Italy
Carbon Footprint Enhancement of an Agricultural Telehandler through the Application of a Fuel Cell Powertrain
Mar 2024
Publication
The growing awareness about climate change and environmental pollution is pushing the industrial and academic world to investigate more sustainable solutions to reduce the impact of anthropic activities. As a consequence a process of electrification is involving all kind of vehicles with a view to gradually substitute traditional powertrains that emit several pollutants in the exhaust due to the combustion process. In this context fuel cell powertrains are a more promising strategy with respect to battery electric alternatives where productivity and endurance are crucial. It is important to replace internal combustion engines in those vehicles such as the those in the sector of NonRoad Mobile Machinery. In the present paper a preliminary analysis of a fuel cell powertrain for a telehandler is proposed. The analysis focused on performance fuel economy durability applicability and environmental impact of the vehicle. Numerical models were built in MATLAB/Simulink and a simple power follower strategy was developed with the aim of reducing components degradation and to guarantee a charge sustaining operation. Simulations were carried out regarding both peak power conditions and a typical real work scenario. The simulations’ results showed that the fuel cell powertrain was able to achieve almost the same performances without excessive stress on its components. Indeed a degradation analysis was conducted showing that the fuel cell system can achieve satisfactory durability. Moreover a Well-to-Wheel approach was adopted to evaluate the benefits in terms of greenhouse gases of adopting the fuel cell system. The results of the analysis demonstrated that even if considering grey hydrogen to feed the fuel cell system the proposed powertrain can reduce the equivalent CO2 emissions of 69%. This reduction can be further enhanced using hydrogen from cleaner production processes. The proposed preliminary analysis demonstrated that fuel cell powertrains can be a feasible solution to substitute traditional systems on off-road vehicles even if a higher investment cost might be required.
Energy Performance Assessment of a Solar-driven Thermochemical Cycle Device for Green Hydrogen Production
Sep 2023
Publication
This paper presents a novel dynamic simulation model for assessing the energy performance of solar-driven systems employed in green hydrogen production. The system consists of a parabolic dish collector that focuses solar radiation on two cerium-based thermochemical reactors. The model is based on a transient finitedifference method to simulate the thermal behaviour of the system and it integrates a theoretical analysis of materials and operating principles. Different empirical data were considered for experimentally validating it: a good agreement between experimental and simulated results was obtained for the temperatures calculated inside the thermochemical reactor (R2 = 0.99 MAPE = 6.3%) and the hourly flow rates of hydrogen oxygen and carbon monoxide (R2 = 0.96 MAPE = 10%) inside the thermochemical reactor. The model was implemented in a MatLab tool for the system dynamic analysis under different boundary conditions. Subsequently to explore the capability of this approach the developed tool was used for analysing the examined device operating in twelve different weather zones. The obtained results comprise heat maps of specific crucial instants and hourly dynamic trends showing redox reaction cycles occurring into the thermochemical reactors. The yearly hydrogen production ranges from 1.19 m3 /y to 1.64 m3 /y according to the hourly incident solar radiations outdoor air temperatures and wind speeds. New graphic tools for rapid feasibility studies are presented. The developed tools and the obtained results can be useful to the basic design of this technology and for the multi-objective optimization of its layout and main design/operating parameters.
Optimal Decarbonization Strategies for an Industrial Port Area by Using Hydrogen as Energy Carrier
Jul 2023
Publication
This article discusses possible strategies for decarbonizing the energy systems of an existing port. The approach consists in creating a complete superstructure that includes the use of renewable and fossil energy sources the import or local production of hydrogen vehicles and other equipment powered by Diesel electricity or hydrogen and the associated refuelling and storage units. Two substructures are then identified one including all these options the other considering also the addition of the energy demand of an adjacent steel industry. The goal is to select from each of these two substructures the most cost-effective configurations for 2030 and 2050 that meet the emission targets for those years under different cost scenarios for the energy sources and conversion/storage units obtained from the most reliable forecasts found in the literature. To this end the minimum total cost of all the energy conversion and storage units plus the associated infrastructures is sought by setting up a Mixed Integer Linear Programming optimization problem where integer variables handle the inclusion of the different generation and storage units and their activation in the operational phases. The comprehensive picture of possible solutions set allows identifying which options can most realistically be realized in the years to come in relation to the different assumed cost scenarios. Optimization results related to the scenario projected to 2030 indicate the key role played by Diesel hybrid and electric systems while considering the most stringent or much more stringent scenarios for emissions in 2050 almost all vehicles energy demand and industry hydrogen demand is met by hydrogen imported as ammonia by ship.
Hydrogen Combustion: Features and Barriers to Its Exploitation in the Energy Transition
Oct 2023
Publication
The aim of this article is to review hydrogen combustion applications within the energy transition framework. Hydrogen blends are also included from the well-known hydrogen enriched natural gas (HENG) to the hydrogen and ammonia blends whose chemical kinetics is still not clearly defined. Hydrogen and hydrogen blends combustion characteristics will be firstly summarized in terms of standard properties like the laminar flame speed and the adiabatic flame temperature but also evidencing the critical role of hydrogen preferential diffusion in burning rate enhancement and the drastic reduction in radiative emission with respect to natural gas flames. Then combustion applications in both thermo-electric power generation (based on internal combustion engines i.e. gas turbines and piston engines) and hard-to-abate industry (requiring high-temperature kilns and furnaces) sectors will be considered highlighting the main issues due to hydrogen addition related to safety pollutant emissions and potentially negative effects on industrial products (e.g. glass cement and ceramic).
Hierarchical Model Predictive Control for Islanded and Grid-connected Microgrids with Wind Generation and Hydrogen Energy Storage Systems
Aug 2023
Publication
This paper presents a novel energy management strategy (EMS) to control a wind-hydrogen microgrid which includes a wind turbine paired with a hydrogen-based energy storage system (HESS) i.e. hydrogen production storage and re-electrification facilities and a local load. This complies with the mini-grid use case as per the IEA-HIA Task 24 Final Report where three different use cases and configurations of wind farms paired with HESS are proposed in order to promote the integration of wind energy into the grid. Hydrogen production surpluses by wind generation are stored and used to provide a demand-side management solution for energy supply to the local and contractual loads both in the grid-islanded and connected modes with corresponding different control objectives. The EMS is based on a hierarchical model predictive control (MPC) in which long-term and short-term operations are addressed. The long-term operations are managed by a high-level MPC in which power production by wind generation and load demand forecasts are considered in combination with day-ahead market participation. Accordingly the hydrogen production and re-electrification are scheduled so as to jointly track the load demand maximize the revenue through electricity market participation and minimize the HESS operating costs. Instead the management of the short-term operations is entrusted to a low-level MPC which compensates for any deviations of the actual conditions from the forecasts and refines the power production so as to address the real-time market participation and the short time-scale equipment dynamics and constraints. Both levels also take into account operation requirements and devices’ operating ranges through appropriate constraints. The mathematical modeling relies on the mixed-logic dynamic (MLD) framework so that the various logic states and corresponding continuous dynamics of the HESS are considered. This results in a mixed-integer linear program which is solved numerically. The effectiveness of the controller is analyzed by simulations which are carried out using wind forecasts and spot prices of a wind farm in center-south of Italy.
Assessment of Paper Industry Decarbonization Potential via Hydrogen in a Multi-energy System Scenario: A Case Study
Jul 2023
Publication
Green hydrogen is currently regarded as a key catalyst for the decarbonization of energy-intensive industries. In this context the pulp and paper industry stands out as one of the most demanding given the simultaneous need for large amounts of heat and electricity usually satisfied via cogeneration systems. Given the urgent need for cost-effective solutions in response to the climate crisis it is crucial to analyze the feasibility of retrofitting existing power plants to operate carbon-neutral. The aim of this work is to provide a techno-economic analysis for the conversion of a conventional cogeneration system to run on locally produced hydrogen. Building on the energy consumption of the paper mill the operation of a hydrogen-fuelled gas turbine is modelled in detail. Based on these results a multi-energy system model for the production of green fuel is presented considering production via solar-powered PEM electrolyzers storage in tanks and final use in the gas turbine. An optimal configuration for the system is defined leading to the definition of a solution that ensures a cost of 6.41 /kg for the production of green hydrogen. Finally a sensitivity analysis highlights the close dependence of the economic profitability of the Power-to-X system on the natural gas price. The results indicate that although positive performance is achieved the cost of investment remains still prohibitive for systems of this size and the high initial capital expenditure needs to be supported by incentive policies that facilitate the adoption of hydrogen in industrial applications making it competitive in the short term.
Numerical Analysis of Dual Fuel Combustion in a Medium Speed Marine Engine Supplied with Methane/Hydrogen Blends
Sep 2023
Publication
Compression ignition engines will still be predominant in the naval sector: their high efficiency high torque and heavy weight perfectly suit the demands and architecture of ships. Nevertheless recent emission legislations impose limitations to the pollutant emissions levels in this sector as well. In addition to post-treatment systems it is necessary to reduce some pollutant species and therefore the study of combustion strategies and new fuels can represent valid paths for limiting environmental harmful emissions such as CO2 . The use of methane in dual fuel mode has already been implemented on existent vessels but the progressive decarbonization will lead to the utilization of carbon-neutral or carbon-free fuels such as in the last case hydrogen. Thanks to its high reactivity nature it can be helpful in the reduction of exhaust CH4 . On the contrary together with the high temperatures achieved by its oxidation hydrogen could cause uncontrolled ignition of the premixed charge and high emissions of NOx. As a matter of fact a source of ignition is still necessary to have better control on the whole combustion development. To this end an optimal and specific injection strategy can help to overcome all the before-mentioned issues. In this study three-dimensional numerical simulations have been performed with the ANSYS Forte® software (version 19.2) in an 8.8 L dual fuel engine cylinder supplied with methane hydrogen or hydrogen–methane blends with reference to experimental tests from the literature. A new kinetic mechanism has been used for the description of diesel fuel surrogate oxidation with a set of reactions specifically addressed for the low temperatures together with the GRIMECH 3.0 for CH4 and H2 . This kinetics scheme allowed for the adequate reproduction of the ignition timing for the various mixtures used. Preliminary calculations with a one-dimensional commercial code were performed to retrieve the initial conditions of CFD calculations in the cylinder. The used approach demonstrated to be quite a reliable tool to predict the performance of a marine engine working under dual fuel mode with hydrogen-based blends at medium load. As a result the system modelling shows that using hydrogen as fuel in the engine can achieve the same performance as diesel/natural gas but when hydrogen totally replaces methane CO2 is decreased up to 54% at the expense of the increase of about 76% of NOx emissions.
Modelling Methodologies to Design and Control Renewables and Hydrogen-Based Telecom Towers Power Supply Systems
Aug 2023
Publication
Proton exchange membrane fuel cell (PEMFCS) and electrolyser (PEMELS) systems together with a hydrogen storage tank (HST) are suitable to be integrated with renewable microgrids to cover intermittency and fully exploit the excess of electrical energy. Such an integration perfectly fits telecom tower power supply needs both in off-grid and grid-connected sites. In this framework a model-based tool enabling both optimal sizing and proper year-through energy management of both the above applications is proposed. Respectively the islanded optimisation is performed considering two economic indices i.e. simple payback (SPB) and levelised cost of energy (LCOE) together with two strategies of hydrogen tank management charge sustaining and depleting and also accounting for the impact of grid extension distance. On the other hand the grid connection is addressed through the dynamic programming method while downsizing PEMELS and HST sizes to improve techno-economic effectiveness thanks to grid contribution towards renewables curtailment issues mitigation. For both the above introduced HST management strategies a reduction of more than 70% of the nominal PEMELS power and 90% of the HST size which will in turn lead to SPB and LCOE being reduced by 80% and 60% in comparison to the islanded case respectively is achieved. Furthermore the charge depleting strategy relying on possible hydrogen purchase interestingly provides an SPB and LCOE of 9% and 7% lower than the charge sustaining one.
Energy and Greenhouse Gases Life Cycle Assessment of Electric and Hydrogen Buses: A Real-world Case Study in Bolzano Italy
May 2023
Publication
The transportation sector plays an important role in the current effort towards the control of global warming. Against this backdrop electrification is currently attracting attention as the life cycle environmental performance of different powertrain technologies is critically assessed. In this study a life cycle analysis of the public transportation buses was performed. The scope of the analysis is to compare the energy and global warming performances of the different powertrain technologies in the city fleet: diesel full electric and hydrogen buses. Real world monitored data were used in the analysis for the energy consumptions of the buses and to produce hydrogen in Bolzano. Compared to the traditional diesel buses the electric vehicles showed a 43% reduction of the non-renewable primary energy demand and a 33% of the global warming potential even in the worst consequential scenario considered. The switch to hydrogen buses leads to very different environmental figures: from very positive if it contributes to a further penetration of renewable electricity to hardly any difference if hydrogen from steam-methane reforming is used to clearly negative ones (approximately doubling the impacts) if a predominantly fossil electricity mix is used in the electrolysis.
Assessing Sizing Optimality of OFF-GRID AC-Linked Solar PV-PEM Systems for Hydrogen Production
Jul 2023
Publication
Herein a novel methodology to perform optimal sizing of AC-linked solar PV-PEM systems is proposed. The novelty of this work is the proposition of the solar plant to electrolyzer capacity ratio (AC/AC ratio) as optimization variable. The impact of this AC/AC ratio on the Levelized Cost of Hydrogen (LCOH) and the deviation of the solar DC/AC ratio when optimized specifically for hydrogen production are quantified. Case studies covering a Global Horizontal Irradiation (GHI) range of 1400e2600 kWh/m2 -year are assessed. The obtained LCOHs range between 5.9 and 11.3 USD/kgH2 depending on sizing and location. The AC/AC ratio is found to strongly affect cost production and LCOH optimality while the optimal solar DC/AC ratio varies up to 54% when optimized to minimize the cost of hydrogen instead of the cost of energy only. Larger oversizing is required for low GHI locations; however H2 production is more sensitive to sizing ratios for high GHI locations.
Italian Offshore Platform and Depleted Reservoir Conversion in the Energy Transition Perspective
Aug 2023
Publication
New hypotheses for reusing platforms reaching their end-of-life have been investigated in several works discussing the potential conversions of these infrastructures from recreational tourism to fish farming. In this perspective paper we discuss the conversion options that could be of interest in the context of the current energy transition with reference to the off-shore Italian scenario. The study was developed in support of the development of a national strategy aimed at favoring a circular economy and the reuse of existing infrastructure for the implementation of the energy transition. Thus the investigated options include the onboard production of renewable energy hydrogen production from seawater through electrolyzers CO2 capture and valorization and platform reuse for underground fluid storage in depleted reservoirs once produced through platforms. Case histories are developed with reference to a typical fictitious platform in the Adriatic Sea Italy to provide an engineering-based approach to these different conversion options. The coupling of the platform with the underground storage to set the optimal operational conditions is managed through the forecast of the reservoir performance with advanced numerical models able to simulate the complexity of the phenomena occurring in the presence of coupled hydrodynamic geomechanical geochemical thermal and biological processes. The results of our study are very encouraging because they reveal that no technical environmental or safety issues prevent the conversion of offshore platforms into valuable infrastructure contributing to achieving the energy transition targets as long as the selection of the conversion option to deploy is designed taking into account the system specificity and including the depleted reservoir to which it is connected when relevant. Socio-economic issues were not investigated as they were out of the scope of the project.
Assessing Techno-economic Feasibility of Cogeneration and Power to Hydrogen Plants: A Novel Dynamic Simulation Model
Aug 2023
Publication
Green hydrogen technologies are crucial for decarbonization purposes while cogeneration offers efficient heat and power generation. Integrating green hydrogen and cogeneration brings numerous benefits optimizing energy utilization reducing emissions and supporting the transition to a sustainable future. While there are numerous studies examining the integration of combined heat and power with Power to Gas certain aspects still requires a more detailed analysis especially for internal combustion engines fuelled by natural gas due to their widespread adoption as one of the primary technologies in use. Therefore this paper presents a comprehensive numerical 0-D dynamic simulation model implemented within the TRNSYS environment considering internal combustion engines fuelled by natural gas. Specifically the study focuses on capturing CO2 from exhaust gases and producing green hydrogen from electrolysis. Based on these considerations two configurations are proposed: the first involves the methanation reaction while the second entails the production of a hydromethane mixture. The aim is to evaluate the technical and economic feasibility of these configurations and compare their performance within the Power to Gas framework. Self-sufficiency from the national electricity grid has been almost achieved for the two configurations considering an industrial case. The production of hydromethane allows smaller photovoltaic plant (81 kWp) compared to the production of synthetic methane (670 kWp) where a high quantity of hydrogen is required especially if all the carbon dioxide captured is used in the methanation process. Encouraging economic results with payback times below ten years have been obtained with the use of hydromethane. Moreover hydromethane shows potential residential applications with small required photovoltaic sizes.
Thermal Design and Heat Transfer Optimisation of a Liquid Organic Hydrogen Carrier Batch Reactor for Hydrogen Storage
Aug 2023
Publication
Liquid organic hydrogen carriers (LOHCs) are considered a promising hydrogen storage technology. Heat must be exchanged with an external medium such as a heat transfer fluid for the required chemical reactions to occur. Batch reactors are simple but useful solutions for small-scale storage applications which can be modelled with a lumped parameter approach adequately reproducing their dynamic performance. For such reactors power is consumed to circulate the external heat transfer fluid and stir the organic liquid inside the reactor and heat transfer performance and power consumption are two key parameters in reactor optimisation. Therefore with reference to the hydrogen release phase this paper describes a procedure to optimise the reactor thermal design based on a lumped-parameter model in terms of heat transfer performance and minimum power consumption. Two batch reactors are analysed: a conventional jacketed reactor with agitation nozzles and a half-pipe coil reactor. Heat transfer performance is evaluated by introducing a newly defined dimensionless parameter the Heat Transfer Ratio (HTR) whose value directly correlates to the heat rate required by the carrier's dehydrogenation reaction. The resulting model is a valid tool for adequately reproducing the hydrogen storage behaviour within dynamic models of complex and detailed energy systems.
Hydrogen Production from Renewable Energy Resources: A Case Study
May 2024
Publication
In the face of increasing demand for hydrogen a feasibility study is conducted on its production by using Renewable Energy Resources (RERs) especially from wind and solar sources with the latter preferring photovoltaic technology. The analysis performed is based on climate data for the Province of Brindisi Apulia Italy. The various types of electrolyzers will be analyzed ultimately choosing the one that best suits the case study under consideration. The technical aspect of the land consumption for RER exploitation until 2050 is analyzed for the Italian case of study and for the Apulia Region. For both the 200 MW and 100 MW RER Power Plants an economic analysis is carried out on the opportunities for using hydrogen. In the last part of the economic analysis the trade-off between the high specific investment cost and the Capacity Factor of Wind technologies is also investigated. The results show the affordability of building high-scale Wind Farms harnessing the existing scale economies. The lowest Hydrogen selling price is achieved by the 200 MW Wind Farms equal to 222 €/MWh against 232 €/MWh of the 200 MW Photovoltaic (PV) Farm. Finally the feasibility analysis considers also the greenhouse gas emission reduction by including in the economic analysis the carbon dioxide (CO2) Average Auction Clearing Price leading for the 200 MW Wind Farms to a hydrogen selling price equal to 191.2 €/MWh against 201 €/MWh of the 200 MW Photovoltaic Farm.
Assessing Opportunities and Weaknesses of Green Hydrogen Transport via LOHC through a Detailed Techno-economic Analysis
Aug 2023
Publication
In the transition towards a more sustainable energy system hydrogen is seen as the key low-emission energy source. However the limited H2 volumetric density hinders its transportation. To overcome this issue liquid organic hydrogen carriers (LOHCs) molecules that can be hydrogenated and upon arrival dehydrogenated for H2 release have been proposed as hydrogen transport media. Considering toluene and dibenzyltoluene as representative carriers this work offers a systematic methodology for the analysis and the comparison of LOHCs in view of identifying cost-drivers of the overall value-chain. A detailed Aspen Plus process simulation is provided for hydrogenation and dehydrogenation sections. Simulation results are used as input data for the economic assessment. The process economics reveals that dehydrogenation is the most impactful cost-item together with the carrier initial loading the latter related to the LOHC transport distance. The choice of the most suitable molecule as H2 carrier ultimately is a trade-off between its hydrogenation enthalpy and cost.
The Economic Impact and Carbon Footprint Dependence of Energy Management Strategies in Hydrogen-Based Microgrids
Sep 2023
Publication
This paper presents an economic impact analysis and carbon footprint study of a hydrogenbased microgrid. The economic impact is evaluated with respect to investment costs operation and maintenance (O&M) costs as well as savings taking into account two different energy management strategies (EMSs): a hydrogen-based priority strategy and a battery-based priority strategy. The research was carried out in a real microgrid located at the University of Huelva in southwestern Spain. The results (which can be extrapolated to microgrids with a similar architecture) show that although both strategies have the same initial investment costs (EUR 52339.78) at the end of the microgrid lifespan the hydrogen-based strategy requires higher replacement costs (EUR 74177.4 vs. 17537.88) and operation and maintenance costs (EUR 35254.03 vs. 34877.08) however it provides better annual savings (EUR 36753.05 vs. 36282.58) and a lower carbon footprint (98.15% vs. 95.73% CO2 savings) than the battery-based strategy. Furthermore in a scenario where CO2 emission prices are increasing the hydrogen-based strategy will bring even higher annual cost savings in the coming years.
Gas Turbine Combustion Technologies for Hydrogen Blends
Sep 2023
Publication
The article reviews gas turbine combustion technologies focusing on their current ability to operate with hydrogen enriched natural gas up to 100% H2. The aim is to provide a picture of the most promising fuel-flexible and clean combustion technologies the object of current research and development. The use of hydrogen in the gas turbine power generation sector is initially motivated highlighting both its decarbonisation and electric grid stability objectives; moreover the state-of-the-art of hydrogen-blend gas turbines and their 2024 and 2030 targets are reported in terms of some key performance indicators. Then the changes in combustion characteristics due to the hydrogen enrichment of natural gas blends are briefly described from their enhanced reactivity to their pollutant emissions. Finally gas turbine combustion strategies both already commercially available (mostly based on aerodynamic flame stabilisation self-ignition and staging) or still under development (like the micro-mixing and the exhaust gas recirculation concepts) are described.
Performance Analysis of a Diabatic Compressed Air Energy Storage System Fueled with Green Hydrogen
Oct 2023
Publication
The integration of an increasing share of Renewable Energy Sources (RES) requires the availability of suitable energy storage systems to improve the grid flexibility and Compressed Air Energy Storage (CAES) systems could be a promising option. In this study a CO2 -free Diabatic CAES system is proposed and analyzed. The plant configuration is derived from a down-scaled version of the McIntosh Diabatic CAES plant where the natural gas is replaced with green hydrogen produced on site by a Proton Exchange Membrane electrolyzer powered by a photovoltaic power plant. In this study the components of the hydrogen production system are sized to maximize the self-consumption share of PV energy generation and the effect of the design parameters on the H2 -CAES plant performance are analyzed on a yearly basis. Moreover a comparison between the use of natural gas and hydrogen in terms of energy consumption and CO2 emissions is discussed. The results show that the proposed hydrogen fueled CAES can effectively match the generation profile and the yearly production of the natural gas fueled plant by using all the PV energy production while producing zero CO2 emissions.
Suitability and Energy Sustainability of Atmospheric Water Generation Technology for Green Hydrogen Production
Sep 2023
Publication
This research investigated the suitability of air-to-water generator (AWG) technology to address one of the main concerns in green hydrogen production namely water supply. This study specifically addresses water quality and energy sustainability issues which are crucial research questions when AWG technology is intended for electrolysis. To this scope a reasoned summary of the main findings related to atmospheric water quality has been provided. Moreover several experimental chemical analyses specifically focused on meeting electrolysis process requirements on water produced using a real integrated AWG system equipped with certified materials for food contact were discussed. To assess the energy sustainability of AWGs in green hydrogen production a case study was presented regarding an electrolyzer plant intended to serve as energy storage for a 2 MW photovoltaic field on Iriomote Island. The integrated AWG used for the water quality analyses was studied in order to determine its performance in the specific island climate conditions. The production exceeded the needs of the electrolyzer; thus the overproduction was considered for the panels cleaning due to the high purity of the water. Due to such an operation the efficiency recovery was more than enough to cover the AWG energy consumption. This paper on the basis of the quantity results provides the first answers to the said research questions concerning water quality and energy consumption establishing the potential of AWG as a viable solution for addressing water scarcity and enhancing the sustainability of electrolysis processes in green hydrogen production.
The Role of Hydrogen in a Decarbonised Future Transport Sector: A Case Study of Mexico
Sep 2023
Publication
In recent years several approaches and pathways have been discussed to decarbonise the transport sector; however any effort to reduce emissions might be complex due to specific socio-economic and technical characteristics of different regions. In Mexico the transport sector is the highest energy consumer representing 38.9% of the national final energy demand with gasoline and diesel representing 90% of the sector´s total fuel consumption. Energy systems models are powerful tools to obtain insights into decarbonisation pathways to understand costs emissions and rate of deployment that could serve for energy policy development. This paper focuses on the modelling of the current Mexican transport system using the MUSE-MX multi-regional model with the aim to project a decarbonisation pathway through two different scenarios. The first approach being business as usual (BAU) which aims to analyse current policies implementation and the second being a goal of net zero carbon emissions by 2050. Under the considered net zero scenario results show potential deployment of hydrogen-based transport technologies especially for subsectors such as lorries (100% H2 by 2050) and freight train (25% H2 by 2050) while cars and buses tend to full electrification by 2050.
No more items...