Italy
Dynamic Simulation and Thermoeconomic Analysis of a Hybrid Renewable System Based on PV and Fuel Cell Coupled with Hydrogen Storage
Nov 2021
Publication
The production of “green hydrogen” is currently one of the hottest topics in the field of renewable energy systems research. Hydrogen storage is also becoming more and more attractive as a flexible solution to mitigate the power fluctuations of solar energy systems. The most promising technology for electricity-to-hydrogen conversion and vice versa is the reversible solid-oxide cell (SOC). This device is still very expensive but it exhibits excellent performance under dynamic operating conditions compared to the competing devices. This work presents the dynamic simulation of a prototypal renewable plant combining a 50 kW photovoltaic (PV) field with a 50 kW solid-oxide electrolyzer cell (SOEC) and a compressed hydrogen tank. The electricity is used to meet the energy demand of a dwelling located in the area of Campi Flegrei (Naples). The SOC efficiency is simulated by developing a mathematical model in MATLAB®. The model also calculates the cell operating temperature as a function of the input current. Once the optimal values of the operating parameters of the SOC are calculated the model is integrated in the transient system simulation tool (TRNSYS) for dynamic analysis. Furthermore this work presents a parametric analysis of the hydrogen storage system (HSS). The results of the energy and environmental analyses show that the proposed system can reach a primary energy saving by 70% and an amount of saved CO2 of 28 tons/year. Some possible future market scenarios are considered for the economic analysis. In the most realistic case the optimal configuration shows a simple pay back lower than 10 years and a profit index of 46%.
Experimental Characterization and Energy Performance Assessment of a Sorption-Enhanced Steam–Methane Reforming System
Aug 2021
Publication
The production of blue hydrogen through sorption-enhanced processes has emerged as a suitable option to reduce greenhouse gas emissions. Sorption-enhanced steam–methane reforming (SESMR) is a process intensification of highly endothermic steam–methane reforming (SMR) ensured by in situ carbon capture through a solid sorbent making hydrogen production efficient and more environmentally sustainable. In this study a comprehensive energy model of SESMR was developed to carry out a detailed energy characterization of the process with the aim of filling a current knowledge gap in the literature. The model was applied to a bench-scale multicycle SESMR/sorbent regeneration test to provide an energy insight into the process. Besides the experimental advantages of higher hydrogen concentration (90 mol% dry basis 70 mol% wet basis) and performance of CO2 capture the developed energy model demonstrated that SESMR allows for substantially complete energy self-sufficiency through the process. In comparison to SMR with the same process conditions (650 ◦C 1 atm) performed in the same experimental rig SESMR improved the energy efficiency by about 10% further reducing energy needs.
Electrification and Sustainable Fuels: Competing for Wind and Sun (complement to the Policy brief)
May 2021
Publication
This study seeks to answer a simple question: will we have enough renewable electricity to meet all of the EU's decarbonisation objectives and if not what should be the priorities and how to address the remaining needs for energy towards carbon neutrality? Indeed if not the policy push for green hydrogen would not be covered by enough green electricity to match the “energy efficiency and electrification first” approach outlined in the system integration communication and a prioritization of green electricity uses complemented by other solutions (import of green electricity or sustainable fuels CCS...) would be advisable [1]. On one hand we show that the principle “Energy efficiency and electrification first” results in an electricity demand which will be very difficult to satisfy domestically with renewable energy. On the other hand green hydrogen and other sustainable fuels will be needed for a carbon neutral industry for the replacement of the fuel for aviation and navigation and as strategic green energy reserves. The detailed modelling of these interactions is challenging given the large uncertainties on technology and infrastructure development. Therefore we offer a “15 minutes” decarbonization scenario based on general and transparent technical considerations and very straightforward “back-of-envelope” calculations. This working paper contains the calculations and assumptions in support of the accompanying policy brief with the same title which focuses instead on the main take-aways.
Life Cycle Assessment and Water Footprint of Hydrogen Production Methods: From Conventional to Emerging Technologies
Oct 2020
Publication
A common sustainability issue arising in production systems is the efficient use of resources for providing goods or services. With the increased interest in a hydrogen (H2) economy the life-cycle environmental performance of H2 production has special significance for assisting in identifying opportunities to improve environmental performance and to guide challenging decisions and select between technology paths. Life cycle impact assessment methods are rapidly evolving to analyze multiple environmental impacts of the production of products or processes. This study marks the first step in developing process-based streamlined life cycle analysis (LCA) of several H2 production pathways combining life cycle impacts at the midpoint (17 problem-oriented) and endpoint (3 damage-oriented) levels using the state-of-the-art impact assessment method ReCiPe 2016. Steam reforming of natural gas coal gasification water electrolysis via proton exchange membrane fuel cell (PEM) solid oxide electrolyzer cell (SOEC) biomass gasification and reforming and dark fermentation of lignocellulosic biomass were analyzed. An innovative aspect is developed in this study is an analysis of water consumption associated with H2 production pathways by life-cycle stage to provide a better understanding of the life cycle water-related impacts on human health and natural environment. For water-related scope Water scarcity footprint (WSF) quantified using Available Water Remaining (AWARE) method was applied as a stand-alone indicator. The paper discusses the strengths and weaknesses of each production pathway identify the drivers of environmental impact quantify midpoint environmental impact and its influence on the endpoint environmental performance. The findings of this study could serve as a useful theoretical reference and practical basis to decision-makers of potential environmental impacts of H2 production systems.
Analysis of Standard and Innovative Methods for Allocating Upstream and Refinery GHG Emissions to Oil Products
Sep 2017
Publication
Alternative fuel policies need accurate and transparent methods to find the embedded carbon intensity of individual refinery products. This study investigates different ways of allocating greenhouse gases emissions deriving from refining and upstream crude oil supply. Allocation methods based on mass energy content economic value and innovatively added-value are compared with the marginal refining emissions calculated by CONCAWE’s linear-programming model to the average EU refinery which has been adopted as reference in EU legislation. Beside the most important transportation fuels (gasoline diesel kerosene/jet fuel and heavy fuel oil) the analysis extends to petroleum coke and refinery hydrogen. Moreover novel criteria based on the implications due to hydrogen usage by each fuel pathway have been introduced to test the consistency of the analyzed approaches. It is found that only two economic-based allocation methods are consistent with the introduced criteria. These two methods also give negative refinery emissions for heavy products which is coherent with the marginal emissions calculated through the CONCAWE refinery model. The recommended allocation methods are transparent and use only publicly available statistical data so they may be useful not only for future EU legislation but also in jurisdictions where a representative refinery model is not available.
How to Give a renewed Chance to Natural Gas as Feed for the Production of Hydrogen: Electric MSR Coupled with CO2 Mineralization
Sep 2021
Publication
Recent years have seen a growing interest in water electrolysis as a way to store renewable electric energy into chemical energy through hydrogen production. However today the share of renewable energy is still limited and there is the need to have a continuous use of H2 for industrial chemicals applications. Firstly the paper discusses the use of electrolysis - connected to a conventional grid - for a continuous H2 production in terms of associated CO2 emissions and compares such emissions with conventional methane steam reforming (MSR). Therefore it explores the possibility to use electrical methane steam reforming (eMSR) as a way to reduce the CO2 emissions. As a way to have zero emissions carbon mineralization of CO2 is coupled - instead of in-situ carbon capture and storage technology (CCS) - to eMSR; associated relevant cost of production is evaluated for different scenarios. It appears that to minimize such production cost carbonate minerals must be reused in the making of other industrial products since the amount of carbonates generated by the process is quite significant.
Recent Combustion Strategies in Gas Turbines for Propulsion and Power Generation toward a Zero-Emissions Future: Fuels, Burners, and Combustion Techniques
Oct 2021
Publication
The effects of climate change and global warming are arising a new awareness on the impact of our daily life. Power generation for transportation and mobility as well as in industry is the main responsible for the greenhouse gas emissions. Indeed currently 80% of the energy is still produced by combustion of fossil fuels; thus great efforts need to be spent to make combustion greener and safer than in the past. For this reason a review of the most recent gas turbines combustion strategy with a focus on fuels combustion techniques and burners is presented here. A new generation of fuels for gas turbines are currently under investigation by the academic community with a specific concern about production and storage. Among them biofuels represent a trustworthy and valuable solution in the next decades during the transition to zero carbon fuels (e.g. hydrogen and ammonia). Promising combustion techniques explored in the past and then abandoned due to their technological complexity are now receiving renewed attention (e.g. MILD PVC) thanks to their effectiveness in improving the efficiency and reducing emissions of standard gas turbine cycles. Finally many advances are illustrated in terms of new burners developed for both aviation and power generation. This overview points out promising solutions for the next generation combustion and opens the way to a fast transition toward zero emissions power generation.
On the Evaluation of ALD TiO 2 , ZrO 2 and HfO 2 Coatings on Corrosion and Cytotoxicity Performances
May 2021
Publication
Magnesium alloys have been widely studied as materials for temporary implants but their use has been limited by their corrosion rate. Recently coatings have been proven to provide an effective barrier. Though only little explored in the field Atomic Layer Deposition (ALD) stands out as a coating technology due to the outstanding film conformality and density achievable. Here we provide first insights into the corrosion behavior and the induced biological response of 100 nm thick ALD TiO2 HfO2 and ZrO2 coatings on AZ31 alloy by means of potentiodynamic polarization curves electrochemical impedance spectroscopy (EIS) hydrogen evolution and MTS colorimetric assay with L929 cells. All three coatings improve the corrosion behavior and cytotoxicity of the alloy. Particularly HfO2 coatings were characterized by the highest corrosion resistance and cell viability slightly higher than those of ZrO2 coatings. TiO2 was characterized by the lowest corrosion improvements and though generally considered a biocompatible coating was found to not meet the demands for cellular applications (it was characterized by grade 3 cytotoxicity after 5 days of culture). These results reveal a strong link between biocompatibility and corrosion resistance and entail the need of taking the latter into consideration in the choice of a biocompatible coating to protect degradable Mg-based alloys.
Heat Recovery from a PtSNG Plant Coupled with Wind Energy
Nov 2021
Publication
Power to substitute natural gas (PtSNG) is a promising technology to store intermittent renewable electricity as synthetic fuel. Power surplus on the electric grid is converted to hydrogen via water electrolysis and then to SNG via CO2 methanation. The SNG produced can be directly injected into the natural gas infrastructure for long-term and large-scale energy storage. Because of the fluctuating behaviour of the input energy source the overall annual plant efficiency and SNG production are affected by the plant operation time and the standby strategy chosen. The re-use of internal (waste) heat for satisfying the energy requirements during critical moments can be crucial to achieving high annual efficiencies. In this study the heat recovery from a PtSNG plant coupled with wind energy based on proton exchange membrane electrolysis adiabatic fixed bed methanation and membrane technology for SNG upgrading is investigated. The proposed thermal recovery strategy involves the waste heat available from the methanation unit during the operation hours being accumulated by means of a two-tanks diathermic oil circuit. The stored heat is used to compensate for the heat losses of methanation reactors during the hot-standby state. Two options to maintain the reactors at operating temperature have been assessed. The first requires that the diathermic oil transfers heat to a hydrogen stream which is used to flush the reactors in order to guarantee the hot-standby conditions. The second option entails that the stored heat being recovered for electricity production through an Organic Rankine Cycle. The electricity produced is used to compensate the reactors heat losses by using electrical trace heating during the hot-standby hours as well as to supply energy to ancillary equipment. The aim of the paper is to evaluate the technical feasibility of the proposed heat recovery strategies and how they impact on the annual plant performances. The results showed that the annual efficiencies on an LHV basis were found to be 44.0% and 44.3% for the thermal storage and electrical storage configurations respectively.
Why Ultrasonic Gas Leak Detection?
Sep 2021
Publication
Technologies that have traditionally been used in fixed installations to detect hydrogen gas leaks such as Catalytic and Electrochemical Point Sensors have one limitation: in order for a leak to be detected the gas itself must either be in close proximity to the detector or within a pre-defined area. Unfortunately outdoor environmental conditions such as changing wind directions and quick dispersion of the gas cloud from a leaking outdoor installation often cause that traditional gas detection systems may not alert to the presence of gas simply because the gas never reaches the detector. These traditional gas detection systems need to wait for the gas to form a vapor cloud which may or may not ignite and which may or may not allow loss prevention by enabling shutting down the gas facility in time. Ultrasonic Gas Leak Detectors (UGLD) respond at the speed of sound at gas leak initiation unaffected by changing wind directions and dilution of the gas. Ultrasonic Gas Leak Detectors are based on robust microphone technology; they detect outdoor leaks by sensing the distinct high frequency ultrasound emitted by all high pressure gas leaks. With the ultrasonic sensing technology leaking gas itself does not have to reach the sensor – just the sound of the gas leaking. By adding Ultrasonic Gas Leak Detectors for Hydrogen leak detection faster response times and lower operation costs can be obtained.
A Statistical Assessment of Blending Hydrogen into Gas Networks
Aug 2021
Publication
The deployment of low-carbon hydrogen in gas grids comes with strategic benefits in terms of energy system integration and decarbonization. However hydrogen thermophysical properties substantially differ from natural gas and pose concerns of technical and regulatory nature. The present study investigates the blending of hydrogen into distribution gas networks focusing on the steady-state fluid dynamic response of the grids and gas quality compliance issues at increasing hydrogen admixture levels. Two blending strategies are analyzed the first of which involves the supply of NG–H2 blends at the city gate while the latter addresses the injection of pure hydrogen in internal grid locations. In contrast with traditional case-specific analyses results are derived from simulations executed over a large number (i.e. one thousand) of synthetic models of gas networks. The responses of the grids are therefore analyzed in a statistical fashion. The results highlight that lower probabilities of violating fluid dynamic and quality restrictions are obtained when hydrogen injection occurs close to or in correspondence with the system city gate. When pure hydrogen is injected in internal grid locations even very low volumes (1% vol of the total) may determine gas quality violations while fluid dynamic issues arise only in rare cases of significant hydrogen injection volumes (30% vol of the total).
Electrified Hydrogen Production from Methane for PEM Fuel Cells Feeding: A Review
May 2022
Publication
The greatest challenge of our times is to identify low cost and environmentally friendly alternative energy sources to fossil fuels. From this point of view the decarbonization of industrial chemical processes is fundamental and the use of hydrogen as an energy vector usable by fuel cells is strategic. It is possible to tackle the decarbonization of industrial chemical processes with the electrification of systems. The purpose of this review is to provide an overview of the latest research on the electrification of endothermic industrial chemical processes aimed at the production of H2 from methane and its use for energy production through proton exchange membrane fuel cells (PEMFC). In particular two main electrification methods are examined microwave heating (MW) and resistive heating (Joule) aimed at transferring heat directly on the surface of the catalyst. For cases the catalyst formulation and reactor configuration were analyzed and compared. The key aspects of the use of H2 through PEM were also analyzed highlighting the most used catalysts and their performance. With the information contained in this review we want to give scientists and researchers the opportunity to compare both in terms of reactor and energy efficiency the different solutions proposed for the electrification of chemical processes available in the recent literature. In particular through this review it is possible to identify the solutions that allow a possible scale-up of the electrified chemical process imagining a distributed production of hydrogen and its consequent use with PEMs. As for PEMs in the review it is possible to find interesting alternative solutions to platinum with the PGM (Platinum Group Metal) free-based catalysts proposing the use of Fe or Co for PEM application.
Improved Hydrogen-Production-Based Power Management Control of a Wind Turbine Conversion System Coupled with Multistack Proton Exchange Membrane Electrolyzers
Mar 2020
Publication
This paper deals with two main issues regarding the specific energy consumption in an electrolyzer (i.e. the Faraday efficiency and the converter topology). The first aspect is addressed using a multistack configuration of proton exchange membrane (PEM) electrolyzers supplied by a wind turbine conversion system (WTCS). This approach is based on the modeling of the wind turbine and the electrolyzers. The WTCS and the electrolyzers are interfaced through a stacked interleaved DC–DC buck converter (SIBC) due to its benefits for this application in terms of the output current ripple and reliability. This converter is controlled so that it can offer dynamic behavior that is faster than the wind turbine avoiding overvoltage during transients which could damage the PEM electrolyzers. The SIBC is designed to be connected in array configuration (i.e. parallel architecture) so that each converter operates at its maximum efficiency. To assess the performance of the power management strategy experimental tests were carried out. The reported results demonstrate the correct behavior of the system during transient operation.
Optimal Design of Stand-alone Solutions Based on RES + Hydrogen Storage Feeding Off-grid Communities
Apr 2021
Publication
Concerning off-grid areas diesel engines still dominate the scene of local electricity generation despite the related pollution concerns and high operating costs. There is thus a huge global potential in remote areas for exploiting local renewable energy sources (RES) in place of fossil generation. Energy storage systems become hence essential for off-grid communities to cope with the issue of RES intermittency allowing them to rely on locally harvested RES. In this work we analysed different typologies of off-grid renewable power systems involving batteries and hydrogen as means to store energy to find out which is the most cost-effective configuration in remote areas. Both Li-ion and lead-acid batteries were included in the analysis and both alkaline and PEM electrolysis technologies were considered for the production of hydrogen. Starting from single cell electrochemical models the performance curves of the electrolyser and fuel cell devices were derived for a more detailed techno-economic assessment. Lifetimes of batteries and H2-based components were also computed based on how the power-to-power (P2P) system operates along the reference year. The particle swarm optimization (PSO) algorithm was employed to find the component sizes that allow minimizing the levelized cost of energy (LCOE) while keeping the off-grid area energy autonomous. As a case study the Ginostra village on the island of Stromboli (North of Sicily Southern Italy) was analysed since it is well representative of small insular locations in the Mediterranean area. The renewable P2P solution (0.51 €/kWh for the cheapest configuration) was found to be economically preferable than the current existing power system relying on diesel generators (0.86 €/kWh). Hydrogen in particular can prevent the oversizing of both battery and PV systems thus reducing the final cost of electricity delivered by the P2P system. Moreover unlike diesel generators the RES-based configuration allows avoiding the production of local air pollutants and GHG emissions during its operation.
Domestic Gas Meter Durability in Hydrogen and Natural Gas Mixtures
Nov 2021
Publication
Blending hydrogen into the natural gas infrastructure is becoming a very promising practice to increase the exploitation of renewable energy sources which can be used to produce “green” hydrogen. Several research projects and field experiments are currently aimed at evaluating the risks associated with utilization of the gas blend in end-use devices such as the gas meters. In this paper the authors present the results of experiments aimed at assessing the effect of hydrogen injection in terms of the durability of domestic gas meters. To this end 105 gas meters of different measurement capabilities and manufacturers both brand-new and withdrawn from service were investigated in terms of accuracy drift after durability cycles of 5000 and 10000 h with H2NG mixtures and H2 concentrations of 10% and 15%. The obtained results show that there is no metrologically significant or statistically significant influence of hydrogen content on changes in gas meter indication errors after subjecting the meters to durability testing with a maximum of 15% H2 content over 10000 h. A metrologically significant influence of the long-term operation of the gas meters was confirmed but it should not be made dependent on the hydrogen content in the gas. No safety problems related to the loss of external tightness were observed for either the new or 10-year-old gas meters.
Electric Load Influence on Performances of a Composite Plant for Hydrogen Production from RES and its Conversion in Electricity
Nov 2019
Publication
The analysis here presented investigates the influence of electrical load on the operational performances of a plant for hydrogen production from solar energy and its conversion in electricity via a fuel cell. The plant is an actual one currently under construction in Reggio Calabria (Italy) at the site of the Mediterranean university campus; it is composed of a Renewable Energy Source (RES) section (photovoltaic panels) a hydrogen production section and a fuel cell power section feeding the electrical energy demand of the load. Two different load configurations have been analysed and simulations have been carried out through HomerTM simulation code. Results allow interesting conclusions regarding the plant operation to be drawn. The study could have a remarkable role in supporting further research activities aimed at the assessment of the optimal configuration of this type of pioneering plants designed for feeding electrical loads possibly in a self-sufficient way.
Optimal Integration of Hydrogen-Based Energy Storage Systems in Photovoltaic Microgrids: A Techno-Economic Assessment
Aug 2020
Publication
The feasibility and cost-effectiveness of hydrogen-based microgrids in facilities such as public buildings and small- and medium-sized enterprises provided by photovoltaic (PV) plants and characterized by low electric demand during weekends were investigated in this paper. Starting from the experience of the microgrid being built at the Renewable Energy Facility of Sardegna Ricerche (Italy) which among various energy production and storage systems includes a hydrogen storage system a modeling of the hydrogen-based microgrid was developed. The model was used to analyze the expected performance of the microgrid considering different load profiles and equipment sizes. Finally the microgrid cost-effectiveness was evaluated using a preliminary economic analysis. The results demonstrate that an effective design can be achieved with a PV system sized for an annual energy production 20% higher than the annual energy requested by the user and a hydrogen generator size 60% of the PV nominal power size. This configuration leads to a self-sufficiency rate of about 80% and without public grants a levelized cost of energy comparable with the cost of electricity in Italy can be achieved with a reduction of at least 25–40% of the current initial costs charged for the whole plant depending on the load profile shape.
Power-to-Gas Hydrogen: Techno-economic Assessment of Processes Towards a Multi-purpose Energy Carrier
Dec 2016
Publication
The present work investigates Power-to-Gas (PtG) options for variable Renewable Electricity storage into hydrogen through low temperature (alkaline and PEM) and high-temperature (SOEC) water electrolysis technologies. The study provides the assessment of the cost of the final product when hydrogen is employed for mobility (on-site refueling stations) electricity generation (by fuel cells in Power-to-Power systems) and grid injection in the natural gas network. Costs estimations are performed for 2013-2030 scenarios. A case study on the impact of variable Renewable Electricity storage by hydrogen generation on the Italian electricity and mobility sectors is presented.
Evaluation of the Impact of Green Hydrogen Blending Scenarios in the Italian Gas Network: Optimal Design and Dynamic Simulation of Operation Strategies
Apr 2022
Publication
Blending hydrogen (H2) produced from PEM electrolysis coupled to Renewable Energy Sources (RES) in the existing Natural Gas (NG) network is a promising option for the deep decarbonization of the gas sector. However blending H2 with NG significantly affects the thermophysical properties of the gas mixture changing the gas supply requirements to meet the demand. In this work different scenarios of green hydrogen blending (Blend Ratio BR equal to 5/10/15/20%vol) are analyzed at the national level with different temporal constraints (hour/day/week/month/year) based on real gas demand data in Italy addressing both design requirements (RES and PEM electrolyzer capacity) via Linear Programming (LP) and carrying out dynamic simulations of different operational strategies (constant or variable blend). Although H2/NG blending provides a huge opportunity in terms of deployed H2 volume higher BRs show rapidly increasing design requirements (1.3-1.5 GWe/%vol and 2.5-3 GWe/%vol for PEM electrolyzers and RES capacity respectively) and a significative increase of the total gas mixture volume (0.83 %/%vol) which hinders the CO2 reduction potential (0.37 %/%vol). A variable blend operation strategy (allowing a variation of BR within the analyzed period) allows to balance a variable H2 production from RES. Wider temporal constraints imply several beneficial effects such as relaxing design constraints and avoiding the implementation of an external storage. The Levelized Cost Of Hydrogen (LCOH) is preliminarily estimated at around 7.3 $/kg for yearly scenarios (best-case) although shorter temporal constraints entail significant excess hydrogen which would increase the LCOH if not deployed for other applications.
Mechanical Spectroscopy Investigation of Point Defect-Driven Phenomena in a Cr Martensitic Steel
Oct 2018
Publication
The paper presents and discusses results of mechanical spectroscopy (MS) tests carried out on a Cr martensitic steel. The study regards the following topics: (i) embrittlement induced by Cr segregation; (ii) interaction of hydrogen with C–Cr associates; (iii) nucleation of Cr carbides. The MS technique permitted characterising of the specific role played by point defects in the investigated phenomena: (i) Cr segregation depends on C–Cr associates distribution in as-quenched material in particular a slow cooling rate (~150 K/min) from austenitic field involves an unstable distribution which leads to Cr concentration fluctuations after tempering at 973 K; (ii) hydrogen interacts with C–Cr associates and the phenomenon hinders hydrogen attack (HA) because hydrogen atoms bound by C–Cr associates are not able to diffuse towards grain boundaries and dislocation where CH4 bubbles may nucleate grow and merge to form the typical HA cracks; (iii) C–Cr associates take part in the nucleation mechanism of Cr7C3 carbides and specifically these carbides form by the aggregation of C–Cr associates with 1 Cr atom.
Hydrogen and Renewable Energy Sources Integrated System for Greenhouse Heating
Sep 2013
Publication
A research is under development at the Department of Agro-Environmental Sciences of the University of Bari “Aldo Moro” in order to investigate the suitable solutions of a power system based on solar energy (photovoltaic) and hydrogen integrated with a geothermal heat pump for powering a self sustained heated greenhouse. The electrical energy for heat pump operation is provided by a purpose-built array of solar photovoltaic modules which supplies also a water electrolyser system controlled by embedded pc; the generated dry hydrogen gas is conserved in suitable pressured storage tank. The hydrogen is used to produce electricity in a fuel cell in order to meet the above mentioned heat pump power demand when the photovoltaic system is inactive during winter night-time or the solar radiation level is insufficient to meet the electrical demand. The present work reports some theoretical and observed data about the electrolyzer operation. Indeed the electrolyzer has required particular attention because during the experimental tests it did not show a stable operation and it was registered a performance not properly consistent with the predicted performance by means of the theoretical study.
Effect of Hot Mill Scale on Hydrogen Embrittlement of High Strength Steels for Pre-Stressed Concrete Structures
Mar 2018
Publication
The presence of a conductive layers of hot-formed oxide on the surface of bars for pre or post-compressing structures can promote localized attacks as a function of pH. The aggressive local environment in the occluded cells inside localized attacks has as consequence the possibility of initiation of stress corrosion cracking. In this paper the stress corrosion cracking behavior of high strength steels proposed for tendons was studied by means of Constant Load (CL) tests and Slow Strain Rate (SSR) tests. Critical ranges of pH for cracking were verified. The promoting role of localized attack was confirmed. Further electrochemical tests were performed on bars in as received surface conditions in order to evaluate pitting initiation. The adverse effect of mill scale was recognized.
Hydrous Hydrazine Decomposition for Hydrogen Production Using of Ir/CeO2: Effect of Reaction Parameters on the Activity
May 2021
Publication
In the present work an Ir/CeO2 catalyst was prepared by the deposition–precipitation method and tested in the decomposition of hydrazine hydrate to hydrogen which is very important in the development of hydrogen storage materials for fuel cells. The catalyst was characterised using different techniques i.e. X-ray photoelectron spectroscopy (XPS) transmission electron microscopy (TEM) scanning electron microscopy (SEM) equipped with X-ray detector (EDX) and inductively coupled plasma—mass spectroscopy (ICP-MS). The effect of reaction conditions on the activity and selectivity of the material was evaluated in this study modifying parameters such as temperature the mass of the catalyst stirring speed and concentration of base in order to find the optimal conditions of reaction which allow performing the test in a kinetically limited regime.
Green Hydrogen in Europe – A Regional Assessment: Substituting Existing Production with Electrolysis Powered by Renewables
Nov 2020
Publication
The increasing ambition of climate targets creates a major role for hydrogen especially in achieving carbon-neutrality in sectors presently difficult to decarbonise. This work examines to what extent the currently carbon-intensive hydrogen production in Europe could be replaced by water electrolysis using electricity from renewable energy resources (RES) such as solar photovoltaic onshore/offshore wind and hydropower (green hydrogen). The study assesses the technical potential of RES at regional and national levels considering environmental constraints land use limitations and various techno-economic parameters. It estimates localised clean hydrogen production and examines the capacity to replace carbon-intensive hydrogen hubs with ones that use RES-based water electrolysis. Findings reveal that -at national level- the available RES electricity potential exceeds the total electricity demand and the part for hydrogen production from electrolysis in all analysed countries. At regional level from the 109 regions associated with hydrogen production (EU27 and UK) 88 regions (81%) show an excess of potential RES generation after covering the annual electricity demand across all sectors and hydrogen production. Notably 84 regions have over 50% excess RES electricity potential after covering the total electricity demand and that for water electrolysis. The study provides evidence on the option to decarbonize hydrogen production at regional level. It shows that such transformation is possible and compatible with the ongoing transition towards carbon–neutral power systems in the EU. Overall this work aims to serve as a tool for designing hydrogen strategies in harmony with renewable energy policies.
Heat Pumps for Space Heating and Domestic Hot Water Production in Residential Buildings, an Environmental Comparison in a Present and Future Scenario
Nov 2022
Publication
The hydrogen vector stands as a potentially important tool to achieve the decarbonization of the energy sector. It represents an option to store the periodic excesses of energy generation from renewable electrical sources to be used as it is as a substitute for fossil fuels in some applications or reconverted into electricity when needed. In this context hydrogen can significantly decarbonize the building sector as an alternative fuel for gas-driven devices. Along with hydrogen the European strategic vision indicates the electrification of heat among the main energy transition pathways. The potential environmental benefits achievable from renewable hydrogen in thermally-driven appliances and the electrification of residential heat through electric heat pumps were evaluated and compared in this work. The novelty of the research consists of a consequential comparative life cycle assessment (16 impact categories) evaluation for three buildings (old old retrofitted and new) supplied by three different appliances (condensing boiler gas absorption heat pump and electric heat pump) never investigated before. The energy transition was evaluated for 2020 and 2030 scenarios considering the impact of gaseous fuels (natural gas and European green hydrogen) and electricity based on the pathway of the European electricity grid (27 European member states plus the United Kingdom). The results allowed to compare the environmental profile in deterministic and stochastic approaches and confirm if the increase of renewables reduces the impact in the operational phase of the appliances. The results demonstrate that despite the increased renewable share the use phase remains the most significant for both temporal scenarios contributing to 91% of the environmental profile. Despite the higher footprint in 2020 compared to the electric heat pump (198–200 vs. 170–196 gCO2eq/kWhth) the gas absorption heat pump offered a lower environmental profile than the others in all the scenarios analyzed.
Micro and Macro Mechanical Analysis of Gas Pipeline Steels
Sep 2017
Publication
The actual safety margins of gas pipelines depend on a number of factors that include the mechanical characteristics of the material. The evolution with time of the metal properties can be evaluated by mechanical tests performed at different scales seeking for the best compromise between the simplicity of the experimental setup to be potentially employed in situ and the reliability of the results. Possible alternatives are comparatively assessed on pipeline steels of different compositions and in different states.
Experimental and Theoretical Insights to Demonstrate the Hydrogen Evolution Activity of Layered Platinum Dichalcogenides Electrocatalysts
Mar 2021
Publication
Hydrogen is a highly efficient and clean renewable energy source and water splitting through electrocatalytic hydrogen evolution is a most promising approach for hydrogen generation. Layered transition metal dichalcogenides-based nano-structures have recently attracted significant interest as robust and durable catalysts for hydrogen evolution. We systematically investigated the platinum (Pt) based dichalcogenides (PtS2 PtSe2 and PtTe2) as highly energetic and robust hydrogen evolution electrocatalysts. PtTe2 catalyst unveiled the rapid hydrogen evolution process with the low overpotentials of 75 and 92 mV (vs. RHE) at a current density of 10 mA cm−2 and the small Tafel slopes of 64 and 59 mV/dec in acidic and alkaline medium respectively. The fabricated PtTe2 electrocatalyst explored a better catalytic activity than PtS2 and PtSe2. The density functional theory estimations explored that the observed small Gibbs free energy for H-adsorption of PtTe2 was given the prominent role to achieve the superior electrocatalytic and excellent stability activity towards hydrogen evolution due to a smaller bandgap and the metallic nature. We believe that this work will offer a key path to use Pt based dichalcogenides for hydrogen evolution electrocatalysts.
A Techno-Economic Analysis of Solar Hydrogen Production by Electrolysis in the North of Chile and the Case of Exportation from Atacama Desert to Japan
Aug 2020
Publication
H2 production from solar electricity in the region of the Atacama Desert – Chile – has been identified as strategical for global hydrogen exportation. In this study the full supply chain of solar hydrogen has been investigated for 2018 and projected to scenarios for 2025-2030. Multi-year hourly electrical profiles data have been used from real operating PV plants and simulated Concentrated Solar Power “CSP” plants with Thermal Energy Storage “TES” as well as commercial electricity Power Purchase Agreement “PPA” prices reported in the Chilean electricity market were considered. The Levelized Cost of Hydrogen “LCOH” of each production pathway is calculated by a case-sensitive techno-economic MATLAB/Simulink model for utility scale (multi-MW) alkaline and PEM electrolyser technologies. Successively different distribution storage and transportation configurations are evaluated based on the 2025 Japanese case study according to the declared H2 demand. Transport in the form of liquefied hydrogen (LH2) and via ammonia (NH3) carrier is compared from the port of Antofagasta CL to the port of Osaka JP.
Solid-State Hydrogen Storage Systems and the Relevance of a Gender Perspective
Sep 2021
Publication
This paper aims at addressing the exploitation of solid-state carriers for hydrogen storage with attention paid both to the technical aspects through a wide review of the available integrated systems and to the social aspects through a preliminary overview of the connected impacts from a gender perspective. As for the technical perspective carriers to be used for solid-state hydrogen storage for various applications can be classified into two classes: metal and complex hydrides. Related crystal structures and corresponding hydrogen sorption properties are reviewed and discussed. Fundamentals of thermodynamics of hydrogen sorption evidence the key role of the enthalpy of reaction which determines the operating conditions (i.e. temperatures and pressures). In addition it rules the heat to be removed from the tank during hydrogen absorption and to be delivered to the tank during hydrogen desorption. Suitable values for the enthalpy of hydrogen sorption reaction for operating conditions close to ambient (i.e. room temperature and 1–10 bar of hydrogen) are close to 30 kJ·molH2 −1 . The kinetics of the hydrogen sorption reaction is strongly related to the microstructure and to the morphology (i.e. loose powder or pellets) of the carriers. Usually the kinetics of the hydrogen sorption reaction is rather fast and the thermal management of the tank is the rate-determining step of the processes. As for the social perspective the paper arguments that as it occurs with the exploitation of other renewable innovative technologies a wide consideration of the social factors connected to these processes is needed to reach a twofold objective: To assess the extent to which a specific innovation might produce positive or negative impacts in the recipient socioeconomic system and from a sociotechnical perspective to explore the potential role of the social components and dynamics in fostering the diffusion of the innovation itself. Within the social domain attention has been paid to address the underexplored relationship between the gender perspective and the enhancement of hydrogen-related energy storage systems. This relationship is taken into account both in terms of the role of women in triggering the exploitation of hydrogen-based storage playing as experimenter and promoter and in terms of the intertwined impact of this innovation in their current conditions at work and in daily life.
Economic Analysis of Hydrogen Household Energy Systems Including Incentives on Energy Communities and Externalities: A Case Study in Italy
Sep 2021
Publication
The building sector is one of the key energy consumers worldwide. Fuel cell micro-Cogeneration Heat and Power systems for residential and small commercial applications are proposed as one of the most promising innovations contributing to the transition towards a sustainable energy infrastructure. For the application and the diffusion of these systems in addition to their environmental performance it is necessary however to evaluate their economic feasibility. In this paper a life cycle assessment of a fuel cell/photovoltaic hybrid micro-cogeneration heat and power system for a residential building is integrated with a detailed economic analysis. Financial indicators (net present cost and payback time are used for studying two different investments: reversible-Solid Oxide Fuel Cell and natural gas SOFC in comparison to a base scenario using a homeowner perspective approach. Moreover two alternative incentives scenarios are analysed and applied: net metering and self-consumers’ groups (or energy communities). Results show that both systems obtain annual savings but their high capital costs still would make the investments not profitable. However the natural gas Solide Oxide Fuel Cell with the net metering incentive is the best scenario among all. On the contrary the reversible-Solid Oxide Fuel Cell maximizes its economic performance only when the self-consumers’ groups incentive is applied. For a complete life cycle cost analysis environmental impacts are monetized using three different monetization methods with the aim to internalize (considering them into direct cost) the externalities (environmental costs). If externalities are considered as an effective cost the natural gas Solide Oxide Fuel Cell system increases its saving because its environmental impact is lower than in the base case one while the reversible-Solid Oxide Fuel Cell system reduces it.
Numerical Analysis of VPSA Technology Retrofitted to Steam Reforming Hydrogen Plants to Capture CO2 and Produce Blue H2
Feb 2022
Publication
The increasing demand for energy and commodities has led to escalating greenhouse gas emissions the chief of which is represented by carbon dioxide (CO2). Blue hydrogen (H2) a lowcarbon hydrogen produced from natural gas with carbon capture technologies applied has been suggested as a possible alternative to fossil fuels in processes with hard-to-abate emission sources including refining chemical petrochemical and transport sectors. Due to the recent international directives aimed to combat climate change even existing hydrogen plants should be retrofitted with carbon capture units. To optimize the process economics of such retrofit it has been proposed to remove CO2 from the pressure swing adsorption (PSA) tail gas to exploit the relatively high CO2 concentration. This study aimed to design and numerically investigate a vacuum pressure swing adsorption (VPSA) process capable of capturing CO2 from the PSA tail gas of an industrial steam methane reforming (SMR)-based hydrogen plant using NaX zeolite adsorbent. The effect of operating conditions such as purge-to-feed ratio and desorption pressure were evaluated in relation to CO2 purity CO2 recovery bed productivity and specific energy consumption. We found that conventional cycle configurations namely a 2-bed 4-step Skarstrom cycle and a 2-bed 6-step modified Skarstrom cycle with pressure equalization were able to concentrate CO2 to a purity greater than 95% with a CO2 recovery of around 77% and 90% respectively. Therefore the latter configuration could serve as an efficient process to decarbonize existing hydrogen plants and produce blue H2.
Green Synthetic Fuels: Renewable Routes for the Conversion of Non-Fossil Feedstocks into Gaseous Fuels and Their End Uses
Jan 2020
Publication
Innovative renewable routes are potentially able to sustain the transition to a decarbonized energy economy. Green synthetic fuels including hydrogen and natural gas are considered viable alternatives to fossil fuels. Indeed they play a fundamental role in those sectors that are difficult to electrify (e.g. road mobility or high-heat industrial processes) are capable of mitigating problems related to flexibility and instantaneous balance of the electric grid are suitable for large-size and long-term storage and can be transported through the gas network. This article is an overview of the overall supply chain including production transport storage and end uses. Available fuel conversion technologies use renewable energy for the catalytic conversion of non-fossil feedstocks into hydrogen and syngas. We will show how relevant technologies involve thermochemical electrochemical and photochemical processes. The syngas quality can be improved by catalytic CO and CO2 methanation reactions for the generation of synthetic natural gas. Finally the produced gaseous fuels could follow several pathways for transport and lead to different final uses. Therefore storage alternatives and gas interchangeability requirements for the safe injection of green fuels in the natural gas network and fuel cells are outlined. Nevertheless the effects of gas quality on combustion emissions and safety are considered.
Energy Saving in Public Transport Using Renewable Energy
Jan 2017
Publication
Hydrogen produced by renewable sources represents an interesting way to reduce the energetic dependence on fossil fuels in the transportation sector. This paper shows a feasibility study for the production storage and distribution of hydrogen in the western Sicilian context using three different renewable sources: wind biomass and sea wave. The objective of this study is the evaluation of the hydrogen demand needed to replace all diesel supplied buses with electrical buses equipped with fuel cells. An economic analysis is presented with the evaluation of the avoidable greenhouse gas emissions. Four different scenarios correlate the hydrogen demand for urban transport to the renewable energy resources present in the territories and to the modern technologies available for the production of hydrogen. The study focuses on the possibility of tapping into the potential of renewable energies (wind biomass and sea wave) for the production of hydrogen by electrolysis. The use of hydrogen would reduce significantly the emissions of particulate and greenhouse gases in the urban districts under analysis.
Main Hydrogen Production Processes: An Overview
May 2021
Publication
Due to its characteristics hydrogen is considered the energy carrier of the future. Its use as a fuel generates reduced pollution as if burned it almost exclusively produces water vapor. Hydrogen can be produced from numerous sources both of fossil and renewable origin and with as many production processes which can use renewable or non-renewable energy sources. To achieve carbon neutrality the sources must necessarily be renewable and the production processes themselves must use renewable energy sources. In this review article the main characteristics of the most used hydrogen production methods are summarized mainly focusing on renewable feedstocks furthermore a series of relevant articles published in the last year are reviewed. The production methods are grouped according to the type of energy they use; and at the end of each section the strengths and limitations of the processes are highlighted. The conclusions compare the main characteristics of the production processes studied and contextualize their possible use.
The Role of Research and Innovation in Europe for the Decarbonisation of Waterborne Transport
Sep 2021
Publication
Waterborne transport contributes to around 14% of the overall greenhouse gas emissions of transport in the European Union and it is among the most efficient modes of transport. Nonetheless considering the aim of making the European Union carbon-neutral by 2050 and the fundamental role of waterborne transport within the European economy effort is needed to reduce its environmental impact. This paper provides an assessment of research and innovation measures aiming at decreasing waterborne transport’s CO2 emissions by assessing European projects based on the European Commission’s Transport Research and Innovation Monitoring and Information System (TRIMIS). Additionally it provides an outlook of the evolution of scientific publications and intellectual property activity in the area. The review of project findings suggests that there is no single measure which can be considered as a problem solver in the area of the reduction of waterborne CO2 emissions and only the combination of different innovations should enable reaching this goal. The highlighted potential innovations include further development of lightweight composite materials innovative hull repair methods wind assisted propulsion engine efficiency waste heat electrification hydrogen and alternative fuels. The assessment shows prevalence of funding allocated to technological measures; however non-technological ones like improved vessel navigation and allocation systems also show a great potential for the reduction of CO2 emissions and reduction of negative environmental impacts of waterborne transport.
High-Performance Hydrogen-Fueled Internal Combustion Engines: Feasibility Study and Optimization via 1D-CFD Modeling
Mar 2024
Publication
Hydrogen-powered mobility is believed to be crucial in the future as hydrogen constitutes a promising solution to make up for the non-programmable character of the renewable energy sources. In this context the hydrogen-fueled internal combustion engine represents one of the suitable technical solutions for the future of sustainable mobility. As a matter of fact hydrogen engines suffer from limitations in volumetric efficiency due to the very low density of the fuel. Consequently hydrogen-fueled ICEs can reach sufficient torque and power density only if suitable supercharging solutions are developed. Moreover gaseous-engine performance can be improved to a great extent if direct injection is applied. In this perspective a remarkable know-how has been developed in the last two decades on NG engines which can be successfully exploited in this context. The objective of this paper is twofold. In the first part a feasibility study has been carried out with reference to a typical 2000cc SI engine by means of 1D simulations. This study was aimed at characterizing the performance on the full load curve with respect to a baseline PFI engine fueled by NG. In this phase the turbocharging/supercharging device has not been included in the model in order to quantify the attainable benefits in the absence of any limitation coming from the turbocharger. In the second part of this paper the conversion of a prototype 1400cc direct injection NG engine running with stoichiometric mixture to run on a lean hydrogen combustion mode has been investigated via 1D simulations. The matching between engine and turbocharger has been included in the model and the effects of two different turbomatching choices have been presented and discussed.
Hydrogen Application as a Fuel in Internal Combustion Engines
Mar 2023
Publication
Hydrogen is the energy vector that will lead us toward a more sustainable future. It could be the fuel of both fuel cells and internal combustion engines. Internal combustion engines are today the only motors characterized by high reliability duration and specific power and low cost per power unit. The most immediate solution for the near future could be the application of hydrogen as a fuel in modern internal combustion engines. This solution has advantages and disadvantages: specific physical chemical and operational properties of hydrogen require attention. Hydrogen is the only fuel that could potentially produce no carbon carbon monoxide and carbon dioxide emissions. It also allows high engine efficiency and low nitrogen oxide emissions. Hydrogen has wide flammability limits and a high flame propagation rate which provide a stable combustion process for lean and very lean mixtures. Near the stoichiometric air–fuel ratio hydrogen-fueled engines exhibit abnormal combustions (backfire pre-ignition detonation) the suppression of which has proven to be quite challenging. Pre-ignition due to hot spots in or around the spark plug can be avoided by adopting a cooled or unconventional ignition system (such as corona discharge): the latter also ensures the ignition of highly diluted hydrogen–air mixtures. It is worth noting that to correctly reproduce the hydrogen ignition and combustion processes in an ICE with the risks related to abnormal combustion 3D CFD simulations can be of great help. It is necessary to model the injection process correctly and then the formation of the mixture and therefore the combustion process. It is very complex to model hydrogen gas injection due to the high velocity of the gas in such jets. Experimental tests on hydrogen gas injection are many but never conclusive. It is necessary to have a deep knowledge of the gas injection phenomenon to correctly design the right injector for a specific engine. Furthermore correlations are needed in the CFD code to predict the laminar flame velocity of hydrogen–air mixtures and the autoignition time. In the literature experimental data are scarce on air–hydrogen mixtures particularly for engine-type conditions because they are complicated by flame instability at pressures similar to those of an engine. The flame velocity exhibits a non-monotonous behavior with respect to the equivalence ratio increases with a higher unburnt gas temperature and decreases at high pressures. This makes it difficult to develop the correlation required for robust and predictive CFD models. In this work the authors briefly describe the research path and the main challenges listed above.
Solar Hydrogen for High Capacity, Dispatchable, Long-distance Energy transmission – A Case Study for Injection in the Greenstream Natural Gas Pipeline
Nov 2022
Publication
This paper presents the results of techno-economic modelling for hydrogen production from a photovoltaic battery electrolyser system (PBES) for injection into a natural gas transmission line. Mellitah in Libya connected to Gela in Italy by the Greenstream subsea gas transmission line is selected as the location for a case study. The PBES includes photovoltaic (PV) arrays battery electrolyser hydrogen compressor and large-scale hydrogen storage to maintain constant hydrogen volume fraction in the pipeline. Two PBES configurations with different large-scale storage methods are evaluated: PBESC with compressed hydrogen stored in buried pipes and PBESL with liquefied hydrogen stored in spherical tanks. Simulated hourly PV electricity generation is used to calculate the specific hourly capacity factor of a hypothetical PV array in Mellitah. This capacity factor is then used with different PV sizes for sizing the PBES. The levelised cost of delivered hydrogen (LCOHD) is used as the key techno-economic parameter to optimise the size of the PBES by equipment sizing. The costs of all equipment except the PV array and batteries are made to be a function of electrolyser size. The equipment sizes are deemed optimal if PBES meets hydrogen demand at the minimum LCOHD. The techno-economic performance of the PBES is evaluated for four scenarios of fixed and constant hydrogen volume fraction targets in the pipeline: 5% 10% 15% and 20%. The PBES can produce up to 106 kilotonnes of hydrogen per year to meet the 20% target at an LCOHD of 3.69 €/kg for compressed hydrogen storage (PBESC) and 2.81 €/kg for liquid hydrogen storage (PBESL). Storing liquid hydrogen at large-scale is significantly cheaper than gaseous hydrogen even with the inclusion of a significantly larger PV array that is required to supply additional electrcitiy for liquefaction.
Hydrogen Production from Sea Wave for Alternative Energy Vehicles for Public Transport in Trapani (Italy)
Oct 2016
Publication
The coupling of renewable energy and hydrogen technologies represents in the mid-term a very interesting way to match the tasks of increasing the reliable exploitation of wind and sea wave energy and introducing clean technologies in the transportation sector. This paper presents two different feasibility studies: the first proposes two plants based on wind and sea wave resource for the production storage and distribution of hydrogen for public transportation facilities in the West Sicily; the second applies the same approach to Pantelleria (a smaller island) including also some indications about solar resource. In both cases all buses will be equipped with fuel-cells. A first economic analysis is presented together with the assessment of the avoidable greenhouse gas emissions during the operation phase. The scenarios addressed permit to correlate the demand of urban transport to renewable resources present in the territories and to the modern technologies available for the production of hydrogen from renewable energies. The study focuses on the possibility of tapping the renewable energy potential (wind and sea wave) for the hydrogen production by electrolysis. The use of hydrogen would significantly reduce emissions of particulate matter and greenhouse gases in urban districts under analysis. The procedures applied in the present article as well as the main equations used are the result of previous applications made in different technical fields that show a good replicability.
Environmental Assessment of Hydrogen Utilization in Various Applications and Alternative Renewable Sources for Hydrogen Production: A Review
May 2023
Publication
Rapid industrialization is consuming too much energy and non-renewable energy resources are currently supplying the world’s majority of energy requirements. As a result the global energy mix is being pushed towards renewable and sustainable energy sources by the world’s future energy plan and climate change. Thus hydrogen has been suggested as a potential energy source for sustainable development. Currently the production of hydrogen from fossil fuels is dominant in the world and its utilization is increasing daily. As discussed in the paper a large amount of hydrogen is used in rocket engines oil refining ammonia production and many other processes. This paper also analyzes the environmental impacts of hydrogen utilization in various applications such as iron and steel production rocket engines ammonia production and hydrogenation. It is predicted that all of our fossil fuels will run out soon if we continue to consume them at our current pace of consumption. Hydrogen is only ecologically friendly when it is produced from renewable energy. Therefore a transition towards hydrogen production from renewable energy resources such as solar geothermal and wind is necessary. However many things need to be achieved before we can transition from a fossil-fuel-driven economy to one based on renewable energy
Energy Sustainability Analysis (ESA) of Energy-Producing Processes: A Case Study on Distributed H2 Production
Sep 2019
Publication
In the sustainability context the performance of energy-producing technologies using different energy sources needs to be scored and compared. The selective criterion of a higher level of useful energy to feed an ever-increasing demand of energy to satisfy a wide range of endo- and exosomatic human needs seems adequate. In fact surplus energy is able to cover energy services only after compensating for the energy expenses incurred to build and to run the technology itself. This paper proposes an energy sustainability analysis (ESA) methodology based on the internal and external energy use of a given technology considering the entire energy trajectory from energy sources to useful energy. ESA analysis is conducted at two levels: (i) short-term by the use of the energy sustainability index (ESI) which is the first step to establish whether the energy produced is able to cover the direct energy expenses needed to run the technology and (ii) long-term by which all the indirect energy-quotas are considered i.e. all the additional energy requirements of the technology including the energy amortization quota necessary for the replacement of the technology at the end of its operative life. The long-term level of analysis is conducted by the evaluation of two indicators: the energy return per unit of energy invested (EROI) over the operative life and the energy payback-time (EPT) as the minimum lapse at which all energy expenditures for the production of materials and their construction can be repaid to society. The ESA methodology has been applied to the case study of H2 production at small-scale (10–15 kWH2) comparing three different technologies: (i) steam-methane reforming (SMR) (ii) solar-powered water electrolysis (SPWE) and (iii) two-stage anaerobic digestion (TSAD) in order to score the technologies from an energy sustainability perspective.
Techno-Economic Model for Scaling up of Hydrogen Refueling Stations
Oct 2022
Publication
In a recent publication the Hydrogen Council states that scaling up to greater production volumes leads to significant cost savings as a consequence of the industrialization of equipment manufacturing increased utilization standardization and improvements in system efficiency and flexibility. In this study a component-oriented techno-economic model is applied to five different European hydrogen refueling stations within the 3Emotion project which is planned to ensure capacities sufficient for increasing a fleet to 100 fuel cell buses. The investigation of the various cases shows that the levelized cost of hydrogen (LCOH) for large-scale applications will be in the range of about 4 €/kg to 7 €/kg within the boundaries analyzed. On-site production facilities were found to be the lower-cost design benefiting from the high volumes at stake and the economy of scale with respect to decentralized production due to the significant costs associated with retail hydrogen and transport. This study also illustrates the effects on the LCOH of varying the hydrogen delivery and production prices using a sensitivity analysis. The results show that by utilizing high-capacity trailers the costs associated with delivery could be reduced by 30%. Furthermore green hydrogen production could be a competitive solution if coupled with low electricity prices resulting in an LCOH between 4.21 €/kg and 6.80 €/kg.
Review on the Status of the Research on Power‐to‐Gas Experimental Activities
Aug 2022
Publication
In recent years power‐to‐gas technologies have been gaining ground and are increasingly proving their reliability. The possibility of implementing long‐term energy storage and that of being able to capture and utilize carbon dioxide are currently too important to be ignored. However sys‐ tems of this type are not yet experiencing extensive realization in practice. In this study an overview of the experimental research projects and the research and development activities that are currently part of the power‐to‐gas research line is presented. By means of a bibliographical and sitographical analysis it was possible to identify the characteristics of these projects and their distinctive points. In addition the main research targets distinguishing these projects are presented. This provides an insight into the research direction in this regard where a certain technological maturity has been achieved and where there is still work to be done. The projects found and analyzed amount to 87 mostly at laboratory scale. From these what is most noticeable is that research is currently focusing heavily on improving system efficiency and integration between components.
Operating Hydrogen-Based Energy Storage Systems in Wind Farms for Smooth Power Injection: A Penalty Fees Aware Model Predictive Control
Aug 2022
Publication
Smooth power injection is one of the possible services that modern wind farms could provide in the not-so-far future for which energy storage is required. Indeed this is one among the three possible operations identified by the International Energy Agency (IEA)-Hydrogen Implementing Agreement (HIA) within the Task 24 final report that may promote their integration into the main grid in particular when paired to hydrogen-based energy storages. In general energy storage can mitigate the inherent unpredictability of wind generation providing that they are deployed with appropriate control algorithms. On the contrary in the case of no storage wind farm operations would be strongly affected as well as their economic performances since the penalty fees wind farm owners/operators incur in case of mismatches between the contracted power and that actually delivered. This paper proposes a Model Predictive Control (MPC) algorithm that operates a Hydrogen-based Energy Storage System (HESS) consisting of one electrolyzer one fuel cell and one tank paired to a wind farm committed to smooth power injection into the grid. The MPC relies on Mixed-Logic Dynamic (MLD) models of the electrolyzer and the fuel cell in order to leverage their advanced features and handles appropriate cost functions in order to account for the operating costs the potential value of hydrogen as a fuel and the penalty fee mechanism that may negatively affect the expected profits generated by the injection of smooth power. Numerical simulations are conducted by considering wind generation profiles from a real wind farm in the center-south of Italy and spot prices according to the corresponding market zone. The results show the impact of each cost term on the performances of the controller and how they can be effectively combined in order to achieve some reasonable trade-off. In particular it is highlighted that a static choice of the corresponding weights can lead to not very effective handling of the effects given by the combination of the system conditions with the various exogenous’ while a dynamic choice may suit the purpose instead. Moreover the simulations show that the developed models and the set-up mathematical program can be fruitfully leveraged for inferring indications on the devices’ sizing.
Case Studies of Energy Storage with Fuel Cells and Batteries for Stationary and Mobile Applications
Mar 2017
Publication
In this paper hydrogen coupled with fuel cells and lithium-ion batteries are considered as alternative energy storage methods. Their application on a stationary system (i.e. energy storage for a family house) and a mobile system (i.e. an unmanned aerial vehicle) will be investigated. The stationary systems designed for off-grid applications were sized for photovoltaic energy production in the area of Turin Italy to provide daily energy of 10.25 kWh. The mobile systems to be used for high crane inspection were sized to have a flying range of 120 min one being equipped with a Li-ion battery and the other with a proton-exchange membrane fuel cell. The systems were compared from an economical point of view and a life cycle assessment was performed to identify the main contributors to the environmental impact. From a commercial point of view the fuel cell and the electrolyzer being niche products result in being more expensive with respect to the Li-ion batteries. On the other hand the life cycle assessment (LCA) results show the lower burdens of both technologies.
Energy and Environmental Assessment of Hydrogen from Biomass Sources: Challenges and Perspectives
Aug 2022
Publication
Hydrogen is considered as one of the pillars of the European decarbonisation strategy boosting a novel concept of the energy system in line with the EU’s commitment to achieve clean energy transition and reach the European Green Deal carbon neutrality goals by 2050. Hydrogen from biomass sources can significantly contribute to integrate the renewable hydrogen supply through electrolysis at large-scale production. Specifically it can cover the non-continuous production of green hydrogen coming from solar and wind energy to offer an alternative solution to such industrial sectors necessitating of stable supply. Biomass-derived hydrogen can be produced either from thermochemical pathways (i.e. pyrolysis liquefaction and gasification) or from biological routes (i.e. direct or indirect-biophotolysis biological water–gas shift reaction photo- and dark-fermentation). The paper reviews several production pathways to produce hydrogen from biomass or biomass-derived sources (biogas liquid bio-intermediates sugars) and provides an exhaustive review of the most promising technologies towards commercialisation. While some pathways are still at low technology readiness level others such as the steam bio-methane reforming and biomass gasification are ready for an immediate market uptake. The various production pathways are evaluated in terms of energy and environmental performances highlighting the limits and barriers of the available LCA studies. The paper shows that hydrogen production technologies from biomass appears today to be an interesting option almost ready to constitute a complementing option to electrolysis.
Hydrogen Safety Challenges: A Comprehensive Review on Production, Storage, Transport, Utilization, and CFD-Based Consequence and Risk Assessment
Mar 2024
Publication
This review examines the central role of hydrogen particularly green hydrogen from renewable sources in the global search for energy solutions that are sustainable and safe by design. Using the hydrogen square safety measures across the hydrogen value chain—production storage transport and utilisation—are discussed thereby highlighting the need for a balanced approach to ensure a sustainable and efficient hydrogen economy. The review also underlines the challenges in safety assessments points to past incidents and argues for a comprehensive risk assessment that uses empirical modelling simulation-based computational fluid dynamics (CFDs) for hydrogen dispersion and quantitative risk assessments. It also highlights the activities carried out by our research group SaRAH (Safety Risk Analysis and Hydrogen) relative to a more rigorous risk assessment of hydrogenrelated systems through the use of a combined approach of CFD simulations and the appropriate risk assessment tools. Our research activities are currently focused on underground hydrogen storage and hydrogen transport as hythane.
Optimal Design of Multi-energy Systems with Seasonal Storage
Oct 2017
Publication
Optimal design and operation of multi-energy systems involving seasonal energy storage are often hindered by the complexity of the optimization problem. Indeed the description of seasonal cycles requires a year-long time horizon while the system operation calls for hourly resolution; this turns into a large number of decision variables including binary variables when large systems are analyzed. This work presents novel mixed integer linear program methodologies that allow considering a year time horizon with hour resolution while significantly reducing the complexity of the optimization problem. First the validity of the proposed techniques is tested by considering a simple system that can be solved in a reasonable computational time without resorting to design days. Findings show that the results of the proposed approaches are in good agreement with the full-scale optimization thus allowing to correctly size the energy storage and to operate the system with a long-term policy while significantly simplifying the optimization problem. Furthermore the developed methodology is adopted to design a multi-energy system based on a neighborhood in Zurich Switzerland which is optimized in terms of total annual costs and carbon dioxide emissions. Finally the system behavior is revealed by performing a sensitivity analysis on different features of the energy system and by looking at the topology of the energy hub along the Pareto sets.
Performance Assessment of an Integrated Environmental Control System of Civil Hypersonic Vehicles
Apr 2022
Publication
This paper discloses the architecture and related performance of an environment control system designed to be integrated within a complex multi-functional thermal and energy management system that manages the heat loads and generation of electric power in a hypersonic vehicle by benefitting from the presence of cryogenic liquid hydrogen onboard. A bleed-less architecture implementing an open-loop cycle with a boot-strap sub-freezing air cycle machine is suggested. Hydrogen boil-off reveals to be a viable cold source for the heat exchangers of the system as well as for the convective insulation layer designed around the cabin walls. Including a 2 mm boil-off convective layer into the cabin cross-section proves to be far more effective than a more traditional air convective layer of approximately 60 mm. The application to STRATOFLY MR3 a Mach 8 waverider cruiser using liquid hydrogen as propellant confirmed that presence of cryogenic tanks provides up to a 70% reduction in heat fluxes entering the cabin generated outside of it but inside the vehicle by the propulsive system and other onboard systems. The effectiveness of the architecture was confirmed for all Mach numbers (from 0.3 to 8) and all flight altitudes (from sea level to 35 km).
Recent Developments of Membranes and Electrocatalysts for the Hydrogen Production by Anion Exchange Membrane Water Electrolysers: A Review
Nov 2022
Publication
Hydrogen production using anion exchange membrane water electrolysis (AEMWE) offers hope to the energy crisis faced by humanity. AEM electrolysis can be coupled with intermittent and renewable energy sources as well as with the use of low-cost electrocatalysts and other low-cost stack components. In AEM water electrolysis one of the biggest advantages is the use of low-cost transition metal catalysts instead of traditional noble metal electrocatalysts. AEMWE is still in its infancy despite irregular research on catalysts and membranes. In order to generate commercially viable hydrogen AEM water electrolysis technology must be further developed including energy efficiency membrane stability stack feasibility robustness ion conductivity and cost reduction. An overview of studies that have been conducted on electrocatalysts membranes and ionomers used in the AEMWEs is here reported with the aim that AEMWE research may be made more practical by this review report by bridging technological gaps and providing practical research recommendations leading to the production of scalable hydrogen.
No more items...