Japan
CO2-Free Hydrogen Supply Chain Project and Risk Assessment for the Safety Design
Sep 2013
Publication
We at Kawasaki Heavy Industries have proposed a "CO2-Free H2 supply chain" using abundant brown coal of Australian origin as the energy source. This chain will store CO2 generated during the process for producing hydrogen from brown coal in a project (Carbon Net) that the Australia Government is promoting. Thus Japan can import CO2-free hydrogen. The supply chain consists of the hydrogen production system the hydrogen transport/stora Read More
Materials Towards Carbon-free, Emission-free and Oil-free Mobility: Hydrogen Fuel-cell Vehicles—Now and in the Future
Jul 2010
Publication
In the past material innovation has changed society through new material-induced technologies adding a new value to society. In the present world engineers and scientists are expected to invent new materials to solve the global problem of climate change. For the transport sector the challenge for material engineers is to change the oil-based world into a sustainable world. After witnessing the recent high oil price and its adverse impact on the global Read More
Safety Design of Compressed Hydrogen Trailers with Composite Cylinders
Sep 2013
Publication
Compressed hydrogen is delivered by trailers in steel cylinders at 19.6 MPa in Japan. Kawasaki Heavy Industries Ltd. developed two compressed hydrogen trailers with composite cylinders in collaboration with JX Nippon Oil in a project of the New Energy and Industrial Technology Development Organization (NEDO).The first trailer which was the first hydrogen trailer with composite cylinder in Japan has 35 MPa cylinders and the second trailer has 45 M Read More
Effect of Expansion Ratio on Flame Acceleration During Hydrogen Fueled Gas Explosions
Sep 2019
Publication
A precise understanding of the flame turbulence induced by cellular instabilities is indispensable to perform an appropriate risk assessment of hydrogen fuelled gas explosion. In this research Darrieus Landau instability (DL instability) whose effect on gas explosion is remarkable was experimentally examined. The DL instability is essentially caused by a volumetric expansion of burned gas at flame front. Therefore in order to examine the effects of volum Read More
Effect of Hydrogen on Fatigue Limit of SCM435 Low-Alloy Steel
Dec 2019
Publication
The objective of this study is to gain a basic understanding of the effect of hydrogen on the fatigue limit. The material was a low-alloy steel modified to be sensitive to hydrogen embrittlement by heat treatment. A statistical fatigue test was carried out using smooth and deep-notched specimens at a loading frequency of 20 Hz. The environment was laboratory air and hydrogen gas. The hydrogen gas pressure was 0.1 MPa in gauge pressure. The fatigu Read More
Tokyo Gas’ Efforts Regarding Impact Assessment on Surroundings and Emergency Response Training
Sep 2017
Publication
In Japan 82 commercial Hydrogen Refuelling Stations (HRSs) were constructed as of March 1 2017 but few impact assessments have been reported on the surroundings at HRS. In addition as HRSs become more widespread the number of HRSs around narrow urban areas will also increase. Thus the necessity of impact assessments on the surroundings of HRSs is expected to increase. In order to confirm that the influence from our HRS is not problematic t Read More
Visualization of Auto-ignition Phenomenon Under the Controlled Burst Pressure
Oct 2015
Publication
A high-pressure hydrogen jet released into the air has the possibility of igniting in a tube without any ignition source. The mechanism of this phenomenon called spontaneous ignition is considered to be that hydrogen diffuses into the hot air caused by the shock wave from diaphragm rupture and the hydrogen-oxidizer mixed region is formed enough to start chemical reaction. Recently flow visualization studies on the spontaneous ignition process have be Read More
Numerical Prediction of Forced-ignition Limit in High-pressurized Hydrogen Jet Flow Through a Pinhole
Sep 2017
Publication
The numerical simulations on the high-pressure hydrogen jet are performed by using the unsteady three-dimensional compressible Navier-Stokes equations with multi-species conservation equations. The present numerical results show that the highly expanded hydrogen free jet observes and the distance between the Mach disc and the nozzle exit agrees well with the empirical equation. The time-averaged H2 concentration of the numerical simulati Read More
Proposal and Verification of Novel Fatigue Crack Propagation Simulation Method by Finite Element Method.
Dec 2018
Publication
In this paper we propose and verify a novel method to simulate crack propagation without propagating a crack by finite element method. We propose this method for elastoplastic analysis coupled with convection-diffusion. In the previous study we succeeded in performing elastoplastic analysis coupled with convection-diffusion of hydrogen for a material with a crack under tensile loading. This research extends the successful method to fatigue crack p Read More
Current Research and Development Activities on Fission Products and Hydrogen Risk after the Accident at Fukushima Daiiichi Nuclear Power Station
Jan 2015
Publication
After the Fukushima Daiichi nuclear power plant (NPP) accident new regulatory requirements were enforced in July 2013 and a backfit was required for all existing nuclear power plants. It is required to take measures to prevent severe accidents and mitigate their radiological consequences. The Regulatory Standard and Research Department Secretariat of Nuclear Regulation Authority (S/NRA/R) has been conducting numerical studies and experiment Read More
A Historical Analysis of Hydrogen Economy Research, Development, and Expectations, 1972 to 2020
Jan 2023
Publication
Global climate change concerns have pushed international governmental actions to reduce greenhouse gas emissions by adopting cleaner technologies hoping to transition to a more sustainable society. The hydrogen economy is one potential long-term option for enabling deep decarbonization for the future energy landscape. Progress towards an operating hydrogen economy is discouragingly slow despite global efforts to accelerate it. There are majo Read More
Simulation-based Safety Investigation of a Hydrogen Fueling Station with an On-site Hydrogen Production System Involving Methylcyclohexane
Jan 2017
Publication
Adequate safety measures are crucial for preventing major accidents at hydrogen fuelling stations. In particular risk analysis of the domino effect at hydrogen fuelling stations is essential because knock-on accidents are likely to intensify the consequences of a relatively small incident. Several risk assessment studies have focused on hydrogen fuelling stations but none have investigated accidental scenarios related to the domino effect at su Read More
Exploring the Capability of Mayenite (12CaO·7Al2O3) as Hydrogen Storage Material
Mar 2021
Publication
We utilized nanoporous mayenite (12CaO·7Al2O3) a cost-effective material in the hydride state (H−) to explore the possibility of its use for hydrogen storage and transportation. Hydrogen desorption occurs by a simple reaction of mayenite with water and the nanocage structure transforms into a calcium aluminate hydrate. This reaction enables easy desorption of H− ions trapped in the structure which could allow the use of this material in future p Read More
Rechargeable Proton Exchange Membrane Fuel Cell Containing an Intrinsic Hydrogen Storage Polymer
Oct 2020
Publication
Proton exchange membrane fuel cells (PEMFCs) are promising clean energy conversion devices in residential transportation and portable applications. Currently a high-pressure tank is the state-of-the-art mode of hydrogen storage; however the energy cost safety and portability (or volumetric hydrogen storage capacity) presents a major barrier to the widespread dissemination of PEMFCs. Here we show an ‘all-polymer type’ rechargeable PEMFC ( Read More
Magnesium Based Materials for Hydrogen Based Energy Storage: Past, Present and Future
Jan 2019
Publication
Volodymyr A. Yartys,
Mykhaylo V. Lototskyy,
Etsuo Akiba,
Rene Albert,
V. E. Antonov,
Jose-Ramón Ares,
Marcello Baricco,
Natacha Bourgeois,
Craig Buckley,
José Bellosta von Colbe,
Jean-Claude Crivello,
Fermin Cuevas,
Roman V. Denys,
Martin Dornheim,
Michael Felderhoff,
David M. Grant,
Bjørn Christian Hauback,
Terry D. Humphries,
Isaac Jacob,
Petra E. de Jongh,
Jean-Marc Joubert,
Mikhail A. Kuzovnikov,
Michel Latroche,
Mark Paskevicius,
Luca Pasquini,
L. Popilevsky,
Vladimir M. Skripnyuk,
Eugene I. Rabkin,
M. Veronica Sofianos,
Alastair D. Stuart,
Gavin Walker,
Hui Wang,
Colin Webb,
Min Zhu and
Torben R. Jensen
Magnesium hydride owns the largest share of publications on solid materials for hydrogen storage. The “Magnesium group” of international experts contributing to IEA Task 32 “Hydrogen Based Energy Storage” recently published two review papers presenting the activities of the group focused on magnesium hydride based materials and on Mg based compounds for hydrogen and energy storage. This review article not only overviews the lat Read More
Fundamental Study on Hydrogen Low-NOx Combustion Using Exhaust Gas Self-Recirculation
Jan 2022
Publication
Hydrogen is expected to be a next-generation energy source that does not emit carbon dioxide but when used as a fuel the issue is the increase in the amount of NOx that is caused by the increase in flame temperature. In this study we experimentally investigated NOx emissions rate when hydrogen was burned in a hydrocarbon gas burner which is used in a wide temperature range. As a result of the experiments the amount of NOx when burning Read More
Large-Scale Hydrogen Deflagrations and Detonations
Sep 2005
Publication
Large-scale deflagration and detonation experiments of hydrogen and air mixtures provide fundamental data needed to address accident scenarios and to help in the evaluation and validation of numerical models. Several different experiments of this type were performed. Measurements included flame front time of arrival (TOA) using ionization probes blast pressure heat flux high-speed video standard video and infrared video. The large-scale open-sp Read More
CFD Simulation on Diffusion of Leaked Hydrogen Caused by Vehicle Accident in Tunnels
Sep 2005
Publication
Hydrogen fuel cell vehicles are expected to come into widespread use in the near future. Accordingly many hydrogen carrying vehicles will begin to pass through tunnels. It is therefore important to predict whether risk from leaked hydrogen accidents in tunnels can be avoided. CFD simulation was carried out on diffusion of leaked hydrogen in tunnels. Three areas of tunnels were chosen for study. One is the typical longitudinal and lateral areas of tunnel Read More
A field explosion test of hydrogen-air mixtures
Sep 2005
Publication
This paper shows the experimental results and findings of field explosion tests conducted to obtain fundamental data concerning the explosion of hydrogen-air mixtures. A tent covered with thin plastic sheets was filled with hydrogen/air mixed gas and subsequently ignited by an electric-spark or explosives to induce deflagration and/or detonation. Several experiments with different concentrations and/or volumes of mixture were carried out. The static o Read More
Evaluation of Metal Materials for Hydrogen Fuel Stations
Sep 2005
Publication
Under government funded project: "Development for Safe Utilization and Infrastructure of Hydrogen" entrusted by New Energy and Industrial Technology Development Organization (NEDO) special material testing equipment with heavy walled pressure vessel under 45MPa gaseous hydrogen is facilitated. Tensile properties strain controlled low-cycle and high-cycle fatigue and fatigue crack growth tests on CrMo steel (SCM435 (JIS G 4105)) which will be appli Read More
Phenomena of Dispersion and Explosion of High Pressurized Hydrogen
Sep 2005
Publication
To make “Hydrogen vehicles and refuelling station systems” fit for public use research on hydrogen safety and designing mitigative measures are significant. For compact storage it is planned to store under high pressure (40MPa) at the refuelling stations so that the safety for the handling of high-pressurized hydrogen is essential. This paper describes the experimental investigation on the hypothetical dispersion and explosion of high-pressurized hydrog Read More
Influence of Temperature on the Fatigue Strength of Compressed Hydrogen Tanks for Vehicles
Sep 2009
Publication
The influence of environmental temperatures on the fatigue strength of compressed-hydrogen tanks for vehicles was investigated. The fatigue strength of Type-3 tanks was found to decrease in a low temperature environment and increase in a high-temperature environment. The Type-3 tank has been subjected to autofrettage to improve fatigue strength. The investigation clarified that the effect of autofrettage changes according to the environmental te Read More
Study of Hydrogen Diffusion and Deflagration in a Closed System
Sep 2007
Publication
A total of 12 ventilation experiments with various combinations of hydrogen release rates and ventilation speeds were performed in order to study how ventilation speed and release rate effect the hydrogen concentration in a closed system. The experiential facility was constructed out of steel plates and beams in the shape of a rectangular enclosure. The volume of the test facility was about 60m3. The front face of the enclosure was covered by a Read More
Overview of the New Combined Gasoline/Hydrogen Supply Station and Relevant Regulations in Japan
Sep 2007
Publication
When a hydrogen supply station is to be installed in Japan three fundamental laws must be taken into consideration: the High Pressure Gas Safety Law the Building Standards Law and the Fire Service Law. The High Pressure Gas Safety Law in particular regulates procedures for safety concerning hydrogen supply stations. This law came under review accompanying consideration of the potential utilization of fuel cell vehicles and hydrogen stations. At that ti Read More
Experimental Study of Hydrogen Release Accidents in a Vehicle Garage
Sep 2009
Publication
Storing a hydrogen fuel-cell vehicle in a garage poses a potential safety hazard because of the accidents that could arise from a hydrogen leak. A series of tests examined the risk involved with hydrogen releases and deflagrations in a structure built to simulate a one-car garage. The experiments involved igniting hydrogen gas that was released inside the structure and studying the effects of the deflagrations. The “garage” measured 2.72 m high 3.64 m wid Read More
A Safety Assessment of Hydrogen Supply Piping System by Use of FDS
Sep 2017
Publication
At least once air filling a piping from main hydrogen pipe line to an individual home end should be replaced with hydrogen gas to use the gas in the home. Special attention is required to complete the replacing operation safely because air and supplied hydrogen may generate flammable/explosive gas mixture in the piping. The most probable method to fulfill the task is that at first an inert gas is used to purge air from the piping and then hydrogen will be su Read More
Numerical Simulation of Hydrogen Explosion Tests with a Barrier Wall for Blast Mitigation
Sep 2005
Publication
We have investigated hydrogen explosion risk and its mitigation focusing on compact hydrogen refuelling stations in urban areas. In this study numerical analyses were performed of hydrogen blast propagation and the structural behaviour of barrier walls. Parametric numerical simulations of explosions were carried out to discover effective shapes for blast-mitigating barrier walls. The explosive source was a prismatic 5.27 m3 volume that contained 30 Read More
Safety Study of Hydrogen Supply Stations for the Review of High Pressure Gas Safety Law in Japan
Sep 2005
Publication
A safety study of gaseous hydrogen supply stations with 40MPa storage system is undertaken through a risk based approach. Accident scenarios are identified based on a generic model of hydrogen station. And risks of identified accident scenarios are estimated and evaluated comparing with risk acceptance criteria. Also safety measures for risk reduction are discussed. Especially for clearance distance it is proposed that the distance from Read More
Ammonia as Effective Hydrogen Storage: A Review on Production, Storage and Utilization
Jun 2020
Publication
Ammonia is considered to be a potential medium for hydrogen storage facilitating CO2-free energy systems in the future. Its high volumetric hydrogen density low storage pressure and stability for long-term storage are among the beneficial characteristics of ammonia for hydrogen storage. Furthermore ammonia is also considered safe due to its high auto ignition temperature low condensation pressure and lower gas density than air. Ammonia ca Read More
Strategies to Accelerate the Production and Diffusion of Fuel Cell Electric Vehicles: Experiences from California
Sep 2020
Publication
Fuel cell electric vehicles (FCEVs) can play a key role in accelerating the electrification of road transport. Specifically they offer longer driving ranges and shorter refuelling times relative to Battery Electric Vehicles (BEVs) while reducing needs for space-intensive public charging infrastructure. Although the maturity and market penetration of hydrogen is currently trailing batteries transport planners in several countries are looking to both technologies Read More
Drivers and Barriers to the Adoption of Fuel Cell Passenger Vehicles and Buses in Germany
Feb 2021
Publication
As policymakers and automotive stakeholders around the world seek to accelerate the electrification of road transport with hydrogen this study focuses on the experiences of Germany a world leader in fuel cell technology. Specifically it identifies and compares the drivers and barriers influencing the production and market penetration of privately-owned fuel cell electric passenger vehicles (FCEVs) and fuel cell electric buses (FCEBs) in public transit fleets. Read More
Sustainable Offshore Oil and Gas Fields Development: Techno-economic Feasibility Analysis of Wind–hydrogen–natural Gas Nexus
Jul 2021
Publication
Offshore oil and gas field development consumes quantities of electricity which is usually provided by gas turbines. In order to alleviate the emission reduction pressure and the increasing pressure of energy saving governments of the world have been promoting the reform of oil and gas fields for years. Nowadays environmentally friendly alternatives to provide electricity are hotspots such as the integration of traditional energy and renewable ene Read More
Co-production of Hydrogen and Power from Black Liquor Via Supercritical Water Gasification, Chemical Looping and Power Generation
Mar 2019
Publication
An integrated system to harvest efficiently the energy from the waste of pulp mill industry which is black liquor (BL) is proposed and evaluated. The proposed system consists of the supercritical water gasification (SCWG) of BL syngas chemical looping and power generation. To minimize the exergy loss throughout the system and to optimize the energy efficiency process design and integration is conducted by employing the principles of exergy recovery and Read More
Environmental and Socio-Economic Analysis of Naphtha Reforming Hydrogen Energy Using Input-Output Tables: A Case Study from Japan
Aug 2017
Publication
Comprehensive risk assessment across multiple fields is required to assess the potential utility of hydrogen energy technology. In this research we analyzed environmental and socio-economic effects during the entire life cycle of a hydrogen energy system using input-output tables. The target system included hydrogen production by naphtha reforming transportation to hydrogen stations and FCV (Fuel Cell Vehicle) refilling. The results indicated that 31% Read More
Hydrogen - A Sustainable Energy Carrier
Jan 2017
Publication
Hydrogen may play a key role in a future sustainable energy system as a carrier of renewable energy to replace hydrocarbons. This review describes the fundamental physical and chemical properties of hydrogen and basic theories of hydrogen sorption reactions followed by the emphasis on state-of-the-art of the hydrogen storage properties of selected interstitial metallic hydrides and magnesium hydride especially for stationary energy storage related Read More
Characterization of Hydrogen Transport Accidents in Japan Based on Network Theory
Sep 2019
Publication
Realizing the hydrogen economy in Japan entails a risk assessment of its domestic hydrogen supply especially hydrogen transport by road. The first step of the risk assessment is to characterize the hydrogen transport accidents from different energy carriers. However it is difficult to characterize the accidents because hydrogen transport systems have not been fully implemented in Japan. The aim of this study is to characterize the hydrogen transport ac Read More
Risk Identification for the Introduction of Advanced Science and Technology: A Case Study of a Hydrogen Energy System for Smooth Social Implementation
May 2020
Publication
A method of risk identification is developed by comparing existing and advanced technologies from the viewpoint of comprehensive social risk. First to analyze these values from a multifaceted perspective we constructed a questionnaire based on 24 individual values and 26 infrastructural values determined in a previous study. Seven engineering experts and six social science experts were then asked to complete the questionnaire to compare and anal Read More
Influence of hydraulic sequential tests on the burst strength of Type-4 compressed hydrogen containers
Sep 2019
Publication
One of the topics for the revision deliberation of GTR13 on hydrogen and fuel cell vehicles is the study of an appropriate initial burst pressure of the containers. The purpose of this study is to investigate the influence of the hydraulic sequential tests on the residual burst pressure in order to examine the appropriate initial burst pressure correlated with the provisions for the residual burst pressure at the Endof-Life (EOL). Specifically we evaluated a Read More
A Study of Decrease Burst Strength on Compressed-hydrogen Containers by Drop Test
Sep 2019
Publication
We investigate an appropriate initial burst pressure of compressed hydrogen containers that correlates with a residual burst pressure requirement at the end of life (EOL) and report an influence of hydraulic sequential tests on residual burst pressure. Results indicate that a container damage caused by a drop test during hydraulic sequential tests has a large influence on burst pressure. The container damage induced through hydraulic sequential tests is inve Read More
Fast Synthesis of TiNi by Mechanical Alloying and its Hydrogenation Properties
Mar 2019
Publication
Mechanical alloying is widely used for the synthesis of hydrogen storage materials. However amorphization and contamination triggered by long-time milling are serious drawbacks for obtaining efficient hydrogen storage. In this work short-time ball milling synthesis is explored for a representative hydride forming compound: TiNi. Through structural morphological and chemical characterizations we evidence that formation of TiNi is complete in only 20 min w Read More
Fabrication of CdS/β-SiC/TiO2 Tri-composites That Exploit Hole- and Electron-transfer Processes for Photocatalytic Hydrogen Production Under Visible Light
Dec 2017
Publication
In this work CdS/SiC/TiO2 tri-composite photocatalysts that exploit electron- and hole-transfer processes were fabricated using an easy two-step method in the liquid phase. The photocatalyst with a 1:1:1 M ratio of CdS/SiC/TiO2 exhibited a rate of hydrogen evolution from an aqueous solution of sodium sulfite and sodium sulfide under visible light of 137 μmol h−1 g−1 which is 9.5 times that of pure CdS. β-SiC can act as a sink for the photogenerated holes b Read More
Numerical investigation of hydrogen leakage from a high pressure tank and pipeline
Sep 2017
Publication
We numerically investigated high-pressure hydrogen leakage from facilities in storage and transportation phases. In storage phase assuming a tank placed in a hydrogen station we examined unsteady diffusion distance up to 100 ms after leakage. A series of simulations led us to develop an equation of unsteady hydrogen diffusion distance as a function of mass flow rate leakage opening diameter and tank pressure. These results helped us develop a safety Read More
Numerical Investigation of Hydrogen Leakage from a High Pressure Tank and its Explosion
Oct 2015
Publication
We numerically investigated the initial behaviour of leakage and diffusion from high-pressure hydrogen storage tank assumed in hydrogen station. First calculations are carried out to validate the present numerical approach and compare with the theoretical distribution of hydrogen mass fraction to the direction which is vertical to the jet direction in the case of hydrogen leaking out from the circular injection port whose diameter is 0.25 mm. Then Read More
The Spread of Fire from Adjoining Vehicles to a Hydrogen Fuel Cell Vehicle
Sep 2011
Publication
Two vehicle fire tests were conducted to investigate the spread of fire to adjacent vehicles from a hydrogen fuel cell vehicle (HFCV) equipped with a thermal pressure relief device (TPRD) : – 1) an HFCV fire test involving an adjacent gasoline vehicle 2) a fire test involving three adjoining HFCV assuming their transportation in a carrier ship. The test results indicated that the adjacent vehicles were ignited by flames from the interior and exterior material Read More
A Panoramic Analysis of Hydrogen Utilization Systems Using an Input-output Table for Next Generation Energy Systems
Apr 2017
Publication
The objective of this study is to analyze a government proposal from a panoramic perspective concerning the economic and environmental effects associated with the construction and operation of hydrogen utilization systems by the year 2030. We focused on a marine transport system for hydrogen produced offshore hydrogen gas turbine power generation fuel cell vehicles (FCVs) and hydrogen stations as well as residential fuel cell systems ( Read More
A Study on the Effectivity of Hydrogen Leakage Detection for Hydrogen Fuel Cell
Sep 2017
Publication
Unlike four-wheel fuel-cell vehicles fuel-cell motorcycles have little semi-closure space corresponding to the engine compartment of four-wheel fuel-cell vehicles. Furthermore motorcycles may fall while parked or running. We conducted hydrogen concentration measurement and ignition tests to evaluate the feasibility of detecting leaks when hydrogen gas leaked from a fuel-cell motorcycle as well as the risk of ignition. We found that the installation of Read More
Localized Plasticity and Associated Cracking in Stable and Metastable High-Entropy Alloys Pre-Charged with Hydrogen
Dec 2018
Publication
We investigated hydrogen embrittlement in Fe20Mn20Ni20Cr20Co and Fe30Mn10Cr10Co (at.%) alloys pre-charged with 100 MPa hydrogen gas by tensile testing at three initial strain rates of 10−4 10−3 and 10−2 s−1 at ambient temperature. The alloys are classified as stable and metastable austenite-based high-entropy alloys (HEAs) respectively. Both HEAs showed the characteristic hydrogen-induced degradation of tensile ductility. Electron backscatt Read More
Prediction of Pressure Reduction Rate in 30 m3 Liquid Hydrogen Tank Based on Experimental and Numerical Analysis
Sep 2019
Publication
Liquid hydrogen (LH2) compared to compressed gaseous hydrogen offers advantages for large scale transport and storage of hydrogen with higher densities and potentially better safety performance. Although the gas industry has good experience with LH2 only little experience is available for the new applications of LH2 as an energy carrier. Therefore the European FCH JU funded project PRESLHY conducts pre-normative research for the safe use of cryoge Read More
Non-steady Characteristics of Dispersion and Ignitability for High-pressurized Hydrogen Jet Discharged From a Pinhole
Sep 2017
Publication
Hydrogen gas concentrations and jet velocities were measured downstream by a high response speed flame ionization detector and PIV (Particle Image Velocimetry) in order to investigate the characteristics of dispersion and ignitability for 40–82 MPa high-pressurized hydrogen jet discharged from a nozzle with 0.2 mm diameter. The light emitted from both OH radical and water vapor species yielded from hydrogen combustion ignited by an electric s Read More
Reversible Ammonia-based and Liquid Organic Hydrogen Carriers for High-density Hydrogen Storage: Recent Progress
Feb 2019
Publication
Liquid hydrogen carriers are considered to be attractive hydrogen storage options because of their ease of integration into existing chemical transportation infrastructures when compared with liquid or compressed hydrogen. The development of such carriers forms part of the work of the International Energy Agency Task 32: Hydrogen-Based Energy Storage. Here we report the state-of-the-art for ammonia-based and liquid organic hydrogen carriers wit Read More
No more items...