and proven FCH technologies such as alkaline electrolysis and proton-exchange membrane fuel cell (PEMFC) often face economic technical and societal barriers to mass-market adoption. There is no single unified standardized and globally harmonized normative definition of costs. Nevertheless the discussion and debates surrounding plausible candidates and/or constituents integral for assessing the economics and value proposition of status-quo as well as developmental FCH technologies are steadily increasing—Life Cycle Costing (LCC) being one of them if not the most important outcome of such exercises.<br/>To that end this review article seeks to improve our collective understanding of LCC of FCH technologies by scrutinizing close to a few hundred publications drawn from representative databases—SCOPUS and Web of Science encompassing several tens of technologies for production and select transportation storage and end-user utilization cases. This comprehensive review forms part of and serves as the basis for the Clean Hydrogen Partnership funded SH2E project whose ultimate goal is the methodical development a formal set of principles and guardrails for evaluating the economic environmental and social impacts of FCH technologies. Additionally the SH2E projects will also facilitate the proper comparison of different FCH technologies whilst reconciling range of technologies methodologies modelling assumptions and parameterization found in existing literature.
Challenges Toward Achieving a Successful Hydrogen Economy in the US: Potential End-use and Infrastructure Analysis to the Year 2100
Jul 2022
Publication
Fossil fuels continue to exacerbate climate change due to large carbon emissions resulting from their use across a number of sectors. An energy transition away from fossil fuels seems inevitable and energy sources such as renewables and hydrogen may provide a low carbon alternative for the future energy system particularly in large emitting nations such as the United States. This research quantifies and maps potential hydrogen fuel distribution pathways for the continental US reflecting technological changes barriers to deployment and end-use-cases from 2020 to 2100 clarifying the potential role of hydrogen in the US energy transition. The methodology consists of two parts a linear optimization of the global energy system constrained by carbon reduction targets and system cost followed by a projection of hydrogen infrastructure development. Key findings include the emergence of trade pattern diversification with a greater variety of end-uses associated with imported fuels and greater annual hydrogen consumption over time. Further sensitivity analysis identified the influence of complementary technologies including nuclear power and carbon capture and storage technologies. We conclude that hydrogen penetration into the US energy system is economically viable and can contribute toward achieving Paris Agreement and more aggressive carbon reduction targets in the future.
Potential Domestic Energy System Vulnerabilities from Major Exports of Green Hydrogen: A Case Study of Australia
Aug 2023
Publication
Australia has clear aspirations to become a major global exporter of hydrogen as a replacement for fossil fuels and as part of the drive to reduce CO2 emissions as set out in the National Hydrogen Strategy released in 2019 jointly by the federal and state governments. In 2021 the Australian Energy Market Operator specified a grid forecast scenario for the first time entitled “hydrogen superpower”. Not only does Australia hope to capitalise on the emerging demand for zero-carbon hydrogen in places like Japan and South Korea by establishing a new export industry but it also needs to mitigate the built-in carbon risk of its export revenue from coal and LNG as major customers such as Japan and South Korea move to decarbonise their energy systems. This places hydrogen at the nexus of energy climate change mitigation and economic growth with implications for energy security. Much of the published literature on this topic concentrates on the details of what being a major hydrogen exporter will look like and what steps will need to be taken to achieve it. However there appears to be a gap in the study of the implications for Australia’s domestic energy system in terms of energy security and export economic vulnerability. The objective of this paper is to develop a conceptual framework for the implications of becoming a major hydrogen exporter on Australia’s energy system. Various green hydrogen export scenarios for Australia were compared and the most recent and comprehensive was selected as the basis for further examination for domestic energy system impacts. In this scenario 248.5 GW of new renewable electricity generation capacity was estimated to be required by 2050 to produce the additional 867 TWh required for an electrolyser output of 2088 PJ of green hydrogen for export which will comprise 55.9% of Australia’s total electricity demand at that time. The characteristics of comparative export-oriented resources and their interactions with the domestic economy and energy system are then examined through the lens of the resource curse hypothesis and the LNG and aluminium industries. These existing resource export frameworks are reviewed for applicability of specific factors to export-oriented green hydrogen production with applicable factors then compiled into a novel conceptual framework for exporter domestic implications from large-scale exports of green hydrogen. The green hydrogen export superpower (2050) scenario is then quantitatively assessed using the established indicators for energy exporter vulnerability and domestic energy security comparing it to Australia’s 2019 energy exports profile. This assessment finds that in almost all factors exporter vulnerability is reduced and domestic energy security is enhanced by the transition from fossil fuel exports to green hydrogen with the exception of an increase in exposure of the domestic energy system to international market forces.
Science and Technology of Ammonia Combustion
Nov 2018
Publication
This paper focuses on the potential use of ammonia as a carbon-free fuel and covers recent advances in the development of ammonia combustion technology and its underlying chemistry. Fulfilling the COP21 Paris Agreement requires the de-carbonization of energy generation through utilization of carbon-neutral and overall carbon-free fuels produced from renewable sources. Hydrogen is one of such fuels which is a potential energy carrier for reducing greenhouse-gas emissions. However its shipment for long distances and storage for long times present challenges. Ammonia on the other hand comprises 17.8% of hydrogen by mass and can be produced from renewable hydrogen and nitrogen separated from air. Furthermore thermal properties of ammonia are similar to those of propane in terms of boiling temperature and condensation pressure making it attractive as a hydrogen and energy carrier. Ammonia has been produced and utilized for the past 100 years as a fertilizer chemical raw material and refrigerant. Ammonia can be used as a fuel but there are several challenges in ammonia combustion such as low flammability high NOx emission and low radiation intensity. Overcoming these challenges requires further research into ammonia flame dynamics and chemistry. This paper discusses recent successful applications of ammonia fuel in gas turbines co-fired with pulverize coal and in industrial furnaces. These applications have been implemented under the Japanese ‘Cross-ministerial Strategic Innovation Promotion Program (SIP): Energy Carriers’. In addition fundamental aspects of ammonia combustion are discussed including characteristics of laminar premixed flames counterflow twin-flames and turbulent premixed flames stabilized by a nozzle burner at high pressure. Furthermore this paper discusses details of the chemistry of ammonia combustion related to NOx production processes for reducing NOx and validation of several ammonia oxidation kinetics models. Finally LES results for a gas-turbine-like swirl-burner are presented for the purpose of developing low-NOx single-fuelled ammonia gas turbine combustors.
An Improved State Machine-based Energy Management Strategy for Renewable Energy Microgrid with Hydrogen Storage System
Oct 2022
Publication
Renewable energy (solar and wind) sources have evolved dramatically in recent years around the globe primarily because they have the potential to generate environmentally friendly energy. However operating systems with high renewable energy penetration remain challenging due to the stochastic nature of these energy sources. To tackle these problems the authors propose a state machine-based energy management strategy combined with a hysteresis band control strategy for renewable energy hybrid microgrids that integrates hydrogen storage systems. By considering the power difference between the renewable energy source and the demand the battery’s state of charge and the hydrogen storage level the proposed energy management strategy can control the power of fuel cells electrolyzers and batteries in a microgrid and the power imported into/exported from the main grid. The results showed that the energy management strategy provides the following advantages: (1) the power supply and demand balance in the microgrid was balanced (2) the lifespans of the electrolyzer and fuel cell were extended and (3) the state of charge of the battery and the stored level of the hydrogen were appropriately ensured.
Design of a Hydrogen Production System Considering Energy Consumption, Water Consumption, CO2 Emissions and Cost
Oct 2022
Publication
CO2 emissions associated with hydrogen production can be reduced replacing steam methane reforming with electrolysis using renewable electricity with a trade-off of increasing energy consumption water consumption and cost. In this research a linear programming optimization model of a hydrogen production system that considers simultaneously energy consumption water consumption CO2 emissions and cost on a cradle-to-gate basis was developed. The model was used to evaluate the impact of CO2 intensity on the optimum design of a hydrogen production system for Japan considering different stakeholders’ priorities. Hydrogen is produced using steam methane reforming and electrolysis. Electricity sources include grid wind solar photovoltaic geothermal and hydro. Independent of the stakeholders’ priorities steam methane reforming dominates hydrogen production for cradle-to-gate CO2 intensities larger than 9 kg CO2/kg H2 while electrolysis using renewable electricity dominates for lower cradle-to-gate CO2 intensities. Reducing the cradle-to-gate CO2 intensity increases energy consumption water consumption and specific cost of hydrogen production. For a cradle-to-gate CO2 intensity of 0 kg CO2/kg H2 the specific cost of hydrogen production varies between 8.81 and 13.6 USD/kg H2; higher than the specific cost of hydrogen production targeted by the Japanese government in 2030 of 30 JPY/Nm3 3.19 USD/kg H2.
Novel Ways for Hydrogen Production Based on Methane Steam and Dry Reforming Integrated with Carbon Capture
Sep 2022
Publication
The combination of methane steam reforming technology and CCS (Carbon Capture and Storage) technology has great potential to reduce carbon emissions in the process of hydrogen production. Different from the traditional idea of capturing CO2 (Carbon Dioxide) in the exhaust gas with high work consumption this study simultaneously focuses on CO2 separation from fuel gas and recycling. A new hydrogen production system is developed by methane steam reforming coupled with carbon capture. Separated and captured high-purity carbon dioxide could be recycled for methane dry reforming; on this basis a new methane-dry-reforming-driven hydrogen production system with a carbon dioxide reinjection unit is innovatively proposed. In this study the energy flow and irreversible loss in the two newly developed systems are analyzed in detail through energy and exergy balance analysis. The advantages are explored from the perspective of hydrogen production rate natural gas consumption and work consumption. In addition in consideration of the integrated performance an optimal design analysis was conducted. In terms of hydrogen production the new system based on dry reforming is better with an advantage of 2.41%; however it is worth noting that the comprehensive thermal performance of the new steam reforming system is better reaching 10.95%. This study provides new ideas for hydrogen production from a low carbon emission perspective and also offers a new direction for future distributed energy system integration.
Impact of Hydrogen Mixture on Fuel Consumption and Exhaust Gas Emissions in a Truck with Direct‑Injection Diesel Engine
May 2023
Publication
Hydrogen addition affects the composition of exhaust gases in vehicles. However the effects of hydrogen addition to compression ignition engines in running vehicles have not been evaluated. Hydrogen‑mixed air was introduced into the air intake of a truck equipped with a direct‑ injection diesel engine and running on a chassis dynamometer to investigate the effect of hydrogen addition on fuel consumption and exhaust gas components. The reduction in diesel consumption and the increase in hydrogen energy share (HES) showed almost linear dependence where the percentage decrease in diesel consumption is approximately 0.6 × HES. The percentage reduction of CO2 showed a one‑to‑one relationship to the reduction in diesel consumption. The reduction in emissions of CO PM and hydrocarbons (except for ethylene) had one to one or a larger correlation with the reduction of diesel consumption. On the other hand it was observed that NOx emissions increased and the percentage increase of NOx was 1.5~2.0 times that of HES. The requirement for total energy supply was more when hydrogen was added than for diesel alone. In the actual running mode only 50% of the energy of added hydrogen was used to power the truck. As no adjustments were made to the engine in this experiment a possible disadvantage that could be improved by adjusting the combustion conditions.
Experimental Characterization of the Operational Behavior of a Catalytic Recombiner for Hydrogen Mitigation
Sep 2023
Publication
One of the significant safety concerns in large-scale storage and transportation of liquefied (cryogenic) hydrogen (LH2) is the formation of flammable hydrogen/air mixtures after leakages during storage or transportation. Especially in maritime transportation hydrogen accumulations could occur within large and congested geometries. The installation of passive auto-catalytic recombiners (PARs) is a suitable mitigation measure for local areas where venting is insufficient or even impossible. Numerical models describing the operational behavior of PARs are required to allow for optimizing the location and assessing the efficiency of the mitigation measure. In the present study the operational behavior of a PAR with a compact design has been experimentally investigated. In order to obtain data for model validation an experimental program has been performed in the REKO-4 facility a 5.5 m³ vessel. The test procedure includes two phases steady-state and dynamic. The results provide insights into the hydrogen recombination rates and catalyst temperatures under different boundary conditions.
CO2 Effect on the Fatigue Crack Growth of X80 Pipeline Steel in Hydrogen-Enriched Natural Gas: Experiment vs Density Functional Theory Calculation
Sep 2023
Publication
The influence of hydrogen-enriched natural gas (HENG) and CO2 on the mechanical property of X80 pipeline steel were investigated via fatigue crack growth rate (FCGR) tests and density functional theory (DFT) calculations. The results show that the FCGR in H2 was slightly faster than that in HENG while it was slower than that in the N2/CO2/H2 mixtures. The enhanced FCGR by CO2 further increased with the increasing CO2 content. DFT calculation results show that the adsorbed CO2 on the iron surface significantly increased the migration rate of H atoms from surface to subsurface. This promotes the entry of hydrogen into the steel.
X-ray Absorpton Spectroscopy Study on Hydrogen Recombination Catalysts of Palladium Nanoparticles on Titanium Oxide under Wet Condition
Sep 2023
Publication
Hydrogen recombination catalyst is useful tool for reducing hydrogen in closed area. The catalyst is known to be poisoned under wet condition in long time use. The study is focused on the behavior of pre-oxidized Pd nanoparticle as the hard-used catalyst in high humidity environment by comparison of alumina and titanium oxide supports using in situ X-ray absorption spectroscopy technique. The reduction of surface oxide layer of Pd/TiO2 was promoted by water during hydrogen recombination although the reduction reaction of Pd/Al2O3 was inhibited by water.
Hydrogen Refueling Method for Heavy-duty FCV with Pressure Loss Compensation
Apr 2024
Publication
Current hydrogen stations are using a constant dispenser pressure ramp rate method. When a flow rate increases for heavy duty vehicle a large pressure loss occurs and it slows down refueling. This study developed a new method (cTPR method) that has the constant pressure ramp rate in the tank by compensating for the tube pressure loss without any feedback from the vehicle. A refueling simulation confirmed that a refueling was shortened − 49s with a lower ending gas temperature. Testing confirmed that the cTPR method can be realized simply by changing the control without any hardware modification.
Policy Design for Diffusing Hydrogen Economy and Its Impact on the Japanese Economy for Carbon Neutrality by 2050: Analysis Using the E3ME-FTT Model
Nov 2023
Publication
To achieve carbon neutrality in Japan by 2050 renewable energy needs to be used as the main energy source. Based on the constraints of various renewable energies the importance of hydrogen cannot be ignored. This study aimed to investigate the diffusion of hydrogen demand technologies in various sectors and used projections and assumptions to investigate the hydrogen supply side. By performing simulations with the E3ME-FTT model and comparing various policy scenarios with the reference scenario the economic and environmental impacts of the policy scenarios for hydrogen diffusion were analyzed. Moreover the impact of realizing carbon neutrality by 2050 on the Japanese economy was evaluated. Our results revealed that large-scale decarbonization via hydrogen diffusion is possible (90% decrease of CO2 emissions in 2050 compared to the reference) without the loss of economic activity. Additionally investments in new hydrogen-based and other low-carbon technologies in the power sector freight road transport and iron and steel industry can improve the gross domestic product (1.6% increase in 2050 compared to the reference) as they invoke economic activity and require additional employment (0.6% increase in 2050 compared to the reference). Most of the employment gains are related to decarbonizing the power sector and scaling up the hydrogen supply sector while a lot of job losses can be expected in the mining and fossil fuel industries.
No more items...