Italy
Hydrogen as a Clean and Sustainable Energy Vector for Global Transition from Fossil-Based to Zero-Carbon
Dec 2021
Publication
Hydrogen is recognized as a promising and attractive energy carrier to decarbonize the sectors responsible for global warming such as electricity production industry and transportation. However although hydrogen releases only water as a result of its reaction with oxygen through a fuel cell the hydrogen production pathway is currently a challenging issue since hydrogen is produced mainly from thermochemical processes (natural gas reforming coal gasification). On the other hand hydrogen production through water electrolysis has attracted a lot of attention as a means to reduce greenhouse gas emissions by using low-carbon sources such as renewable energy (solar wind hydro) and nuclear energy. In this context by providing an environmentally-friendly fuel instead of the currently-used fuels (unleaded petrol gasoline kerosene) hydrogen can be used in various applications such as transportation (aircraft boat vehicle and train) energy storage industry medicine and power-to-gas. This article aims to provide an overview of the main hydrogen applications (including present and future) while examining funding and barriers to building a prosperous future for the nation by addressing all the critical challenges met in all energy sectors.
Experimental Measurements of Structural Displacement During Hydrogen Vented Deflagrations for FE Model Validation
Sep 2017
Publication
Vented deflagration tests were conducted by UNIPI at B. Guerrini Laboratory during the experimental campaign for HySEA project. Experiments included homogeneous hydrogen-air mixture in a 10-18% vol. range of concentrations contained in an about 1 m3 enclosure called SSE (Small Scale Enclosure). Displacement measurements of a test plate were taken in order to acquire useful data for the validation of FE model developed by IMPETUS Afea. In this paper experimental facility displacement measurement system and FE model are briefly described then comparison between experimental data and simulation results is discussed.
Non-monotonic Overpressure vs. H2 Concentration Behaviour During Vented Deflagration. Experimental Results
Oct 2015
Publication
Explosion relief panels or doors are often used in industrial buildings to reduce damages caused by gas explosions. Decades of research have contributed to the understanding of the phenomena involved in gas explosions in order to establish an effective method to predict reliably the explosion overpressure. All the methods predict a monotonic increase of the overpressure with the concentration of the gas in the range from the lower explosion limit to the stoichiometric one. Nevertheless in few cases a non-monotonic behaviour of the maximum developed pressure as a function of hydrogen concentration was reported in the literature. The non-monotonic behaviour was also observed during experimental tests performed at the Scalbatraio laboratory at the University of Pisa in a 25 m3 vented combustion test facility with a vent area of 112 m2. This paper presents the results obtained during the tests and investigates the possible explanations of the phenomena.
Optimal Operations for Hydrogen-based Energy Storage Systems in Wind Farms via Model Predictive Control
Feb 2021
Publication
Efficient energy production and consumption are fundamental points for reducing carbon emissions that influence climate change. Alternative resources such as renewable energy sources (RESs) used in electricity grids could reduce the environmental impact. Since RESs are inherently unreliable during the last decades the scientific community addressed research efforts to their integration with the main grid by means of properly designed energy storage systems (ESSs). In order to highlight the best performance from these hybrid systems proper design and operations are essential. The purpose of this paper is to present a so-called model predictive controller (MPC) for the optimal operations of grid-connected wind farms with hydrogen-based ESSs and local loads. Such MPC has been designed to take into account the operating and economical costs of the ESS the local load demand and the participation to the electricity market and further it enforces the fulfillment of the physical and the system's dynamics constraints. The dynamics of the hydrogen-based ESS have been modeled by means of the mixed-logic dynamic (MLD) framework in order to capture different behaviors according to the possible operating modes. The purpose is to provide a controller able to cope both with all the main physical and operating constraints of a hydrogen-based storage system including the switching among different modes such as ON OFF STAND-BY and at the same time reduce the management costs and increase the equipment lifesaving. The case study for this paper is a plant under development in the north Norway. Numerical analysis on the related plant data shows the effectiveness of the proposed strategy which manages the plant and commits the equipment so as to preserve the given constraints and save them from unnecessary commutation cycles.
Investigation of Mechanical Tests for Hydrogen Embrittlement in Automotive PHS Steels
Aug 2019
Publication
The problem of hydrogen embrittlement in ultra-high-strength steels is well known. In this study slow strain rate four-point bending and permeation tests were performed with the aim of characterizing innovative materials with an ultimate tensile strength higher than 1000 MPa. Hydrogen uptake in the case of automotive components can take place in many phases of the manufacturing process: during hot stamping due to the presence of moisture in the furnace atmosphere high-temperature dissociation giving rise to atomic hydrogen or also during electrochemical treatments such as cataphoresis. Moreover possible corrosive phenomena could be a source of hydrogen during an automobile’s life. This series of tests was performed here in order to characterize two press-hardened steels (PHS)—USIBOR 1500® and USIBOR 2000®—to establish a correlation between ultimate mechanical properties and critical hydrogen concentration.
Achievements of European Projects on Membrane Reactor for Hydrogen Production
May 2017
Publication
Membrane reactors for hydrogen production can increase both the hydrogen production efficiency at small scale and the electric efficiency in micro-cogeneration systems when coupled with Polymeric Electrolyte Membrane fuel cells. This paper discusses the achievements of three European projects (FERRET FluidCELL BIONICO) which investigate the application of the membrane reactor concept to hydrogen production and micro-cogeneration systems using both natural gas and biofuels (biogas and bio-ethanol) as feedstock. The membranes used to selectively separate hydrogen from the other reaction products (CH4 CO2 H2O etc.) are of asymmetric type with a thin layer of Pd alloy (<5 μm) and supported on a ceramic porous material to increase their mechanical stability. In FERRET the flexibility of the membrane reactor under diverse natural gas quality is validated. The reactor is integrated in a micro-CHP system and achieves a net electric efficiency of about 42% (8% points higher than the reference case). In FluidCELL the use of bio-ethanol as feedstock for micro-cogeneration Polymeric Electrolyte Membrane based system is investigated in off-grid applications and a net electric efficiency around 40% is obtained (6% higher than the reference case). Finally BIONICO investigates the hydrogen production from biogas. While BIONICO has just started FERRET and FluidCELL are in their third year and the two prototypes are close to be tested confirming the potentiality of membrane reactor technology at small scale.
Hydrogen Embrittlement Behavior of 18Ni 300 Maraging Steel Produced by Selective Laser Melting
Jul 2019
Publication
A study was performed to investigate the hydrogen embrittlement behavior of 18-Ni 300 maraging steel produced by selective laser melting and subjected to different heat treatment strategies. Hydrogen was pre-charged into the tensile samples by an electro-chemical method at the constant current density of 1 A m−2 and 50 A m−2 for 48 h at room temperature. Charged and uncharged specimens were subjected to tensile tests and the hydrogen concentration was eventually analysed using quadrupole mass spectroscopy. After tensile tests uncharged maraging samples showed fracture surfaces with dimples. Conversely in H-charged alloys quasi-cleavage mode fractures occurred. A lower concentration of trapped hydrogen atoms and higher elongation at fracture were measured in the H-charged samples that were subjected to solution treatment prior to hydrogen charging compared to the as-built counterparts. Isothermal aging treatment performed at 460 °C for 8 h before hydrogen charging increased the concentration of trapped hydrogen giving rise to higher hydrogen embrittlement susceptibility.
Life Cycle Assessment of Substitute Natural Gas Production from Biomass and Electrolytic Hydrogen
Feb 2021
Publication
The synthesis of a Substitute Natural Gas (SNG) that is compatible with the gas grid composition requirements by using surplus electricity from renewable energy sources looks a favourable solution to store large quantities of electricity and to decarbonise the gas grid network while maintaining the same infrastructure. The most promising layouts for SNG production and the conditions under which SNG synthesis reduces the environmental impacts if compared to its fossil alternative is still largely untapped. In this work six different layouts for the production of SNG and electricity from biomass and fluctuating electricity are compared from the environmental point of view by means of Life Cycle Assessment (LCA) methodology. Global Warming Potential (GWP) Cumulative Energy Demand (CED) and Acidification Potential (AP) are selected as impact indicators for this analysis. The influence of key LCA methodological aspects on the conclusions is also explored. In particular two different functional units are chosen: 1 kg of SNG produced and 1 MJ of output energy (SNG and electricity). Furthermore different approaches dealing with co-production of electricity are also applied. The results show that the layout based on hydrogasification has the lowest impacts on all the considered cases apart from the GWP and the CED with SNG mass as the functional unit and the avoided burden approach. Finally the selection of the multifunctionality approach is found to have a significant influence on technology ranking.
Comparative Life Cycle Assessment of Hydrogen-fuelled Passenger Cars
Feb 2021
Publication
In order to achieve gradual but timely decarbonisation of the transport sector it is essential to evaluate which types of vehicles provide a suitable environmental performance while allowing the use of hydrogen as a fuel. This work compares the environmental life-cycle performance of three different passenger cars fuelled by hydrogen: a fuel cell electric vehicle an internal combustion engine car and a hybrid electric vehicle. Besides two vehicles that use hydrogen in a mixture with natural gas or gasoline were considered. In all cases hydrogen produced by wind power electrolysis was assumed. The resultant life-cycle profiles were benchmarked against those of a compressed natural gas car and a hybrid electric vehicle fed with natural gas. Vehicle infrastructure was identified as the main source of environmental burdens. Nevertheless the three pure hydrogen vehicles were all found to be excellent decarbonisation solutions whereas vehicles that use hydrogen mixed with natural gas or gasoline represent good opportunities to encourage the use of hydrogen in the short term while reducing emissions compared to ordinary vehicles.
Hydrogen–methane Mixtures: Dispersion and Stratification Studies
Sep 2011
Publication
The study of hydrogen as an alternative fuel clean and “environment friendly” has been in the last years and continues to be object of many studies international projects and standard development. Hydrogen is a fundamental energy carrier to be developed together with other renewable resources for the transition to a sustainable energy system.<br/>But experience has shown how often the introduction and establishment of a new technology does not necessarily pass through radical changes but can be stimulated by slight modifications to the “present situation”.<br/>So the worldwide experience with natural gas as industrial automotive and domestic fuel has been the incentive to the present interest towards hydrogen–methane mixtures. The possible use of existing pipeline networks for mixtures of natural gas and hydrogen offers a unique and cost-effective opportunity to initiate the progressive introduction of hydrogen as part of the development of a full hydrogen system.<br/>The aim of the work presented in this paper is the investigation of the dispersion and stratification properties of hydrogen and methane mixtures. Experimental activities have been carried out in a large scale closed apparatus characterized by a volume of about 25 m3 both with and without natural ventilation. Mixtures of 10%vol. hydrogen – 90%vol. methane and 30%vol. hydrogen – 70%vol. methane have been studied with the help of oxygen sensors and gas chromatography.
Impact of Hydrogen Injection on Natural Gas Measurement
Dec 2021
Publication
Hydrogen is increasingly receiving a primary role as an energy vector in ensuring the achievement of the European decarbonization goals by 2050. In fact Hydrogen could be produced also by electrolysis of water using renewable sources such as photovoltaic and wind power being able to perform the energy storage function as well as through injection into natural gas infrastructures. However hydrogen injection directly impacts thermodynamic properties of the gas itself such as density calorific value Wobbe index sound speed etc. Consequently this practice leads to changes in metrological behavior especially in terms of volume and gas quality measurements. In this paper the authors present an overview on the impact of hydrogen injection in natural gas measurements. In particular the changes in thermodynamic properties of the gas mixtures with different H2 contents have been evaluated and the effects on the accuracy of volume conversion at standard conditions have been investigated both on the theoretical point of view and experimentally. To this end the authors present and discuss the effect of H2 injection in gas networks on static ultrasonic domestic gas meters both from a theoretical and an experimental point of view. Experimental tests demonstrated that ultrasonic gas meters are not significantly affected by H2 injection up to about 10%.
Evaluation of Sorbents for High Temperature Removal of Tars, Hydrogen Sulphide, Hydrogen Chloride and Ammonia from Biomass-derived Syngas by Using Aspen Plus
Jan 2020
Publication
Biomass gasification is a promising technology to produce secondary fuels or heat and power offering considerable advantages over fossil fuels. An important aspect in the usage of producer gas is the removal of harmful contaminants from the raw syngas. Thus the object of this study is the development of a simulation model for a gasifier including gas clean-up for which a fluidized-bed gasifier for biomass-derived syngas production was considered based on a quasi-equilibrium approach through Gibbs free energy minimisation and including an innovative hot gas cleaning constituted by a combination of catalyst sorbents inside the gasification reactor catalysts in the freeboard and subsequent sorbent reactors by using Aspen Plus software. The gas cleaning chain simulates the raw syngas clean-up for several organic and inorganic contaminants i.e. toluene benzene naphthalene hydrogen sulphide hydrogen chloride and ammonia. The tar and inorganic contaminants final values achieved are under 1 g/Nm3 and 1 ppm respectively.
Effects of Steam Injection on the Permissible Hydrogen Content and Gaseous Emissions in a Micro Gas Turbine Supplied by a Mixture of CH4 and H2: A CFD Analysis
Apr 2022
Publication
The use of hydrogen in small scale gas turbines is currently limited by several issues. Blending hydrogen with methane or other gaseous fuels can be considered a low medium-term viable solution with the goal of reducing greenhouse gas emissions. In fact only small amounts can be mixed with methane in premixed combustors due to the risk of flashback. The aim of this article is to investigate the injection of small quantities of steam as a method of increasing the maximum permissible hydrogen content in a mixture with methane. The proposed approach involves introducing the steam directly into the combustion chamber into the main fuel feeding system of a Turbec T100. The study is carried out by means of CFD analysis of the combustion process. A thermodynamic analysis of the energy system is used to determine boundary conditions. The combustion chamber is discretized using a three-dimensional mesh consisting of 4.7 million nodes and the RANS RSM model is used to simulate the effects of turbulence. The results show that the addition of steam may triple the permissible percentage of hydrogen in the mixture for the considered MGT passing from 10% to over 30% by volume also leading to a reduction in NOx emissions without a significant variation in CO emissions.
Modelling and Optimization of a Flexible Hydrogen-fueled Pressurized PEMFC Power Plant for Grid Balancing Purposes
Feb 2021
Publication
In a scenario characterized by an increasing penetration of non-dispatchable renewable energy sources and the need of fast-ramping grid-balancing power plants the EU project GRASSHOPPER aims to setup and demonstrate a highly flexible PEMFC Power Plant hydrogen fueled and scalable to MW-size designed to provide grid support.<br/>In this work different layouts proposed for the innovative MW-scale plant are simulated to optimize design and off-design operation. The simulation model details the main BoP components performances and includes a customized PEMFC model validated through dedicated experiments.<br/>The system may operate at atmospheric or mild pressurized conditions: pressurization to 0.7 barg allows significantly higher net system efficiency despite the increasing BoP consumptions. The additional energy recovery from the cathode exhaust with an expander gives higher net power and net efficiency adding up to 2%pt and reaching values between 47%LHV and 55%LHV for currents between 100% and 20% of the nominal value.
Recent Developments in Pd-CeO2 Nano-composite Electrocatalysts for Anodic Reactions in Anion Exchange Membrane Fuel Cells
Jan 2022
Publication
In 2016 for the first time a polymer electrolyte fuel cell free of Pt electrocatalysts was shown to deliver more than 0.5 W cm-2 of peak power density from H2 and air (CO2 free). This was achieved with a silver-based oxygen reduction (ORR) cathode and a Pd-CeO2 hydrogen oxidation reaction (HOR) anodic electrocatalyst. The poor kinetics of the HOR under alkaline conditions is a considerable challenge to Anion Exchange Membrane Fuel Cell (AEMFC) development as high Pt loadings are still required to achieve reasonable performance. Previously the ameliorative combination of Pd and CeO2 nanocomposites has been exploited mostly in heterogeneous catalysis where the positive interaction is well documented. Carbon supported PdCeO2 HOR catalysts have now been prepared by different synthetic techniques and employed in AEMFCs as alternative to Pt and PtRu standards. Important research has also been recently reported delving into the origin of the HOR enhancement on Pd-CeO2. Such work has highlighted the importance of the bifunctional mechanism of the HOR at high pHs. Carefully prepared nano-structures of Pd and CeO2 that promote the formation of the Pd-O-Ce interface provide optimal binding of both Had and OHad species aspects which are crucial for enhanced HOR kinetics. This review paper discusses the recent advances in Pd-CeO2 electrocatalysts for AEMFC anodes.
Inhomogeneous Hydrogen Deflagrations in the Presence of Obstacles in 25 m3 Enclosure. Experimental Results
Sep 2019
Publication
Explosion venting is a frequently used measure to mitigate the consequence of gas deflagrations in closed environments. Despite the effort to predict the vent area needed to achieved the protection through engineering formulas and CFD tools work has still to be done to reliably predict the outcome of a vented gas explosion. Blind-prediction exercises recently published show a large spread in the prediction of both engineering formula than CFD tools. University of Pisa performed experimental tests in a 25 m3 facility in inhomogeneous conditions and with the presence of simple obstacles constituted by plates bolted to HEB beams. The present paper is aimed to share the results of hydrogen dispersion and deflagration tests and discuss the comparison of maximum peak overpressure generated with different blockage ratio and repeated obstacles sets. Description of the experimental set-up includes all the details deemed necessary to reproduce the phenomenon with a CFD tool.
Integrating IT-SOFC and Gasification Combined Cycle with Methanation Reactor and Hydrogen Firing for Near Zero-emission Power Generation from Coal
Apr 2011
Publication
Application of Solid Oxide Fuel Cells (SOFC) in gasification-based power plants would represent a turning point in the power generation sector allowing to considerably increase the electric efficiency of coal-fired power stations while reducing CO2 and other pollutant emissions. The aim of this paper is the thermodynamic assessment of a SOFC-based IGFC plant with methanation reactor hydrogen post-firing and CO2 capture by physical absorption. The configuration proposed allows to obtain a very high net efficiency (51.6%) overcoming the main limits of configurations assessed in previous works.
Magnesium Based Materials for Hydrogen Based Energy Storage: Past, Present and Future
Jan 2019
Publication
Volodymyr A. Yartys,
Mykhaylo V. Lototskyy,
Etsuo Akiba,
Rene Albert,
V. E. Antonov,
Jose-Ramón Ares,
Marcello Baricco,
Natacha Bourgeois,
Craig Buckley,
José Bellosta von Colbe,
Jean-Claude Crivello,
Fermin Cuevas,
Roman V. Denys,
Martin Dornheim,
Michael Felderhoff,
David M. Grant,
Bjørn Christian Hauback,
Terry D. Humphries,
Isaac Jacob,
Petra E. de Jongh,
Jean-Marc Joubert,
Mikhail A. Kuzovnikov,
Michel Latroche,
Mark Paskevicius,
Luca Pasquini,
L. Popilevsky,
Vladimir M. Skripnyuk,
Eugene I. Rabkin,
M. Veronica Sofianos,
Alastair D. Stuart,
Gavin Walker,
Hui Wang,
Colin Webb,
Min Zhu and
Torben R. Jensen
Magnesium hydride owns the largest share of publications on solid materials for hydrogen storage. The “Magnesium group” of international experts contributing to IEA Task 32 “Hydrogen Based Energy Storage” recently published two review papers presenting the activities of the group focused on magnesium hydride based materials and on Mg based compounds for hydrogen and energy storage. This review article not only overviews the latest activities on both fundamental aspects of Mg-based hydrides and their applications but also presents a historic overview on the topic and outlines projected future developments. Particular attention is paid to the theoretical and experimental studies of Mg-H system at extreme pressures kinetics and thermodynamics of the systems based on MgH2 nanostructuring new Mg-based compounds and novel composites and catalysis in the Mg based H storage systems. Finally thermal energy storage and upscaled H storage systems accommodating MgH2 are presented.
Potential Models For Stand-Alone And Multi-Fuel Gaseous Hydrogen Refuelling Stations- Assessment Of Associated Risk
Sep 2005
Publication
Air pollution and traffic congestion are two of the major issues affecting public authorities policy makers and citizens not only in Italy and European Union but worldwide; this is nowadays witnessed by always more frequent limitations to the traffic in most of Italian cities for instance. Hydrogen use in automotive appears to offer a viable solution in medium-long term; this new perspective involves the need to carry out adequate infrastructures for distribution and refuelling and consequently the need to improve knowledge on hydrogen technologies from a safety point of view. In the present work possible different configurations for gaseous hydrogen refuelling station has been compared: “stand-alone” and “multi-fuel”. These two alternative scenarios has been taken into consideration each of one with specific hypotheses: “stand-alone” configuration based on the hypothesis of a potential model consisting of a hydrogen refuelling station composed by on-site hydrogen production via electrolysis a trailer of compressed gas for back-up compressor unit intermediate storage unit and dispenser. In this model it is assumed that no other refuelling equipment and/or dispenser of traditional fuel is present in the same site. “multi-fuel” configuration where it is assumed that the same components for hydrogen refuelling station are placed in the same site beside one or more refuelling equipment and/or dispenser of traditional fuel. Comparisons have been carried out from the point of view of specific risk assessment which have been conducted on both the two alternative scenarios.
Determination Of Hazardous Zones For A Generic Hydrogen Station – A Case Study
Sep 2007
Publication
A method for determination of hazardous zones for hydrogen installations has been studied. This work has been carried out within the NoE HySafe. The method is based on the Italian Method outlined in Guide 31-30(2004) Guide 31–35(2001) Guide 31-35/A(2001) and Guide 31-35/A; V1(2003). Hazardous zones for a “generic hydrogen refuelling station”(HRS) are assessed based on this method. The method is consistent with the EU directive 1999/92/EC “Safety and Health Protection of Workers potentially at risk from explosive atmospheres” which is the basis for determination of hazardous zones in Europe. This regulation is focused on protection of workers and is relevant for hydrogen installations such as hydrogen refuelling stations repair shops and other stationary installations where some type of work operations will be involved. The method is also based on the IEC standard and European norm IEC/EN60079-10 “Electrical apparatus for explosive gas atmospheres. Part 10 Classification of hazardous areas”. This is a widely acknowledged international standard/norm and it is accepted/approved by Fire and Safety Authorities in Europe and also internationally. Results from the HySafe work and other studies relevant for hydrogen and hydrogen installations have been included in the case study. Sensitivity studies have been carried out to examine the effect of varying equipment failure frequencies and leak sizes as well as environmental condition (ventilation obstacles etc.). The discharge and gas dispersion calculations in the Italian Method are based on simple mathematical formulas. However in this work also CFD (Computational Fluid Dynamics) and other simpler numerical tools have been used to quantitatively estimate the effect of ventilation and of different release locations on the size of the flammable gas cloud. Concentration limits for hydrogen to be used as basis for the extent of the hazardous zones in different situations are discussed.
Innovative Passive Protection Systems For Hydrogen Production Plants
Sep 2005
Publication
As a part of a broader project on hydrogen production by reforming of methane in a membrane catalytic reactor this paper outlines the research activity performed at the University of Pisa Department of Chemical Engineering aimed at developing and testing composite panels that can operate as thermal protective shields against hydrogen jet fires. The shield design criterion that appears to give a more practical and convenient solution for the type of installation to be protected is the one that suggest to realize composite panels. Composite material are made of two elements fiber and matrix. In this study composite panels will be realized with basalt fabric as fiber and epoxy-phenolic resins as matrix. Therefore following the indications given by norms as UNI 9174 and ASTM E 1321-93 a test method has been studied to obtain temperature data from a specimen impinged by an hydrogen flame. Thanks to thermocouples applied on backside of the sample and an infrared video camera to realize thermal images of specimen surface impinged by flame this type of test try to characterize the behaviour of composite materials under the action of hydrogen flame simulating in a simple way the action of hydrogen jet fires.
Consequence Assessment of the BBC Hydrogen Refuelling Station, Using The Adrea-Hf Code
Sep 2009
Publication
Within the framework of the internal project HyQRA of the HYSAFE Network of Excellence (NoE) funded by the European Commission (EC) the participating partners were requested to apply their Quantitative Risk Assessment (QRA) methodologies on a predefined hypothetical gaseous H2 refuelling station named BBC (Benchmark Base Case). The overall aim of the HyQRA project was to perform an inter-comparison of the various QRA approaches and to identify the knowledge gaps on data and information needed in the QRA steps specifically related to H2. Partners NCSRD and UNIPI collaborated on a common QRA. UNIPI identified the hazards on site selected the most critical ones defined the events that could be the primary cause of an accident and provided to NCSRD the scenarios listed in risk order for the evaluation of the consequences. NCSRD performed the quantitative analysis using the ADREA-HF CFD code. The predicted risk assessment parameters (flammable H2 mass and volume time histories and maximum horizontal and vertical distances of the LFL from the source) were provided to UNIPI to analyze the consequences and to evaluate the risk and distances of damage. In total 15 scenarios were simulated. Five of them were H2 releases in confined ventilated spaces (inside the compression and the purification/drying buildings). The remaining 10 scenarios were releases in open/semi-confined spaces (in the storage cabinet storage bank and refuelling hose of one dispenser). This paper presents the CFD methodology applied for the quantitative analysis of the common UNIPI/NCSRD QRA and discusses the results obtained from the performed calculations.
Safety Distances: Comparison of the Methodologies for Their Determination
Sep 2011
Publication
In this paper a study on the comparison between the different methodologies for the determination of the safety distances proposed by Standard Organizations and national Regulations is presented. The application of the risk-informed approach is one of the methodologies used for the determination of safety distances together with the risk-based approach. One of the main differences between the various methodologies is the risk criterion chosen. In fact a critical point is which level of risk should be used and then which are the harm events that must be considered. The harm distances are evaluated for a specified leak diameter that is a consequence of some parameters used in the various methodologies. The values of the safety distances proposed by Standard Organizations and national Regulations are a demonstration of the different approaches of the various methodologies especially in the choice of the leak diameter considered.
Thermal Efficiency of On-site, Small-scale Hydrogen Production Technologies using Liquid Hydrocarbon Fuels in Comparison to Electrolysis a Case Study in Norway
Oct 2018
Publication
The main goal of this study was to assess the energy efficiency of a small-scale on-site hydrogen production and dispensing plant for transport applications. The selected location was the city of Narvik in northern Norway where the hydrogen demand is expected to be 100 kg/day. The investigated technologies for on-site hydrogen generation starting from common liquid fossil fuels such as heavy naphtha and diesel were based on steam reforming and partial oxidation. Water electrolysis derived by renewable energy was also included in the comparison. The overall thermal efficiency of the hydrogen station was computed including compression and miscellaneous power consumption.
Hydrogen and Fuel Cell Stationary Applications: Key Findings of Modelling and Experimental Work in the Hyper Project
Sep 2009
Publication
Síle Brennan,
A. Bengaouer,
Marco Carcassi,
Gennaro M. Cerchiara,
Andreas Friedrich,
O. Gentilhomme,
William G. Houf,
N. Kotchourko,
Alexei Kotchourko,
Sergey Kudriakov,
Dmitry Makarov,
Vladimir V. Molkov,
Efthymia A. Papanikolaou,
C. Pitre,
Mark Royle,
R. W. Schefer,
G. Stern,
Alexandros G. Venetsanos,
Anke Veser,
Deborah Willoughby,
Jorge Yanez and
Greg H. Evans
"This paper summarises the modelling and experimental programme in the EC FP6 project HYPER. A number of key results are presented and the relevance of these findings to installation permitting guidelines (IPG) for small stationary hydrogen and fuel cell systems is discussed. A key aim of the activities was to generate new scientific data and knowledge in the field of hydrogen safety and where possible use this data as a basis to support the recommendations in the IPG. The structure of the paper mirrors that of the work programme within HYPER in that the work is described in terms of a number of relevant scenarios as follows: 1. high pressure releases 2. small foreseeable releases 3. catastrophic releases and 4. the effects of walls and barriers. Within each scenario the key objectives activities and results are discussed.<br/>The work on high pressure releases sought to provide information for informing safety distances for high-pressure components and associated fuel storage activities on both ignited and unignited jets are reported. A study on small foreseeable releases which could potentially be controlled through forced or natural ventilation is described. The aim of the study was to determine the ventilation requirements in enclosures containing fuel cells such that in the event of a foreseeable leak the concentration of hydrogen in air for zone 2 ATEX is not exceeded. The hazard potential of a possibly catastrophic hydrogen leakage inside a fuel cell cabinet was investigated using a generic fuel cell enclosure model. The rupture of the hydrogen feed line inside the enclosure was considered and both dispersion and combustion of the resulting hydrogen air mixture were examined for a range of leak rates and blockage ratios. Key findings of this study are presented. Finally the scenario on walls and barriers is discussed; a mitigation strategy to potentially reduce the exposure to jet flames is to incorporate barriers around hydrogen storage equipment. Conclusions of experimental and modelling work which aim to provide guidance on configuration and placement of these walls to minimise overall hazards is presented. "
Quantification of the Uncertainty of the Peak Pressure Value in the Vented Deflagrations of Air-Hydrogen Mixtures
Sep 2007
Publication
In the problem of the protection by the consequences of an explosion is actual for many industrial application involving storage of gas like methane or hydrogen refuelling stations and so on. A simple and economic way to reduce the peak pressure associated to a deflagration is to supply to the confined environment an opportune surface substantially less resistant then the protected structure typically in stoichiometric conditions the peak pressure reduction is around the 8 bars for a generic hydrocarbon combustion in an adiabatic system lacking of whichever mitigation system. In general the problem is the forecast of the peak pressure value (PMAX) of the explosion. This problem is faced using CFD codes modelling the structure in which the explosion is located and setting the main parameters like concentration of the gas in the mixture the volume available the size of vent area and obstacles (if included) and so on. In this work the idea is to start from empirical data to train a Neural Network (NN) in order to find the correlation among the parameters regulating the phenomenon. Associated to this prediction a fuzzy model will provide to quantify the uncertainty of the predicted value.
Integration of Experimental Facilities: A Joint Effort for Establishing a Common Knowledge Base in Experimental Work on Hydrogen Safety
Sep 2009
Publication
With regard to the goals of the European HySafe Network research facilities are essential for the experimental investigation of relevant phenomena for testing devices and safety concepts as well as for the generation of validation data for the various numerical codes and models. The integrating activity ‘Integration of Experimental Facilities (IEF)’ has provided basic support for jointly performed experimental work within HySafe. Even beyond the funding period of the NoE HySafe in the 6th Framework Programme IEF represents a long lasting effort for reaching sustainable integration of the experimental research capacities and expertise of the partners from different research fields. In order to achieve a high standard in the quality of experimental data provided by the partners emphasis was put on the know-how transfer between the partners. The strategy for reaching the objectives consisted of two parts. On the one hand a documentation of the experimental capacities has been prepared and analysed. On the other hand a communication base has been established by means of biannual workshops on experimental issues. A total of 8 well received workshops has been organised covering topics from measurement technologies to safety issues. Based on the information presented by the partners a working document on best practice including the joint experimental knowledge of all partners with regard to experiments and instrumentation was created. Preserving the character of a working document it was implemented in the IEF wiki website which was set up in order to provide a central communication platform. The paper gives an overview of the IEF network activities over the last 5 years.
Trends in Gas Sensor Development for Hydrogen Safety
Sep 2013
Publication
Gas sensors are applied for facilitating the safe use of hydrogen in for example fuel cell and hydrogen fuelled vehicles. New sensor developments aimed at meeting the increasingly stringent performance requirements in emerging applications are presented based on in-house technical developments and a literature study. The strategy of combining different detection principles i.e. sensors based on electrochemical cells semiconductors or field effects in combination with thermal conductivity sensor or catalytic combustion elements in one new measuring system is reported. This extends the dynamic measuring range of the sensor while improving sensor reliability to achieve higher safety integrity through diverse redundancy. The application of new nanoscaled materials nano wires carbon tubes and graphene as well as the improvements in electronic components of field-effect resistive-type and optical systems are evaluated in view of key operating parameters such as sensor response time low energy consumption and low working temperature.
Helios- A New Method for Hydrogen Permeation Test
Sep 2013
Publication
Hydrogen induced cracking is still a severe and current threat for several industrial applications. With the aim of providing a simple and versatile device for hydrogen detection a new instrument was designed based on solid state sensor technology. New detection technique allows to execute hydrogen permeation measurement in short time and without material surface preparation. Thanks to this innovation HELIOS offers a concrete alternative to traditional experimental methods for laboratory permeability tests. In addition it is proposed as a new system for Non Destructive Testing of components in service in hydrogenating environment. Hydrogen flux monitoring is particularly relevant for risk mitigation of elements involved in hydrogen storage and transportation. Hydrogen permeation tests were performed by means of HELIOS instruments both on a plane membrane and on the wall of a gas cylinder. Results confirmed the extreme sensitivity of the detection system and its suitability to perform measurements even on non metallic materials by means of an easy-to-handle instrument.
Non-stoichiometric Methanation as Strategy to Overcome the Limitations of Green Hydrogen Injection into the Natural Gas Grid
Jan 2022
Publication
The utilization of power to gas technologies to store renewable electricity surpluses in the form of hydrogen enables the integration of the gas and electricity sectors allowing the decarbonization of the natural gas network through green hydrogen injection. Nevertheless the injection of significant amounts of hydrogen may lead to high local concentrations that may degrade materials (e.g. hydrogen embrittlement of pipelines) and in general be not acceptable for the correct and safe operation of appliances. Most countries have specific regulations to limit hydrogen concentration in the gas network. The methanation of hydrogen represents a potential option to facilitate its injection into the grid. However stoichiometric methanation will lead to a significant presence of carbon dioxide limited in gas networks and requires an accurate design of several reactors in series to achieve relevant concentrations of methane. These requirements are smoothed when the methanation is undertaken under non-stoichiometric conditions (high H/C ratio). This study aims to assess to influence of nonstoichiometric methanation under different H/C ratios on the limitations presented by the pure hydrogen injection. The impact of this injection on the operation of the gas network at local level has been investigated and the fluid-dynamics and the quality of gas blends have been evaluated. Results show that non-stoichiometric methanation could be an alternative to increase the hydrogen injection in the gas network and facilitates the gas and electricity sector coupling.
Micro-wrinkled Pd Surface for Hydrogen Sensing and Switched Detection of Lower Explosive Limit
Sep 2011
Publication
We report the development and testing of a novel hydrogen sensor that shows a very peculiar response to hydrogen exposure due to its micro-structured palladium surface. The fabrication of the wrinkled Pd surface is obtained using an innovative fast and cheap technique based on the deposition of a thin Pd film on to a thermo-retractable polystyrene sheet that shrinks to 40% of its original size when heated. The buckling of the Pd surface induced by shrinking of the substrate produces nano and micro-wrinkles on the sensor surface. The micro-structured sensor surface is very stable even after repeated hydrogen sorption/desorption cycles. The hydrogen sensing mechanism is based on the transitory absorption of hydrogen atoms into the Pd layer leading to the reversible change of its electrical resistance. Interestingly depending on hydrogen concentration the proposed sensor shows the concurrent effect of both the usually described behaviors of increase or decrease of resistance related to different phenomena occurring upon hydrogen exposure and formation of palladium hydride. The study reports and discusses evidences for an activation threshold of hydrogen concentration in air switching the behavior of sensor performances from e.g. poor negative to large positive sensitivity and from slow to fast detection.
Design and Costs Analysis of Hydrogen Refuelling Stations Based on Different Hydrogen Sources and Plant Configurations
Jan 2022
Publication
In this study the authors present a techno-economic assessment of on-site hydrogen refuelling stations (450 kg/day of H2 ) based on different hydrogen sources and production technologies. Green ammonia biogas and water have been considered as hydrogen sources while cracking autothermal reforming and electrolysis have been selected as the hydrogen production technologies. The electric energy requirements of the hydrogen refuelling stations (HRSs) are internally satisfied using the fuel cell technology as power units for ammonia and biogas-based configurations and the PV grid-connected power plant for the water-based one. The hydrogen purification where necessary is performed by means of a Palladium-based membrane unit. Finally the same hydrogen compression storage and distribution section are considered for all configurations. The sizing and the energy analysis of the proposed configurations have been carried out by simulation models adequately developed. Moreover the economic feasibility has been performed by applying the life cycle cost analysis. The ammonia-based configurations are the best solutions in terms of hydrogen production energy efficiency (>71% LHV) as well as from the economic point of view showing a levelized cost of hydrogen (LCOH) in the range of 6.28 EUR/kg to 6.89 EUR/kg a profitability index greater than 3.5 and a Discounted Pay Back Time less than five years.
Material Testing and Design Recommendations for Components Exposed to Hydrogen Enhanced Fatigue – the Mathryce Project
Sep 2013
Publication
The three years European MATHRYCE project dedicated to material testing and design recommendations for components exposed to hydrogen enhanced fatigue started in October 2012. Its main goal is to provide an “easy” to implement methodology based on lab-scale experimental tests under hydrogen gas to assess the service life of a real scale component taking into account fatigue loading under hydrogen gas. Dedicated experimental tests will be developed for this purpose. In the present paper the proposed approach is presented and compared to the methodologies currently developed elsewhere in the world.
Benchmark Exercise on Risk Assessment Methods Applied to a Virtual Hydrogen Refuelling Station
Sep 2009
Publication
A benchmarking exercise on quantitative risk assessment (QRA) methodologies has been conducted within the project HyQRA under the framework of the European Network of Excellence (NoE) HySafe. The aim of the exercise was basically twofold: (i) to identify the differences and similarities in approaches in a QRA and their results for a hydrogen installation between nine participating partners representing a broad spectrum of background in QRA culture and history and (ii) to identify knowledge gaps in the various steps and parameters underlying the risk quantification. In the first step a reference case was defined: a virtual hydrogen refuelling station (HRS) in virtual surroundings comprising housing school shops and other vulnerable objects. All partners were requested to conduct a QRA according to their usual approach and experience. Basically participants were free to define representative release cases to apply models and frequency assessments according their own methodology and to present risk according to their usual format. To enable inter-comparison a required set of results data was prescribed like distances to specific thermal radiation levels from fires and distances to specific overpressure levels. Moreover complete documentation of assumptions base data and references was to be reported. It was not surprising that a wide range of results was obtained both in the applied approaches as well as in the quantitative outcomes and conclusions. This made it difficult to identify exactly which assumptions and parameters were responsible for the differences in results as the paper will show. A second phase was defined in which the QRA was determined by a more limited number of release cases (scenarios). The partners in the project agreed to assess specific scenarios in order to identify the differences in consequence assessment approaches. The results of this phase provide a better understanding of the influence of modelling assumptions and limitations on the eventual conclusions with regard to risk to on-site people and to the off-site public. This paper presents the results and conclusions of both stages of the exercise.
Integration of Open Slag Bath Furnace with Direct Reduction Reactors for New‐Generation Steelmaking
Jan 2022
Publication
The present paper illustrates an innovative steel processing route developed by employing hydrogen direct reduced pellets and an open slag bath furnace. The paper illustrates the direct reduction reactor employing hydrogen as reductant on an industrial scale. The solution allows for the production of steel from blast furnace pellets transformed in the direct reduction reactor. The reduced pellets are then melted in open slag bath furnaces allowing carburization for further refining. The proposed solution is clean for the decarbonization of the steel industry. The kinetic chemical and thermodynamic issues are detailed with particular attention paid to the slag conditions. The proposed solution is also supported by the economic evaluation compared to traditional routes.
Risk Analysis of Complex Hydrogen Infrastructures
Oct 2015
Publication
Building a network of hydrogen refuelling stations is essential to develop the hydrogen economy within transport. Additional hydrogen is regarded a likely key component to store and convert back excess electrical power to secure future energy supply and to improve the quality of biomass-based fuels. Therefore future hydrogen supply and distribution chains will have to address several objectives. Such a complexity is a challenge for risk assessment and risk management of these chains because of the increasing interactions. Improved methods are needed to assess the supply chain as a whole. The method of “Functional modelling” is discussed in this paper. It will be shown how it could be a basis for other decision support methods for comprehensive risk and sustainability assessments.
Cylinders and Tubes Used as Buffers in Filling Stations
Oct 2015
Publication
Buffers are key components for hydrogen filling stations that are currently being developed. Type 1 or composite cylinders are used for this application. The type used depends on many parameters including pressure level cost and space available for the filling station. No international standards exist for such high pressure vessels whereas many standards exist covering Types 123 and 4 used for transport of gas or on-board fuel tanks. It is suggested to use the cylinders approved for transport or on-board applications as buffers. This solution appears to be safe if at least one issue is solved. The main difference is that transport or on-board cylinders are cycled from a low pressure to a high pressure during service whereas buffers are cycled from a relatively high pressure (corresponding to the vehicle’s filling pressure) to the MAWP. Another difference is that buffers are cycled many times per day. For standards developers requesting to systematically verify that buffers pass millions of cycles at low pressure amplitude would be impractical. Several standards and codes give formulae to estimate the number of shallow cycles when number of deep cycles are known. In this paper we describe tests performed on all types of composite cylinders to verify or determine the appropriate formulae.
Hydrogen Permeation in X65 Steel under Cyclic Loading
May 2020
Publication
This experimental work analyzes the hydrogen embrittlement mechanism in quenched and tempered low-alloyed steels. Experimental tests were performed to study hydrogen diffusion under applied cyclic loading. The permeation curves were fitted by considering literature models in order to evaluate the role of trapping—both reversible and irreversible—on the diffusion mechanism. Under loading conditions a marked shift to the right of the permeation curves was noticed mainly at values exceeding the tensile yield stress. In the presence of a relevant plastic strain the curve changes due to the presence of irreversible traps which efficiently subtract diffusible atomic hydrogen. A significant reduction in the apparent diffusion coefficient and a considerable increase in the number of traps were noticed as the maximum load exceeded the yield strength. Cyclic loading at a tensile stress slightly higher than the yield strength of the material increases the hydrogen entrapment phenomena. The tensile stress causes a marked and instant reduction in the concentration of mobile hydrogen within the metal lattice from 55% of the yield strength and it increases significantly in the plastic field.
Lock-In Effects on the Energy Sector: Evidence from Hydrogen Patenting Activities
Apr 2022
Publication
The aim of the paper is to analyze how regulatory design and its framework’s topics other than macroeconomic factors might impact green innovation by taking into consideration a brand-new renewable source of energy that is becoming more and more important in recent years: hydrogen and fuel cell patenting activities. Such activities have been used as a proxy for green technological change in a panel data of 52 countries over a 6-year period. A series of sectorial energy regulation and macroeconomic variables were tested to assess their impact on that technological frontier of green energy transition policy. As might have been expected the empirical analysis carried out with the model that was prefigured confirms significant evidence of lock-in effects on fossil fuel policies. The model confirms however another evidence: countries already investing in renewables might be willing to invest in hydrogen projects. A sort of reinforcement to the further development of green sustainable strategies seems to derive from having already concretely undertaken this direction. Future research should exploit different approaches to the research question and address the econometric criticalities mentioned in the paper along with exploiting results of the paper with further investigations.
How Far Away is Hydrogen? Its Role in the Medium and Long-term Decarbonisation of the European Energy System
Nov 2015
Publication
Hydrogen is a promising avenue for decarbonising energy systems and providing flexibility. In this paper the JRC-EU-TIMES model – a bottom-up technology-rich model of the EU28 energy system – is used to assess the role of hydrogen in a future decarbonised Europe under two climate scenarios current policy initiative (CPI) and long-term decarbonisation (CAP). Our results indicate that hydrogen could become a viable option already in 2030 – however a long-term CO2 cap is needed to sustain the transition. In the CAP scenario the share of hydrogen in the final energy consumption of the transport and industry sectors reaches 5% and 6% by 2050. Low-carbon hydrogen production technologies dominate and electrolysers provide flexibility by absorbing electricity at times of high availability of intermittent sources. Hydrogen could also play a significant role in the industrial and transport sectors while the emergence of stationary hydrogen fuel cells for hydrogen-to-power would require significant cost improvements over and above those projected by the experts.
Application of Hydrides in Hydrogen Storage and Compression: Achievements, Outlook and Perspectives
Feb 2019
Publication
José Bellosta von Colbe,
Jose-Ramón Ares,
Jussara Barale,
Marcello Baricco,
Craig Buckley,
Giovanni Capurso,
Noris Gallandat,
David M. Grant,
Matylda N. Guzik,
Isaac Jacob,
Emil H. Jensen,
Julian Jepsen,
Thomas Klassen,
Mykhaylo V. Lototskyy,
Kandavel Manickam,
Amelia Montone,
Julian Puszkiel,
Martin Dornheim,
Sabrina Sartori,
Drew Sheppard,
Alastair D. Stuart,
Gavin Walker,
Colin Webb,
Heena Yang,
Volodymyr A. Yartys,
Andreas Züttel and
Torben R. Jensen
Metal hydrides are known as a potential efficient low-risk option for high-density hydrogen storage since the late 1970s. In this paper the present status and the future perspectives of the use of metal hydrides for hydrogen storage are discussed. Since the early 1990s interstitial metal hydrides are known as base materials for Ni – metal hydride rechargeable batteries. For hydrogen storage metal hydride systems have been developed in the 2010s [1] for use in emergency or backup power units i. e. for stationary applications.<br/>With the development and completion of the first submarines of the U212 A series by HDW (now Thyssen Krupp Marine Systems) in 2003 and its export class U214 in 2004 the use of metal hydrides for hydrogen storage in mobile applications has been established with new application fields coming into focus.<br/>In the last decades a huge number of new intermetallic and partially covalent hydrogen absorbing compounds has been identified and partly more partly less extensively characterized.<br/>In addition based on the thermodynamic properties of metal hydrides this class of materials gives the opportunity to develop a new hydrogen compression technology. They allow the direct conversion from thermal energy into the compression of hydrogen gas without the need of any moving parts. Such compressors have been developed and are nowadays commercially available for pressures up to 200 bar. Metal hydride based compressors for higher pressures are under development. Moreover storage systems consisting of the combination of metal hydrides and high-pressure vessels have been proposed as a realistic solution for on-board hydrogen storage on fuel cell vehicles.<br/>In the frame of the “Hydrogen Storage Systems for Mobile and Stationary Applications” Group in the International Energy Agency (IEA) Hydrogen Task 32 “Hydrogen-based energy storage” different compounds have been and will be scaled-up in the near future and tested in the range of 500 g to several hundred kg for use in hydrogen storage applications.
An Energy Autonomous House Equipped with a Solar PV Hydrogen Conversion System
Dec 2015
Publication
The use of RES in buildings is difficult for their random nature; therefore the plants using photovoltaic solar collectors must be connected to a power supply or interconnected with Energy accumulators if the building is isolated. The conversion of electricity into hydrogen technology is best suited to solve the problem and allows you to transfer the solar energy captured from day to night from summer to winter. This paper presents the feasibility study for a house powered by PV cogeneration solar collectors that reverse the electricity on the control unit that you command by a PC to power the household using a heat pump an electrolytic cell for the production of hydrogen to accumulate; control units sorting to the utilities the electricity produced by the fuel cell. The following are presented: The Energy analysis of the building the plant design economic analysis.
Blind-prediction: Estimating the Consequences of Vented Hydrogen Deflagrations for Homogeneous Mixtures in a 20-foot ISO Container
Sep 2017
Publication
Trygve Skjold,
Helene Hisken,
Sunil Lakshmipathy,
Gordon Atanga,
Marco Carcassi,
Martino Schiavetti,
James R. Stewart,
A. Newton,
James R. Hoyes,
Ilias C. Tolias,
Alexandros G. Venetsanos,
Olav Roald Hansen,
J. Geng,
Asmund Huser,
Sjur Helland,
Romain Jambut,
Ke Ren,
Alexei Kotchourko,
Thomas Jordan,
Jérome Daubech,
Guillaume Lecocq,
Arve Grønsund Hanssen,
Chenthil Kumar,
Laurent Krumenacker,
Simon Jallais,
D. Miller and
Carl Regis Bauwens
This paper summarises the results from a blind-prediction study for models developed for estimating the consequences of vented hydrogen deflagrations. The work is part of the project Improving hydrogen safety for energy applications through pre-normative research on vented deflagrations (HySEA). The scenarios selected for the blind-prediction entailed vented explosions with homogeneous hydrogen-air mixtures in a 20-foot ISO container. The test program included two configurations and six experiments i.e. three repeated tests for each scenario. The comparison between experimental results and model predictions reveals reasonable agreement for some of the models and significant discrepancies for others. It is foreseen that the first blind-prediction study in the HySEA project will motivate developers to improve their models and to update guidelines for users of the models.
Soft-linking of a Behavioral Model for Transport with Energy System Cost optimization Applied to Hydrogen in EU
Sep 2019
Publication
Fuel cell electric vehicles (FCEV) currently have the challenge of high CAPEX mainly associated to the fuel cell. This study investigates strategies to promote FCEV deployment and overcome this initial high cost by combining a detailed simulation model of the passenger transport sector with an energy system model. The focus is on an energy system with 95% CO2 reduction by 2050. Soft-linking by taking the powertrain shares by country from the simulation model is preferred because it considers aspects such as car performance reliability and safety while keeping the cost optimization to evaluate the impact on the rest of the system. This caused a 14% increase in total cost of car ownership compared to the cost before soft-linking. Gas reforming combined with CO2 storage can provide a low-cost hydrogen source for FCEV in the first years of deployment. Once a lower CAPEX for FCEV is achieved a higher hydrogen cost from electrolysis can be afforded. The policy with the largest impact on FCEV was a purchase subsidy of 5 k€ per vehicle in the 2030–2034 period resulting in 24.3 million FCEV (on top of 67 million without policy) sold up to 2050 with total subsidies of 84 bln€. 5 bln€ of R&D incentives in the 2020–2024 period increased the cumulative sales up to 2050 by 10.5 million FCEV. Combining these two policies with infrastructure and fuel subsidies for 2030–2034 can result in 76 million FCEV on the road by 2050 representing more than 25% of the total car stock. Country specific incentives split of demand by distance or shift across modes of transport were not included in this study.
Techno-economic Analysis of In-situ Production by Electrolysis, Biomass Gasification and Delivery Systems for Hydrogen Refuelling Stations: Rome Case Study
Oct 2018
Publication
Starting from the Rome Hydrogen Refuelling Station demand of 65 kg/day techno-economics of production systems and balance of plant for small scale stations have been analysed. A sensitivity analysis has been done on Levelised Cost of Hydrogen (LCOH) in the range of 0 to 400 kg/day varying capacity factor and availability hours or travel distance for alkaline electrolysers biomass gasification and hydrogen delivery. As expected minimum LCOH for electrolyser and gasifier is found at 400 kg/day and 24 h/day equal to 12.71 €/kg and 5.99 €/kg however for operating hours over 12 and 10 h/day the differential cost reaches a plateau (below 5%) for electrolyser and gasifier respectively. For the Rome station design 160 kWe of electrolysers 24 h/day and 100 kWth gasifier at 8 h/day LCOH (11.85 €/kg) was calculated considering the modification of the cost structure due to the existing equipment which is convenient respect the use of a single technology except for 24 h/day gasification.
CFD Simulations on Small Hydrogen Releases Inside a Ventilated Facility and Assessment of Ventilation Efficiency
Sep 2009
Publication
The use of stationary H2 and fuel cell systems is expected to increase rapidly in the future. In order to facilitate the safe introduction of this new technology the HyPer project funded by the EC developed a public harmonized Installation Permitting Guidance (IPG) document for the installation of small stationary H2 and fuel cell systems for use in various environments. The present contribution focuses on the safety assessment of a facility inside which a small H2 fuel cell system (4.8 kWe) is installed and operated. Dispersion experiments were designed and performed by partner UNIPI. The scenarios considered cover releases occurring inside the fuel cell at the valve of the inlet gas pipeline just before the pressure regulator which controls the H2 flow to the fuel cell system. H2 was expected to leak out of the fuel cell into the facility and then outdoors through the ventilation system. The initial leakage diameter was chosen based on the Italian technical guidelines for the enforcement of the ATEX European directive. Several natural ventilation configurations were examined. The performed tests were simulated by NCSRD using the ADREA-HF code. The numerical analysis took into account the full interior of the fuel cell in order to investigate for any potential accumulation effects. Comparisons between predicted and experimental H2 concentrations at 4 sensor locations inside the facility are reported. Finally an overall assessment of the ventilation efficiency was made based on the simulations and experiments.
Hydrogen Transport Safety: Case of Compressed Gaseous Tube Trailer
Sep 2005
Publication
The following paper describes researches to evaluate the behaviour under various accidental conditions of systems of transport compressed hydrogen. Particularly have been considered gaseous tube trailer and the packages cylinders employed for the road transport which have an internal gas pressures up to 200 barg.<br/>Further to a verification of the actual safety conditions this analysis intends to propose a theme that in the next future if confirmed projects around the employment of hydrogen as possible source energetic alternative could become quite important. The general increase of the consumptions of hydrogen and the consequently probable increase of the transports of gaseous hydrogen in pressure they will make the problem of the safety of the gaseous tube trail particularly important. Gaseous tube trailers will also use as components of plant. for versatility easy availability' and inexpensiveness.<br/>The first part of the memory is related to the analysis of the accidents happened in the last year in Italy with compressed hydrogen transports and particularly an accurate study has been made on the behaviour of a gaseous tube trailer involved in fire following a motorway accident in March 2003. In the central part of the job has been done a safety analysis of the described events trying to make to also emerge the most critical elements towards the activities developed by the teams of help intervened.<br/>Finally in the last part you are been listed on the base of the picked data a series of proposals and indications of the possible structural and procedural changes that could be suggested with the purpose to guarantee more elevated safety levels.
Guidelines for Fire Corps Standard Operating Procedures in the Event of Hydrogen Releases
Sep 2007
Publication
This paper presents a study on the Standard Operating Procedures (P.O.S.s) for the operation of the Fire Corps squads in the event of accidents with a hydrogen release fire or explosion. This study has been carried out by the Italian Working Group on the fire prevention safety issues as one of its main objectives. The Standard Operating Procedures proved to be a basic tool in order to improve the effectiveness of the Fire Corps rescue activity. The unique physical and chemical properties of the hydrogen its use without odorization and its almost invisible flame require a review of the already codified approaches to the rescue operations where conventional gases are involved. However this is only the first step; a Standard Operating Procedure puts together both the theoretical and practical experience achieved on the management of the rescue operations; therefore its arrangement is a cyclic process by nature always under continuous revision updating and improvement.
Life Cycle Environmental Analysis of a Hydrogen-based Energy Storage System for Remote Applications
Mar 2022
Publication
Energy storage systems are required to address the fluctuating behaviour of variable renewable energy sources. The environmental sustainability of energy storage technologies should be carefully assessed together with their techno-economic feasibility. In this work an environmental analysis of a renewable hydrogen-based energy storage system has been performed making use of input parameters made available in the framework of the European REMOTE project. The analysis is applied to the case study of the Froan islands (Norway) which are representative of many other insular microgrid sites in northern Europe. The REMOTE solution is compared with other scenarios based on fossil fuels and submarine connections to the mainland grid. The highest climate impacts are found in the dieselbased configuration (1090.9 kgCO2eq/MWh) followed by the REMOTE system (148.2 kgCO2eq/MWh) and by the sea cable scenario (113.7 kgCO2eq/MWh). However the latter is biased by the very low carbon intensity of the Norwegian electricity. A sensitivity analysis is then performed on the length of the sea cable and on the CO2 emission intensity of electricity showing that local conditions have a strong impact on the results. The REMOTE system is also found to be the most cost-effective solution to provide electricity to the insular community. The in-depth and comparative (with reference to possible alternatives) assessment of the renewable hydrogen-based system aims to provide a comprehensive overview about the effectiveness and sustainability of these innovative solutions as a support for off-grid remote areas.
Fatigue and Fracture of High-hardenability Steels for Thick-walled Hydrogen Pressure Vessels
Sep 2017
Publication
Stationary pressure vessels for the storage of large volumes of gaseous hydrogen at high pressure (>70 MPa) are typically manufactured from Cr-Mo steels. These steels display hydrogen-enhanced fatigue crack growth but pressure vessels can be manufactured using defect-tolerant design methodologies. However storage volumes are limited by the wall thickness that can be reliably manufactured for quench and tempered Cr-Mo steels typically not more than 25-35 mm. High-hardenability steels can be manufactured with thicker walls which enables larger diameter pressure vessels and larger storage volumes. The goal of this study is to assess the fracture and fatigue response of high hardenability Ni-Cr-Mo pressure vessel steels for use in high-pressure hydrogen service at pressure in excess of 1000 bar. Standardized fatigue crack growth tests were performed in gaseous hydrogen at frequency of 1Hz and for R-ratios in the range of 0.1 to 0.7. Elastic-plastic fracture toughness measurements were also performed. The measured fatigue and fracture behavior is placed into the context of previous studies on fatigue and fracture of Cr-Mo steels for gaseous hydrogen.
No more items...