Italy
Comprehensive Review on Fuel Cell Technology for Stationary Applications as Sustainable and Efficient Poly-Generation Energy Systems
Aug 2021
Publication
Fuel cell technologies have several applications in stationary power production such as units for primary power generation grid stabilization systems adopted to generate backup power and combined-heat-and-power configurations (CHP). The main sectors where stationary fuel cells have been employed are (a) micro-CHP (b) large stationary applications (c) UPS and IPS. The fuel cell size for stationary applications is strongly related to the power needed fr Read More
Numerical Analysis of VPSA Technology Retrofitted to Steam Reforming Hydrogen Plants to Capture CO2 and Produce Blue H2
Feb 2022
Publication
The increasing demand for energy and commodities has led to escalating greenhouse gas emissions the chief of which is represented by carbon dioxide (CO2). Blue hydrogen (H2) a lowcarbon hydrogen produced from natural gas with carbon capture technologies applied has been suggested as a possible alternative to fossil fuels in processes with hard-to-abate emission sources including refining chemical petrochemical and transport sectors. Due t Read More
Magnesium Based Materials for Hydrogen Based Energy Storage: Past, Present and Future
Jan 2019
Publication
Volodymyr A. Yartys,
Mykhaylo V. Lototskyy,
Etsuo Akiba,
Rene Albert,
V. E. Antonov,
Jose-Ramón Ares,
Marcello Baricco,
Natacha Bourgeois,
Craig Buckley,
José Bellosta von Colbe,
Jean-Claude Crivello,
Fermin Cuevas,
Roman V. Denys,
Martin Dornheim,
Michael Felderhoff,
David M. Grant,
Bjørn Christian Hauback,
Terry D. Humphries,
Isaac Jacob,
Petra E. de Jongh,
Jean-Marc Joubert,
Mikhail A. Kuzovnikov,
Michel Latroche,
Mark Paskevicius,
Luca Pasquini,
L. Popilevsky,
Vladimir M. Skripnyuk,
Eugene I. Rabkin,
M. Veronica Sofianos,
Alastair D. Stuart,
Gavin Walker,
Hui Wang,
Colin Webb,
Min Zhu and
Torben R. Jensen
Magnesium hydride owns the largest share of publications on solid materials for hydrogen storage. The “Magnesium group” of international experts contributing to IEA Task 32 “Hydrogen Based Energy Storage” recently published two review papers presenting the activities of the group focused on magnesium hydride based materials and on Mg based compounds for hydrogen and energy storage. This review article not only overviews the lat Read More
Life Cycle Assessment of Substitute Natural Gas Production from Biomass and Electrolytic Hydrogen
Feb 2021
Publication
The synthesis of a Substitute Natural Gas (SNG) that is compatible with the gas grid composition requirements by using surplus electricity from renewable energy sources looks a favourable solution to store large quantities of electricity and to decarbonise the gas grid network while maintaining the same infrastructure. The most promising layouts for SNG production and the conditions under which SNG synthesis reduces the environmental impacts i Read More
Safety Distances- Definition and Values
Sep 2005
Publication
In order to facilitate the introduction of a new technology as it is the utilization of hydrogen as an energy carrier development of safety codes and standards besides the conduction of demonstrative projects becomes a very important action to be realized. Useful tools of work could be the existing gaseous fuel codes (natural gas and propane) regulating the stationary and automotive applications. Some safety codes have been updated to include hydroge Read More
Innovative Passive Protection Systems For Hydrogen Production Plants
Sep 2005
Publication
As a part of a broader project on hydrogen production by reforming of methane in a membrane catalytic reactor this paper outlines the research activity performed at the University of Pisa Department of Chemical Engineering aimed at developing and testing composite panels that can operate as thermal protective shields against hydrogen jet fires. The shield design criterion that appears to give a more practical and convenient solution for the type Read More
Potential Models For Stand-Alone And Multi-Fuel Gaseous Hydrogen Refuelling Stations- Assessment Of Associated Risk
Sep 2005
Publication
Air pollution and traffic congestion are two of the major issues affecting public authorities policy makers and citizens not only in Italy and European Union but worldwide; this is nowadays witnessed by always more frequent limitations to the traffic in most of Italian cities for instance. Hydrogen use in automotive appears to offer a viable solution in medium-long term; this new perspective involves the need to carry out adequate infrastructures for distributio Read More
Determination Of Hazardous Zones For A Generic Hydrogen Station – A Case Study
Sep 2007
Publication
A method for determination of hazardous zones for hydrogen installations has been studied. This work has been carried out within the NoE HySafe. The method is based on the Italian Method outlined in Guide 31-30(2004) Guide 31–35(2001) Guide 31-35/A(2001) and Guide 31-35/A; V1(2003). Hazardous zones for a “generic hydrogen refuelling station”(HRS) are assessed based on this method. The method is consistent with the EU directive 1999/92/EC “S Read More
Impact of Hydrogen Injection on Natural Gas Measurement
Dec 2021
Publication
Hydrogen is increasingly receiving a primary role as an energy vector in ensuring the achievement of the European decarbonization goals by 2050. In fact Hydrogen could be produced also by electrolysis of water using renewable sources such as photovoltaic and wind power being able to perform the energy storage function as well as through injection into natural gas infrastructures. However hydrogen injection directly impacts thermodynamic properti Read More
Hydrogen Transport Safety: Case of Compressed Gaseous Tube Trailer
Sep 2005
Publication
The following paper describes researches to evaluate the behaviour under various accidental conditions of systems of transport compressed hydrogen. Particularly have been considered gaseous tube trailer and the packages cylinders employed for the road transport which have an internal gas pressures up to 200 barg.Further to a verification of the actual safety conditions this analysis intends to propose a theme that in the next future if confirmed pr Read More
Guidelines for Fire Corps Standard Operating Procedures in the Event of Hydrogen Releases
Sep 2007
Publication
This paper presents a study on the Standard Operating Procedures (P.O.S.s) for the operation of the Fire Corps squads in the event of accidents with a hydrogen release fire or explosion. This study has been carried out by the Italian Working Group on the fire prevention safety issues as one of its main objectives. The Standard Operating Procedures proved to be a basic tool in order to improve the effectiveness of the Fire Corps rescue activity. Th Read More
Quantification of the Uncertainty of the Peak Pressure Value in the Vented Deflagrations of Air-Hydrogen Mixtures
Sep 2007
Publication
In the problem of the protection by the consequences of an explosion is actual for many industrial application involving storage of gas like methane or hydrogen refuelling stations and so on. A simple and economic way to reduce the peak pressure associated to a deflagration is to supply to the confined environment an opportune surface substantially less resistant then the protected structure typically in stoichiometric conditions the peak pressure Read More
Natural and Forced Ventilation Study In An Enclosure Hosting a Fuel Cell
Sep 2009
Publication
The purpose of the experimental work is to determine the conditions for which an enclosure can guest a fuel cell for civil use. Concerning the installation permitting guide this study allows the safe use of the fuel cell in case of small not catastrophic leakages. In fact the correct plan of the vents in the enclosure guarantees the low concentration of hydrogen (H2) below the LFL.
Fire Prevention Technical Rule for Gaseous Hydrogen Refuelling Stations
Sep 2005
Publication
In the last years different Italian hydrogen projects provided for gaseous hydrogen motor vehicles refuelling stations. Motivated by the lack of suitable set of rules in the year 2002 Italian National Firecorps (Institute under the Italian Ministry of the Interior) formed an Ad Hoc Working Group asked to regulate the above-said stations as regards fire prevention and protection safety. This Working Group consists of members coming from both Firecorps and ac Read More
Mixing of Dense or Light Gases with Turbulent Air- a Fast-Running Model for Lumped Parameter Codes
Sep 2005
Publication
The release of gases heavier than air like propane at ground level or lighter than air like hydrogen close to a ceiling can both lead to fire and explosion hazards that must be carefully considered in safety analyses. Even if the simulation of accident scenarios in complex installations and long transients often appears feasible only using lumped parameter computer codes the phenomenon of denser or lighter gas dispersion is not implicitly accounted by Read More
Consequence Assessment of the BBC Hydrogen Refuelling Station, Using The Adrea-Hf Code
Sep 2009
Publication
Within the framework of the internal project HyQRA of the HYSAFE Network of Excellence (NoE) funded by the European Commission (EC) the participating partners were requested to apply their Quantitative Risk Assessment (QRA) methodologies on a predefined hypothetical gaseous H2 refuelling station named BBC (Benchmark Base Case). The overall aim of the HyQRA project was to perform an inter-comparison of the various QRA approaches and to ide Read More
Fire Prevention Technical Rule for Gaseous Hydrogen Transport in Pipelines
Sep 2007
Publication
This paper presents the current results of the theoretical and experimental activity carried out by the Italian Working Group on the fire prevention safety issues in the field of the hydrogen transport in pipelines. From the theoretical point of view a draft document has been produced beginning from the regulations in force on the natural gas pipelines; these have been reviewed corrected and integrated with the instructions suitable to the use with Read More
Green Synthetic Fuels: Renewable Routes for the Conversion of Non-Fossil Feedstocks into Gaseous Fuels and Their End Uses
Jan 2020
Publication
Innovative renewable routes are potentially able to sustain the transition to a decarbonized energy economy. Green synthetic fuels including hydrogen and natural gas are considered viable alternatives to fossil fuels. Indeed they play a fundamental role in those sectors that are difficult to electrify (e.g. road mobility or high-heat industrial processes) are capable of mitigating problems related to flexibility and instantaneous balance of the electric grid ar Read More
A Review of the MSCA ITN ECOSTORE—Novel Complex Metal Hydrides for Efficient and Compact Storage of Renewable Energy as Hydrogen and Electricity
Mar 2020
Publication
Hydrogen as an energy carrier is very versatile in energy storage applications. Developments in novel sustainable technologies towards a CO2-free society are needed and the exploration of all-solid-state batteries (ASSBs) as well as solid-state hydrogen storage applications based on metal hydrides can provide solutions for such technologies. However there are still many technical challenges for both hydrogen storage material and ASSBs related to design Read More
Modelling and Analyzing the Impact of Hydrogen Enriched Natural Gas on Domestic Gas Boilers in a Decarbonization Perspective
Aug 2020
Publication
Decarbonization of energy economy is nowadays a topical theme and several pathways are under discussion. Gaseous fuels have a fundamental role for this transition and the production of low carbon-impact fuels is necessary to deal with this challenge. The generation of renewable hydrogen is a trusted solution since this energy vector can be promptly produced from electricity and injected into the existing natural gas infrastructure granting storage capac Read More
Renewable Hydrogen Potential for Low-carbon Retrofit of the Building Stocks
Dec 2015
Publication
Energy-related GHG emissions mainly from fossil fuels combustion account for around 70% of total emissions. Those emissions are the target of the recent sustainability policies. Indeed renewables exploitation is considered widely the weapon to deal with this challenge thanks to their carbon neutrality. But the biggest drawback is represented by the mismatching between their production and users consumption. The storage would be a possible solution b Read More
Photovoltaic and Hydrogen Plant Integrated with a Gas Heat Pump for Greenhouse Heating: A Mathematical Study
Feb 2018
Publication
Nowadays the traditional energy sources used for greenhouse heating are fossil fuels such as LPG diesel and natural gas. The global energy demand will continue to grow and alternative technologies need to be developed in order to improve the sustainability of crop production in protected environments. Innovative solutions are represented by renewable energy plants such as photovoltaic wind and geothermal integrated systems however these te Read More
Electrolyzer Performance Analysis of an Integrated Hydrogen Power System for Greenhouse Heating. A Case Study
Jul 2016
Publication
A greenhouse containing an integrated system of photovoltaic panels a water electrolyzer fuel cells and a geothermal heat pump was set up to investigate suitable solutions for a power system based on solar energy and hydrogen feeding a self-sufficient geothermal-heated greenhouse. The electricity produced by the photovoltaic source supplies the electrolyzer; the manufactured hydrogen gas is held in a pressure tank. In these systems the electrolyzer i Read More
Experimental Characterization of an Alkaline Electrolyser and a Compression System for Hydrogen Production and Storage
Aug 2021
Publication
Storing renewable energy in chemicals like hydrogen can bring various benefits like high energy density seasonal storability possible cost reduction of the final product and the potential to let renewable power penetrate other markets and to overcome their intermittent availability. In the last year’s production of this gas from renewable energy sources via electrolysis has grown its reputation as one feasible solution to satisfy future zero-emission energy de Read More
Process Integration of Green Hydrogen: Decarbonization of Chemical Industries
Sep 2020
Publication
Integrated water electrolysis is a core principle of new process configurations for decarbonized heavy industries. Water electrolysis generates H2 and O2 and involves an exchange of thermal energy. In this manuscript we investigate specific traditional heavy industrial processes that have previously been performed in nitrogen-rich air environments. We show that the individual process streams may be holistically integrated to establish new decarbonized indust Read More
Willingness to Pay and Public Acceptance for Hydrogen Buses: A Case Study of Perugia
Sep 2015
Publication
Sustainability transportation is characterized by a positive externality on the environment health social security land use and social inclusion. The increasing interest in global warming has caused attention to be paid to the introduction of the hydrogen bus (H2B). When introducing new environmental technologies such as H2B it is often necessary to assess the environmental benefits related to this new technology. However such benefits are typically non-pric Read More
Recent Progress and New Perspectives on Metal Amide and Imide Systems for Solid-State Hydrogen Storage
Apr 2018
Publication
Hydrogen storage in the solid state represents one of the most attractive and challenging ways to supply hydrogen to a proton exchange membrane (PEM) fuel cell. Although in the last 15 years a large variety of material systems have been identified as possible candidates for storing hydrogen further efforts have to be made in the development of systems which meet the strict targets of the Fuel Cells and Hydrogen Joint Undertaking (FCH JU) and U.S. Read More
High Energy Density Storage of Gaseous Marine Fuels: An Innovative Concept and its Application to a Hydrogen Powered Ferry
Apr 2020
Publication
The upcoming stricter limitations on both pollutant and greenhouse gases emissions represent a challenge for the shipping sector. The entire ship design process requires an approach to innovation with a particular focus on both the fuel choice and the power generation system. Among the possible alternatives natural gas and hydrogen based propulsion systems seem to be promising in the medium and long term. Nonetheless natural gas and hydrogen st Read More
The EOS Project- A SOFC Pilot Plant in Italy Safety Aspects
Sep 2005
Publication
This paper deals with the main safety aspects of the EOS project. The partners of the project – Politecnico di Torino Gas Turbine Technologies (GTT Siemens group) Hysylab (Hydrogen System Laboratory) of Environment Park and Regione Piemonte – aim to create the main node of a regional fuel cell generator network. As a first step the Pennsylvania-based Stationary Fuel Cells division of Siemens Westinghouse Power Corporation (SWPC) supplied GTT wit Read More
Study of Hydrogen Enriched Premixed Flames
Sep 2005
Publication
In the present paper the theoretical study of the un-stretched laminar premixed flames of hydrogen-methane mixtures is carried out by using the detailed reaction mechanism GRI-Mech 3.0 implemented in the CHEMKIN software to find out the effect of hydrogen addition on the hybrid fuel burning velocity. The model results show that the laminar burning velocity of the hydrogen-methane mixtures is not the linear regression of those of the pure fuels sinc Read More
SNG Generation via Power to Gas Technology: Plant Design and Annual Performance Assessment
Nov 2020
Publication
Power to gas (PtG) is an emerging technology that allows to overcome the issues due to the increasingly widespread use of intermittent renewable energy sources (IRES). Via water electrolysis power surplus on the electric grid is converted into hydrogen or into synthetic natural gas (SNG) that can be directly injected in the natural gas network for long-term energy storage. The core units of the Power to synthetic natural gas (PtSNG) plant are the electr Read More
A Preliminary Energy Analysis of a Commercial CHP Fueled with H2NG Blends Chemically Supercharged by Renewable Hydrogen and Oxygen
Dec 2016
Publication
Currently Power-to-Gas technologies are considered viable solutions to face the onset problems associated with renewable capacity firming. Indeed carbon-free hydrogen production converting renewable electricity excess and its injection into natural gas pipelines is considered a short- to medium-term solution. In this way the so-called H2NG blends can be fired within internal combustion engines and micro gas turbines operating in CHP mode offering bett Read More
Optimal Design of Multi-energy Systems with Seasonal Storage
Oct 2017
Publication
Optimal design and operation of multi-energy systems involving seasonal energy storage are often hindered by the complexity of the optimization problem. Indeed the description of seasonal cycles requires a year-long time horizon while the system operation calls for hourly resolution; this turns into a large number of decision variables including binary variables when large systems are analyzed. This work presents novel mixed integer linear program Read More
Impact Assessments on People and Buildings for Hydrogen Pipeline Explosions
Sep 2019
Publication
Hydrogen has the potential to act as the energy carrier of the future. It will be then produced in large amounts and will certainly need to be transported for long distances. The safest way to transport hydrogen is through pipelines. Failure of pipelines carrying gaseous hydrogen can have several effects some of which can pose a significant threat of damage to people and buildings in the immediate proximity of the failure location. This paper presents a pro Read More
Lock-In Effects on the Energy Sector: Evidence from Hydrogen Patenting Activities
Apr 2022
Publication
The aim of the paper is to analyze how regulatory design and its framework’s topics other than macroeconomic factors might impact green innovation by taking into consideration a brand-new renewable source of energy that is becoming more and more important in recent years: hydrogen and fuel cell patenting activities. Such activities have been used as a proxy for green technological change in a panel data of 52 countries over a 6-year period. Read More
An Energy Autonomous House Equipped with a Solar PV Hydrogen Conversion System
Dec 2015
Publication
The use of RES in buildings is difficult for their random nature; therefore the plants using photovoltaic solar collectors must be connected to a power supply or interconnected with Energy accumulators if the building is isolated. The conversion of electricity into hydrogen technology is best suited to solve the problem and allows you to transfer the solar energy captured from day to night from summer to winter. This paper presents the feasibility study for a hous Read More
Optimal Operations for Hydrogen-based Energy Storage Systems in Wind Farms via Model Predictive Control
Feb 2021
Publication
Efficient energy production and consumption are fundamental points for reducing carbon emissions that influence climate change. Alternative resources such as renewable energy sources (RESs) used in electricity grids could reduce the environmental impact. Since RESs are inherently unreliable during the last decades the scientific community addressed research efforts to their integration with the main grid by means of properly designed energy storag Read More
Seasonal Energy Storage for Zero-emissions Multi-energy Systems Via Underground Hydrogen Storage
Jan 2020
Publication
The deployment of diverse energy storage technologies with the combination of daily weekly and seasonal storage dynamics allows for the reduction of carbon dioxide (CO2) emissions per unit energy provided. In particular the production storage and re-utilization of hydrogen starting from renewable energy has proven to be one of the most promising solutions for offsetting seasonal mismatch between energy generation and consumption. A realistic p Read More
Influence of Thermal Treatment on SCC and HE Susceptibility of Supermartensitic Stainless Steel 16Cr5NiMo
Apr 2020
Publication
A 16Cr5NiMo supermartensitic stainless steel was subjected to different tempering treatments and analyzed by means of permeation tests and slow strain rate tests to investigate the effect of different amounts of retained austenite on its hydrogen embrittlement susceptibility. The 16Cr5NiMo steel class is characterized by a very low carbon content. It is the new variant of 13Cr4Ni. These steels are used in many applications for example compressors Read More
Integration of Chemical Looping Combustion for Cost-effective CO2 Capture from State-of-the-art Natural Gas Combined Cycles
May 2020
Publication
Chemical looping combustion (CLC) is a promising method for power production with integrated CO2 capture with almost no direct energy penalty. When integrated into a natural gas combined cycle (NGCC) plant however CLC imposes a large indirect energy penalty because the maximum achievable reactor temperature is far below the firing temperature of state-of-the-art gas turbines. This study presents a techno-economic assessment of a CLC plant Read More
Micro-wrinkled Pd Surface for Hydrogen Sensing and Switched Detection of Lower Explosive Limit
Sep 2011
Publication
We report the development and testing of a novel hydrogen sensor that shows a very peculiar response to hydrogen exposure due to its micro-structured palladium surface. The fabrication of the wrinkled Pd surface is obtained using an innovative fast and cheap technique based on the deposition of a thin Pd film on to a thermo-retractable polystyrene sheet that shrinks to 40% of its original size when heated. The buckling of the Pd surface induced by s Read More
Hydrogen–methane Mixtures: Dispersion and Stratification Studies
Sep 2011
Publication
The study of hydrogen as an alternative fuel clean and “environment friendly” has been in the last years and continues to be object of many studies international projects and standard development. Hydrogen is a fundamental energy carrier to be developed together with other renewable resources for the transition to a sustainable energy system.But experience has shown how often the introduction and establishment of a new technology does not n Read More
Non-stoichiometric Methanation as Strategy to Overcome the Limitations of Green Hydrogen Injection into the Natural Gas Grid
Jan 2022
Publication
The utilization of power to gas technologies to store renewable electricity surpluses in the form of hydrogen enables the integration of the gas and electricity sectors allowing the decarbonization of the natural gas network through green hydrogen injection. Nevertheless the injection of significant amounts of hydrogen may lead to high local concentrations that may degrade materials (e.g. hydrogen embrittlement of pipelines) and in general be not acce Read More
Minimum Emissions Configuration of a Green Energy–Steel System: An Analytical Model
May 2022
Publication
The need to significantly reduce emissions from the steelmaking sector requires effective and ready-to-use technical solutions. With this aim different decarbonization strategies have been investigated by both researchers and practitioners. To this concern the most promising pathway is represented by the replacement of natural gas with pure hydrogen in the direct reduced iron (DRI) production process to feed an electric arc furnace (EAF). This solut Read More
Mechanical Spectroscopy Investigation of Point Defect-Driven Phenomena in a Cr Martensitic Steel
Oct 2018
Publication
The paper presents and discusses results of mechanical spectroscopy (MS) tests carried out on a Cr martensitic steel. The study regards the following topics: (i) embrittlement induced by Cr segregation; (ii) interaction of hydrogen with C–Cr associates; (iii) nucleation of Cr carbides. The MS technique permitted characterising of the specific role played by point defects in the investigated phenomena: (i) Cr segregation depends on C–Cr associates distributio Read More
Application of Hydrides in Hydrogen Storage and Compression: Achievements, Outlook and Perspectives
Feb 2019
Publication
José Bellosta von Colbe,
Jose-Ramón Ares,
Jussara Barale,
Marcello Baricco,
Craig Buckley,
Giovanni Capurso,
Noris Gallandat,
David M. Grant,
Matylda N. Guzik,
Isaac Jacob,
Emil H. Jensen,
Julian Jepsen,
Thomas Klassen,
Mykhaylo V. Lototskyy,
Kandavel Manickam,
Amelia Montone,
Julian Puszkiel,
Martin Dornheim,
Sabrina Sartori,
Drew Sheppard,
Alastair D. Stuart,
Gavin Walker,
Colin Webb,
Heena Yang,
Volodymyr A. Yartys,
Andreas Züttel and
Torben R. Jensen
Metal hydrides are known as a potential efficient low-risk option for high-density hydrogen storage since the late 1970s. In this paper the present status and the future perspectives of the use of metal hydrides for hydrogen storage are discussed. Since the early 1990s interstitial metal hydrides are known as base materials for Ni – metal hydride rechargeable batteries. For hydrogen storage metal hydride systems have been developed in the 2010s [1] for us Read More
The Role of the Flow Field Generated by Venting Process on the Pressure Time History of a Vented Deflagration
Sep 2017
Publication
Vented deflagrations are one of the most challenging phenomenon to be replicated numerically in order to predict its resulting pressure time history. As a matter of fact a number of different phenomena can contribute to modify the burning velocity of a gas mixture undergoing a deflagration especially when the flame velocity is considerably lower than the speed of sound. In these conditions acceleration generated by both the flow field induced by the Read More
Investigation of Mechanical Tests for Hydrogen Embrittlement in Automotive PHS Steels
Aug 2019
Publication
The problem of hydrogen embrittlement in ultra-high-strength steels is well known. In this study slow strain rate four-point bending and permeation tests were performed with the aim of characterizing innovative materials with an ultimate tensile strength higher than 1000 MPa. Hydrogen uptake in the case of automotive components can take place in many phases of the manufacturing process: during hot stamping due to the presence of moisture in the Read More
Evaluation of Sorbents for High Temperature Removal of Tars, Hydrogen Sulphide, Hydrogen Chloride and Ammonia from Biomass-derived Syngas by Using Aspen Plus
Jan 2020
Publication
Biomass gasification is a promising technology to produce secondary fuels or heat and power offering considerable advantages over fossil fuels. An important aspect in the usage of producer gas is the removal of harmful contaminants from the raw syngas. Thus the object of this study is the development of a simulation model for a gasifier including gas clean-up for which a fluidized-bed gasifier for biomass-derived syngas production was considered bas Read More
Hydrogen Embrittlement Behavior of 18Ni 300 Maraging Steel Produced by Selective Laser Melting
Jul 2019
Publication
A study was performed to investigate the hydrogen embrittlement behavior of 18-Ni 300 maraging steel produced by selective laser melting and subjected to different heat treatment strategies. Hydrogen was pre-charged into the tensile samples by an electro-chemical method at the constant current density of 1 A m−2 and 50 A m−2 for 48 h at room temperature. Charged and uncharged specimens were subjected to tensile tests and the hydrogen concentr Read More
Comparative Life Cycle Assessment of Hydrogen-fuelled Passenger Cars
Feb 2021
Publication
In order to achieve gradual but timely decarbonisation of the transport sector it is essential to evaluate which types of vehicles provide a suitable environmental performance while allowing the use of hydrogen as a fuel. This work compares the environmental life-cycle performance of three different passenger cars fuelled by hydrogen: a fuel cell electric vehicle an internal combustion engine car and a hybrid electric vehicle. Besides two vehicle Read More
Control of Electrons’ Spin Eliminates Hydrogen Peroxide Formation During Water Splitting
Jul 2017
Publication
The production of hydrogen through water splitting in a photoelectrochemical cell suffers from an overpotential that limits the efficiencies. In addition hydrogen-peroxide formation is identified as a competing process affecting the oxidative stability of photoelectrodes. We impose spin-selectivity by coating the anode with chiral organic semiconductors from helically aggregated dyes as sensitizers; Zn-porphyrins and triarylamines. Hydrogen peroxide f Read More
Hydrogen Embrittlement in Advanced High Strength Steels and Ultra High Strength Steels: A New Investigation Approach
Dec 2018
Publication
In order to reduce CO2 emissions and fuel consumption and to respect current environmental norms the reduction of vehicles weight is a primary target of the automotive industry. Advanced High Strength Steels (AHSS) and Ultra High Strength Steel (UHSS) which present excellent mechanical properties are consequently increasingly used in vehicle manufacturing. The increased strength to mass ratio compensates the higher cost per kg and AHSS and Read More
Engineering Thoughts on Hydrogen Embrittlement
Jul 2018
Publication
Hydrogen Embrittlement (HE) is a topical issue for pipelines transporting sour products. Engineers need a simple and effective approach in materials selection at design stage. In other words they must know if a material is susceptible to cracking to be able of:selecting the right material and apply correct operational measures during the service life.Following ASTM F2078 HE is “a permanent loss of ductility in a metal or alloy caused by hydrogen in combination Read More
The Deltah Lab, a New Multidisciplinary European Facility to Support the H2 Distribution & Storage Economy
Apr 2021
Publication
The target for European decarburization encourages the use of renewable energy sources and H2 is considered the link in the global energy system transformation. So research studies are numerous but only few facilities can test materials and components for H2 storage. This work offers a brief review of H2 storage methods and presents the preliminary results obtained in a new facility. Slow strain rate and fatigue life tests were performed in H2 at Read More
Hydrogen Embrittlement in a 2101 Lean Duplex Stainless Steel
Sep 2019
Publication
Duplex Stainless Steels (DSSs) are an attractive class of materials characterized by a strong corrosion resistance in many aggressive environments. Thanks to the high mechanical performances DSSs are widely used for many applications in petrochemical industry chemical and nuclear plants marine environment desalination etc.Among the DSSs critical aspects concerning the embrittlement process it is possible to remember the steel sensitization and the h Read More
Detection, Characterization and Sizing of Hydrogen Induced Cracking in Pressure Vessels Using Phased Array Ultrasonic Data Processing
Jul 2016
Publication
Pressure vessels operating in sour service conditions in refinery environments can be subject to the risk of H₂S cracking resulting from the hydrogen entering into the material. This risk which is related to the specific working conditions and to the quality of the steel used shall be properly managed in order to maintain the highest safety at a cost-effective level.Nowadays the typical management strategy is based on a risk based inspection (RBI) evaluatio Read More
Towards a Climate-neutral Energy System in the Netherlands
Jan 2022
Publication
This paper presents two different scenarios for the energy system of the Netherlands that achieve the Dutch government’s national target of near net-zero greenhouse gas emissions in 2050. Using the system optimisation model OPERA the authors have analysed the technology sector and cost implications of the assumptions underlying these scenarios. While the roles of a number of key energy technology and emission mitigation options are strongly depen Read More
Experimental Study of Hydrogen Embrittlement in Maraging Steels
Feb 2018
Publication
This research activity aims at investigating the hydrogen embrittlement of Maraging steels in connection to real sudden failures of some of the suspension blades of the Virgo Project experimental apparatus. Some of them failed after 15 years of service in working conditions. Typically in the Virgo detector blades are loaded up to 50-60% of the material yield strength. For a deeper understanding of the failure the relationship between hydrogen concentratio Read More
Optimisation-based System Designs for Deep Offshore Wind Farms including Power to Gas Technologies
Feb 2022
Publication
A large deployment of energy storage solutions will be required by the stochastic and non-controllable nature of most renewable energy sources when planning for higher penetration of renewable electricity into the energy mix. Various solutions have been suggested for dealing with medium- and long-term energy storage. Hydrogen and ammonia are two of the most frequently discussed as they are both carbon-free fuels. In this paper the authors an Read More
A Preliminary Assessment of the Potential of Low Percentage Green Hydrogen Blending in the Italian Natural Gas Network
Oct 2020
Publication
The growing rate of electricity generation from renewables is leading to new operational and management issues on the power grid because the electricity generated exceeds local requirements and the transportation or storage capacities are inadequate. An interesting option that is under investigation by several years is the opportunity to use the renewable electricity surplus to power electrolyzers that split water into its component parts with the hy Read More
Performance Assessment of an Integrated Environmental Control System of Civil Hypersonic Vehicles
Apr 2022
Publication
This paper discloses the architecture and related performance of an environment control system designed to be integrated within a complex multi-functional thermal and energy management system that manages the heat loads and generation of electric power in a hypersonic vehicle by benefitting from the presence of cryogenic liquid hydrogen onboard. A bleed-less architecture implementing an open-loop cycle with a boot-strap sub-freezing air cycl Read More
Numerical Evaluation of the Effect of Fuel Blending with CO2 and H2 on the Very Early Corona‐Discharge Behavior in Spark Ignited Engines
Feb 2022
Publication
Reducing green‐house gases emission from light‐duty vehicles is compulsory in order to slow down the climate change. The application of High Frequency Ignition systems based on the Corona discharge effect has shown the potential to extend the dilution limit of engine operating conditions promoting lower temperatures and faster combustion events thus higher thermal and indicating efficiency. Furthermore predicting the behavior of Corona ignition Read More
Macroeconomic Factors Influencing Public Policy Strategies for Blue and Green Hydrogen
Nov 2021
Publication
The aim of this paper is to analyze the factors affecting hydrogen and Carbon Capture and Storage Technologies (“CCS”) policies taking into consideration Fossil Fuel Consumption Oil Reserves the Debt/GDP Ratio the Trilemma Index and other variables with respect to OECD countries. STATA 17 was used for the analysis. The results confirm the hypothesis that countries with high fossil fuel consumption and oil reserves are investing in blue hydrogen and CC Read More
Solid-State Hydrogen Storage Systems and the Relevance of a Gender Perspective
Sep 2021
Publication
This paper aims at addressing the exploitation of solid-state carriers for hydrogen storage with attention paid both to the technical aspects through a wide review of the available integrated systems and to the social aspects through a preliminary overview of the connected impacts from a gender perspective. As for the technical perspective carriers to be used for solid-state hydrogen storage for various applications can be classified into two classes: metal Read More
Finding Synergy Between Renewables and Coal: Flexible Power and Hydrogen Production from Advanced IGCC Plants with Integrated CO2 Capture
Feb 2021
Publication
Variable renewable energy (VRE) has seen rapid growth in recent years. However VRE deployment requires a fleet of dispatchable power plants to supply electricity during periods with limited wind and sunlight. These plants will operate at reduced utilization rates that pose serious economic challenges. To address this challenge this paper presents the techno-economic assessment of flexible power and hydrogen production from integrated gasificati Read More
Dynamic Emulation of a PEM Electrolyzer by Time Constant Based Exponential Model
Feb 2019
Publication
The main objective of this paper is to develop a dynamic emulator of a proton exchange membrane (PEM) electrolyzer (EL) through an equivalent electrical model. Experimental investigations have highlighted the capacitive effect of EL when subjecting to dynamic current profiles which so far has not been reported in the literature. Thanks to a thorough experimental study the electrical domain of a PEM EL composed of 3 cells has been modeled und Read More
Analysis of Standard and Innovative Methods for Allocating Upstream and Refinery GHG Emissions to Oil Products
Sep 2017
Publication
Alternative fuel policies need accurate and transparent methods to find the embedded carbon intensity of individual refinery products. This study investigates different ways of allocating greenhouse gases emissions deriving from refining and upstream crude oil supply. Allocation methods based on mass energy content economic value and innovatively added-value are compared with the marginal refining emissions calculated by CONCAWE’s linear-progra Read More
Electric Mobility in Portugal: Current Situation and Forecasts for Fuel Cell Vehicles
Nov 2021
Publication
In recent years the growing concern for air quality has led to the development of sustainable vehicles to replace conventional internal combustion engine (ICE) vehicles. Currently the most widespread technology in Europe and Portugal is that of Battery Electric Vehicles (BEV) or plug‐in HEV (PHEV) electric cars but hydrogen‐based transport has also shown significant growth in the commercialization of Fuel Cell Electric Vehicles (FCEV) and in the developm Read More
Numerical Investigation of Dual Fuel Combustion on a Compression Ignition Engine Fueled with Hydrogen/Natural Gas Blends
Mar 2022
Publication
The present work aims to assess the influence of the composition of blends of hydrogen (H2 ) and Natural Gas (NG) on Dual Fuel (DF) combustion characteristics including gaseous emissions. The 3D-CFD study is carried out by means of a customized version of the KIVA-3V code. An automotive 2.8 L 4-cylinder turbocharged diesel engine was previously modified in order to operate in DF NG–diesel mode and tested at the dynamometer bench. Aft Read More
The Route from Green H2 Production through Bioethanol Reforming to CO2 Catalytic Conversion: A Review
Mar 2022
Publication
Currently a progressively different approach to the generation of power and the production of fuels for the automotive sector as well as for domestic applications is being taken. As a result research on the feasibility of applying renewable energy sources to the present energy scenario has been progressively growing aiming to reduce greenhouse gas emissions. Following more than one approach the integration of renewables mainly involv Read More
Heat Recovery from a PtSNG Plant Coupled with Wind Energy
Nov 2021
Publication
Power to substitute natural gas (PtSNG) is a promising technology to store intermittent renewable electricity as synthetic fuel. Power surplus on the electric grid is converted to hydrogen via water electrolysis and then to SNG via CO2 methanation. The SNG produced can be directly injected into the natural gas infrastructure for long-term and large-scale energy storage. Because of the fluctuating behaviour of the input energy source the overall annual pl Read More
How to Give a renewed Chance to Natural Gas as Feed for the Production of Hydrogen: Electric MSR Coupled with CO2 Mineralization
Sep 2021
Publication
Recent years have seen a growing interest in water electrolysis as a way to store renewable electric energy into chemical energy through hydrogen production. However today the share of renewable energy is still limited and there is the need to have a continuous use of H2 for industrial chemicals applications. Firstly the paper discusses the use of electrolysis - connected to a conventional grid - for a continuous H2 production in terms of asso Read More
Life Cycle Assessment and Water Footprint of Hydrogen Production Methods: From Conventional to Emerging Technologies
Oct 2020
Publication
A common sustainability issue arising in production systems is the efficient use of resources for providing goods or services. With the increased interest in a hydrogen (H2) economy the life-cycle environmental performance of H2 production has special significance for assisting in identifying opportunities to improve environmental performance and to guide challenging decisions and select between technology paths. Life cycle impact assessment meth Read More
Water Electrolysis for the Production of Hydrogen to Be Employed in the Ironmaking and Steelmaking Industry
Nov 2021
Publication
The way to decarbonization will be characterized by the huge production of hydrogen through sustainable routes. Thus the basic production way is water electrolysis sustained by renewable energy sources allowing for obtaining “green hydrogen”. The present paper reviews the main available technologies for the water electrolysis finalized to the hydrogen production. We describe the fundamental of water electrolysis and the problems related to purifica Read More
Investigating Hydrogen-Based Non-Conventional Storage for PV Power in Eco-Energetic Optimization of a Multi-Energy System
Dec 2021
Publication
Through the integration of multiple energy carriers with related technologies multi-energy systems (MES) can exploit the synergies coming from their interplay for several benefits towards decarbonization. In such a context inclusion of Power-to-X technologies in periods of excess renewable electricity supply removes the need for curtailment of renewable electricity generation. In order to achieve the environmental benefits of MES without neglecting th Read More
Flexible Power & Biomass-to-Methanol Plants: Design Optimization and Economic Viability of the Electrolysis Integration
Nov 2021
Publication
This paper assesses the optimal design criteria of a flexible power and biomass to methanol (PBtM) plant conceived to operate both without green hydrogen addition (baseline mode) and with hydrogen addition (enhanced mode) following an intermittent use of the electrolysis system which is turned on when the electricity price allows an economically viable hydrogen production. The assessed plant includes a gasification section syngas cleaning and compr Read More
Main Hydrogen Production Processes: An Overview
May 2021
Publication
Due to its characteristics hydrogen is considered the energy carrier of the future. Its use as a fuel generates reduced pollution as if burned it almost exclusively produces water vapor. Hydrogen can be produced from numerous sources both of fossil and renewable origin and with as many production processes which can use renewable or non-renewable energy sources. To achieve carbon neutrality the sources must necessarily be renewable a Read More
Technical and Commercial Challenges of Proton-Exchange Membrane (PEM) Fuel Cells
Dec 2020
Publication
This review critically evaluates the latest trends in fuel cell development for portable and stationary fuel cell applications and their integration into the automotive industry. Fast start-up high efficiency no toxic emissions into the atmosphere and good modularity are the key advantages of fuel cell applications. Despite the merits associated with fuel cells the high cost of the technology remains a key factor impeding its widespread commercialization. Ther Read More
Operation of a Solid Oxide Fuel Cell Based Power System with Ammonia as a Fuel: Experimental Test and System Design
Nov 2020
Publication
Ammonia has strong potentialities as sustainable fuel for energy applications. NH3 is carbon free and can be synthetized from renewable energy sources (RES). In Solid Oxide Fuel Cells NH3 reacts electrochemically thereby avoiding the production of typical combustion pollutants such as NOx. In this study an ammonia-fueled solid oxide fuel cells (SOFC) system design is proposed and a thermodynamic model is developed to evaluate its performance. A Read More
An Extensive Review of Liquid Hydrogen in Transportation with Focus on the Maritime Sector
Sep 2022
Publication
The European Green Deal aims to transform the EU into a modern resource-efficient and competitive economy. The REPowerEU plan launched in May 2022 as part of the Green Deal reveals the willingness of several countries to become energy independent and tackle the climate crisis. Therefore the decarbonization of different sectors such as maritime shipping is crucial and may be achieved through sustainable energy. Hydrogen is potentially Read More
Hydrogen-Fuel Cell Hybrid Powertrain: Conceptual Layouts and Current Applications
Nov 2022
Publication
Transportation is one of the largest sources of CO2 emissions accounting for more than 20% of worldwide emissions. However it is one of the areas where decarbonization presents the greatest hurdles owing to its capillarity and the benefits that are associated with the use of fossil fuels in terms of energy density storage and transportation. In order to accomplish comprehensive decarbonization in the transport sector it will be required to encourage Read More
An Insight into Underground Hydrogen Storage in Italy
Apr 2023
Publication
Hydrogen is a key energy carrier that could play a crucial role in the transition to a low-carbon economy. Hydrogen-related technologies are considered flexible solutions to support the large-scale implementation of intermittent energy supply from renewable sources by using renewable energy to generate green hydrogen during periods of low demand. Therefore a short-term increase in demand for hydrogen as an energy carrier and an increase in Read More
The Role of Direct Air Capture in EU’s Decarbonisation and Associated Carbon Intensity for Synthetic Fuels Production
May 2023
Publication
Direct air capture (DAC) is considered one of the mitigation strategies in most of the future scenarios trying to limit global temperature to 1.5 ◦C. Given the high expectations placed on DAC for future decarbonisation this study presents an extensive review of DAC technologies exploring a number of techno-economic aspects including an updated collection of the current and planned DAC projects around the world. A dedicated analysis focused on the Read More
Modelling and Experimental Analysis of a Polymer Electrolyte Membrane Water Electrolysis Cell at Different Operating Temperatures
Nov 2018
Publication
In this paper a simplified model of a Polymer Electrolyte Membrane (PEM) water electrolysis cell is presented and compared with experimental data at 60 ◦C and 80 ◦C. The model utilizes the same modelling approach used in previous work where the electrolyzer cell is divided in four subsections: cathode anode membrane and voltage. The model of the electrodes includes key electrochemical reactions and gas transport mechanism (i.e. H2 O2 and H2O) w Read More
Dynamic Simulation and Thermoeconomic Analysis of a Hybrid Renewable System Based on PV and Fuel Cell Coupled with Hydrogen Storage
Nov 2021
Publication
The production of “green hydrogen” is currently one of the hottest topics in the field of renewable energy systems research. Hydrogen storage is also becoming more and more attractive as a flexible solution to mitigate the power fluctuations of solar energy systems. The most promising technology for electricity-to-hydrogen conversion and vice versa is the reversible solid-oxide cell (SOC). This device is still very expensive but it exhibits excellent Read More
Greenhouse Gas Implications of Extending the Service Life of PEM Fuel Cells for Automotive Applications: A Life Cycle Assessment
Feb 2022
Publication
A larger adoption of hydrogen fuel-cell electric vehicles (FCEVs) is typically included in the strategies to decarbonize the transportation sector. This inclusion is supported by life-cycle assessments (LCAs) which show the potential greenhouse gas (GHG) emission benefit of replacing internal combustion engine vehicles with their fuel cell counterpart. However the literature review performed in this study shows that the effects of durability and performance losses Read More
Optimal Design of a Hydrogen-powered Fuel Cell System for Aircraft Applications
Mar 2024
Publication
Recently hydrogen and fuel cells have gained interest as an emerging technology to mitigate the effects of climate change caused by the aviation sector. The aim of this work is to evaluate the applicability of this technology to an existing regional aircraft in order to assess its electrification with the aim of reducing greenhouse gas emissions and achieving sustainability goals. The design of a proton-exchange membrane fuel cell system (PEMFC) with the inclus Read More
Thermoacoustic Combustion Stability Analysis of a Bluff Body-Stabilized Burner Fueled by Methane–Air and Hydrogen–Air Mixtures
Apr 2023
Publication
Hydrogen can play a key role in the gradual transition towards a full decarbonization of the combustion sector e.g. in power generation. Despite the advantages related to the use of this carbon-free fuel there are still several challenging technical issues that must be addressed such as the thermoacoustic instability triggered by hydrogen. Given that burners are usually designed to work with methane or other fossil fuels it is important to investigate t Read More
A Critical Review of Polymer Electrolyte Membrane Fuel Cell Systems for Automotive Applications: Components, Materials, and Comparative Assessment
Mar 2023
Publication
The development of innovative technologies based on employing green energy carriers such as hydrogen is becoming high in demand especially in the automotive sector as a result of the challenges associated with sustainable mobility. In the present review a detailed overview of the entire hydrogen supply chain is proposed spanning from its production to storage and final use in cars. Notably the main focus is on Polymer Electrolyte Membrane Fuel C Read More
On the Technology of Solid Oxide Fuel Cell (SOFC) Energy Systems for Stationary Power Generation: A Review
Nov 2022
Publication
This paper presents a comprehensive overview on the current status of solid oxide fuel cell (SOFC) energy systems technology with a deep insight into the techno-energy performance. In recent years SOFCs have received growing attention in the scientific landscape of high efficiency energy technologies. They are fuel flexible highly efficient and environmentally sustainable. The high working temperature makes it possible to work in cogeneration and driv Read More
An On-Board Pure H2 Supply System Based on A Membrane Reactor for A Fuel Cell Vehicle: A Theoretical Study
Jul 2020
Publication
In this novel conceptual fuel cell vehicle (FCV) an on-board CH4 steam reforming (MSR) membrane reformer (MR) is considered to generate pure H2 for supplying a Fuel Cell (FC) system as an alternative to the conventional automobile engines. Two on-board tanks are forecast to store CH4 and water useful for feeding both a combustion chamber (designed to provide the heat required by the system) and a multi tubes Pd-Ag MR useful to generate pure H Read More
A Multi-Criteria Decision-Making Framework for Zero Emission Vehicle Fleet Renewal Considering Lifecycle and Scenario Uncertainty
Mar 2024
Publication
: In the last decade with the increased concerns about the global environment attempts have been made to promote the replacement of fossil fuels with sustainable sources. For transport which accounts for around a quarter of total greenhouse gas emissions meeting climate neutrality goals will require replacing existing fleets with electric or hydrogen-propelled vehicles. However the lack of adequate decision support approach makes the introduc Read More
Renewable Methanol Production from Green Hydrogen and Captured CO2: A Techno-economic Assessment
Nov 2022
Publication
This paper aims to present a pre-feasibility study of a power-to-fuel plant configuration designed for the production of 500 kg/h of renewable methanol (e-methanol) from green hydrogen and captured carbon dioxide. Hydrogen is obtained by water electrolysis employing the overproduction of renewable electricity. Carbon dioxide is assumed to be separated from the flue gas of a conventional power station by means of an amine-based CO2 absorp Read More
Redrawing the EU’s Energy Relations: Getting it Right with African Renewable Hydrogen
Oct 2022
Publication
In this paper we will explore the state of play with renewable hydrogen development in Africa through some case studies from AGHA members and the scope for growth moving forward. In so doing we will address some of the prevailing challenges to build out of a clean hydrogen economy that could be foreseen already at this early stage and look for potential solutions building on what is already in place in other sectors. We make the case that there should Read More
Hydrogen Refueling Process: Theory, Modeling, and In-Force Applications
Mar 2023
Publication
Among the alternative fuels enabling the energy transition hydrogen-based transportation is a sustainable and efficient choice. It finds application both in light-duty and heavy-duty mobility. However hydrogen gas has unique qualities that must be taken into account when employed in such vehicles: high-pressure levels up to 900 bar storage in composite tanks with a temperature limit of 85 ◦C and a negative Joule–Thomson coefficient throughout a Read More
Assessment of Hydrogen Based Long Term Electrical Storage in Residential Energy Systems
Oct 2022
Publication
Among the numerous envisioned applications for hydrogen in the decarbonization of the energy system seasonal energy storage is usually regarded as one of the most likely options. Although long-term energy storage is usually considered at grid-scale level given the increasing diffusion of distributed energy systems and the expected cost reduction in hydrogen related components some companies are starting to offer residential systems with PV modu Read More
Performance and Stability of a Critical Raw Materials-free Anion Exchange Membrane Electrolysis Cell
Feb 2023
Publication
A water electrolysis cell based on anion exchange membrane (AEM) and critical raw materials-free (CRM-free) electrocatalysts was developed. A NiFe-oxide electrocatalyst was used at the anode whereas a series of metallic electrocatalysts were investigated for the cathode such as Ni NiCu NiMo NiMo/KB. These were compared to a benchmark Pt/C cathode. CRMs-free anode and cathode catalysts were synthetized with a crystallite size of about 10 nm. The Read More
A Novel Optimal Power Control for a City Transit Hybrid Bus Equipped with a Partitioned Hydrogen Fuel Cell Stack
May 2020
Publication
The development of more sustainable and zero-emissions collective transport solutions could play a very important measure in the near future within smart city policies. This paper tries to give a contribution to this aim proposing a novel approach to fuel cell vehicle design and operation. Traditional difficulties experienced in fuel cell transient operation are in fact normally solved in conventional vehicle prototypes through the hybridization of the propulsi Read More
Renewable Hydrogen Supply Chains: A Planning Matrix and an Agenda for Future Research
Oct 2022
Publication
Worldwide energy systems are experiencing a transition to more sustainable systems. According to the Hydrogen Roadmap Europe (FCH EU 2019) hydrogen will play an important role in future energy systems due to its ability to support sustainability goals and will account for approximately 13% of the total energy mix in the coming future. Correct hydrogen supply chain (HSC) planning is therefore vital to enable a sustainable transition. However due to the o Read More
No more items...