United Kingdom
Results of the Pre-normative Research Project PRESLHY for the Safe Use of Liquid Hydrogen
Sep 2021
Publication
Liquid hydrogen (LH2) compared to compressed gaseous hydrogen offers advantages for large-scale transport and storage of hydrogen with higher densities. Although the gas industry has good experience with LH2 only little experience is available for the new applications of LH2 as an energy carrier. Therefore the European FCH JU funded project PRESLHY conducted pre-normative research for the safe use of cryogenic LH2 in non-industrial settings. The central research consisted of a broad experimental program combined with analytical work modelling and simulations belonging to the three key phenomena of the accident chain: release and mixing ignition and combustion. The presented results improve the general understanding of the behavior of LH2 in accidents and provide some design guidelines and engineering tools for safer use of LH2. Recommendations for improvement of current international standards are derived.
Energy From Waste and the Circular Economy
Jul 2020
Publication
The Energy Research Accelerator (ERA) and the Birmingham Energy Institute have launched a policy commission to examine the state of play barriers challenges and opportunities for Energy from Waste (EfW) to form part of the regional energy circular economy in the Midlands. This policy commission explores the case for regional investment whilst helping shape the regional local government and industry thinking surrounding critical issues such as fuel poverty and poor air quality.
The Challenge
Tackling climate change is one of the most pressing issues of our time. To follow the path for limiting global warming below 2ᵒC set out in the 2015 Paris agreement requires significant reduction in greenhouse gas emissions. The UK has committed to bring all greenhouse gas emissions to net zero by 2050 requiring action at a local regional and national level to transition to a zero carbon economy.
To decarbonise and decentralise the UK’s energy system we must implement technologies that provide energy supply solutions across the UK.
In the Midlands many industrial sites are unable to access supply of affordable clean and reliable energy to meet their demands.
Energy from Waste (EfW) could offer a solution to the Midlands based industrial sites. EfW sites provide affordable secure energy supply solutions that form part of a developing circular economy. EfW reduces our reliance on landfills and obtains the maximum value from our waste streams. There are a number of merging technologies that could potentially play an important role which treats waste as a resource properly integrated into an energy and transport system and fully respects the potential of linking in the circular economy.
Investment into EfW infrastructure in the region could lead to job creation and economic growth and could help provide inward investment needed to redevelop old industrial sites and retiring power stations. However for EfW to be part of a net-zero energy system (either in transition or long-term) technologies and processes are needed that reduce the current carbon emissions burden.
EfW could play a significant role in the net zero carbon transition in the Midlands supplying heat power and green fuels and solve other problems - the region has some of the highest levels of energy/fuel poverty and poor air quality in the UK. The policy commission will help shape the regional local government and industry thinking surrounding this important topic.
Report Recommendations
Recovery Resource Cluster
The EfW policy commission proposes three major areas where it believes that government investment would be highly beneficial
The National Centre for the Circular Economy would analyse material flows throughout the economy down to regional and local levels and develop deep expertise in recycling and EfW technologies. The CCE would also provide expert guidance and support for local authorities as they develop local or regional strategies and planning frameworks.
The R&D Grand Challenge aims to make big advances in small-scale carbon capture technologies in order to turn 100% of CO2 produced through the process of converting waste to energy into useful products. This is very important for areas such as the Midlands which are remoted from depleted oil and gas reservoirs.
The Challenge
Tackling climate change is one of the most pressing issues of our time. To follow the path for limiting global warming below 2ᵒC set out in the 2015 Paris agreement requires significant reduction in greenhouse gas emissions. The UK has committed to bring all greenhouse gas emissions to net zero by 2050 requiring action at a local regional and national level to transition to a zero carbon economy.
To decarbonise and decentralise the UK’s energy system we must implement technologies that provide energy supply solutions across the UK.
In the Midlands many industrial sites are unable to access supply of affordable clean and reliable energy to meet their demands.
Energy from Waste (EfW) could offer a solution to the Midlands based industrial sites. EfW sites provide affordable secure energy supply solutions that form part of a developing circular economy. EfW reduces our reliance on landfills and obtains the maximum value from our waste streams. There are a number of merging technologies that could potentially play an important role which treats waste as a resource properly integrated into an energy and transport system and fully respects the potential of linking in the circular economy.
Investment into EfW infrastructure in the region could lead to job creation and economic growth and could help provide inward investment needed to redevelop old industrial sites and retiring power stations. However for EfW to be part of a net-zero energy system (either in transition or long-term) technologies and processes are needed that reduce the current carbon emissions burden.
EfW could play a significant role in the net zero carbon transition in the Midlands supplying heat power and green fuels and solve other problems - the region has some of the highest levels of energy/fuel poverty and poor air quality in the UK. The policy commission will help shape the regional local government and industry thinking surrounding this important topic.
Report Recommendations
Recovery Resource Cluster
The EfW policy commission proposes three major areas where it believes that government investment would be highly beneficial
- Building a network of local and regional Resource Recovery Clusters
- Creating a National Centre for the Circular Economy
- Launching an R&D Grand Challenge to develop small-scale circular carbon capture technologies.
The National Centre for the Circular Economy would analyse material flows throughout the economy down to regional and local levels and develop deep expertise in recycling and EfW technologies. The CCE would also provide expert guidance and support for local authorities as they develop local or regional strategies and planning frameworks.
The R&D Grand Challenge aims to make big advances in small-scale carbon capture technologies in order to turn 100% of CO2 produced through the process of converting waste to energy into useful products. This is very important for areas such as the Midlands which are remoted from depleted oil and gas reservoirs.
The Social Dimensions of Moving Away From Gas Cookers and Hobs- Challenges and Opportunities in Transition to Low Carbon Cooking
May 2020
Publication
Heat is one of the UK’s largest energy-consuming and carbon-emitting sectors and potentially the most difficult to decarbonise. The UK’s Clean Growth Strategy identifies that heat decarbonisation in buildings and industry will likely involve shifting away from natural gas to alternative energy vectors like electricity and hydrogen. This will mean transition of existing cooking appliances away from natural gas resulting in social implications that require detailed analysis for optimal transition.
This report investigates the social dimensions of heat decarbonisation in cooking appliances specifically moving away from gas cookers and hobs. It presents a first step in tackling the following questions.
This report investigates the social dimensions of heat decarbonisation in cooking appliances specifically moving away from gas cookers and hobs. It presents a first step in tackling the following questions.
- How are current carbon-intensive cooking technologies part of existing cooking practices and broader social and material structures?
- What are the challenges and opportunities for cooking heat decarbonisation in terms of consumer acceptance carbon and energy reductions and business/market opportunities?
- What interventions are needed to realise policy objectives of heat de-carbonisation?
- The report builds on interviews with BEIS’s long-term heat strategy experts and key external stakeholders together with a review of secondary data on trends in cooking and appliance use in the UK. Further it presents an annotated bibliography of literature on the social implications of heat decarbonisation and sustainable food transitions more broadly. The multidisciplinary review of the literature is structured around Southerton et al.’s (2011) ISM (Individual- Social- and Material-context) framework for a systemic review of the various change-agents required for transition. Finally a comparative review of the social challenges and opportunities identified in the ISM contexts is presented along with the potential policy interventions in each. The report concludes with a list of recommendations in terms of evidence and data gathering; research; policy; and a set of general recommendations for heat decarbonisation policy.
Environmental Sustainability of Renewable Hydrogen in Comparison with Conventional Cooking Fuels
Jun 2018
Publication
Hydrogen could be used as a ‘cleaner’ cooking fuel particularly in communities that rely on biomass and fossil fuels to reduce local pollution and related health effects. However hydrogen must be produced using sustainable feedstocks and energy sources to ensure that local impacts are not reduced at the expense of other impacts generated elsewhere in the life cycle. To this end this paper evaluates life cycle environmental impacts of renewable hydrogen produced in a proton-exchange membrane electrolyser using solar energy. The aim of the study is to find out if hydrogen produced in this system and used as a cooking fuel is environmentally sustainable in comparison with conventional cooking fuels typically used in developing countries such as liquefied petroleum gas (LPG) charcoal and firewood. The results suggest that hydrogen would reduce the climate change impact by 2.5–14 times to 0.04 kg CO2 eq./MJ compared to firewood (0.10 kg CO2 eq./MJ) and LPG (0.57 kg CO2 eq./MJ). Some other impacts would also be lower by 6%–35 times including depletion of fossil fuels summer smog and health effects from emissions of particulates both locally and across the rest of the life cycle. However some other impacts would increase by 6%–6.7 times such as depletion of metals and freshwater and marine ecotoxicity. These are mainly due to the solar photovoltaic panels used to generate power for the electrolyser. In terms of the local impacts the study suggests that hydrogen would reduce local pollution and related health impacts by 8%–35 times. However LPG is still environmentally a better option than hydrogen for most of the impacts both at the point of use and on a life cycle basis.
Scotland’s Energy Strategy Position Statement
Mar 2021
Publication
This policy statement provides:
An overview of our key priorities for the short to medium-term and then moves on to look at how we have continued to abide by the three key principles set out in Scotland's Energy Strategy published in 2017 in our policy design and delivery. Those principles are:
Separate sections have been included on Maximising Scotland's International Potential in the lead up to the UN Framework Convention on Climate Change Conference of the Parties (COP26) and on Consumers to reflect the challenging economic climate we currently face and to highlight the action being taken by the Scottish Government to ensure the cost of our energy transition does not fall unequally.
This statement provides an overview of our approach to supporting the energy sector in the lead up to COP26 and as we embark on a green economic recovery from the COVID-19 pandemic. It summarises how our recent policy publications such as our Hydrogen Policy Statement Local Energy Policy Statement and Offshore Wind Policy Statement collectively support the delivery of the Climate Change Plan update along with the future findings from our currently live consultations including our draft Heat in Buildings Strategy our Call for Evidence on the future development of the Low Carbon Infrastructure Transition Programme (LCITP) and our consultation on Scottish skills requirements for energy efficiency.
While this statement sets out our comprehensive programme of work across the energy sector the current Energy Strategy (2017) remains in place until any further Energy Strategy refresh is adopted by Ministers. It is at the stage of refreshing Scotland's Energy Strategy where we will embark on a series of stakeholder engagements and carry out the relevant impact assessments to inform our thinking on future policy development.
An overview of our key priorities for the short to medium-term and then moves on to look at how we have continued to abide by the three key principles set out in Scotland's Energy Strategy published in 2017 in our policy design and delivery. Those principles are:
- a whole-system view;
- an inclusive energy transition; and
- a smarter local energy model.
- Skills and Jobs;
- Supporting Local Communities:
- Investment; and
- Innovation
Separate sections have been included on Maximising Scotland's International Potential in the lead up to the UN Framework Convention on Climate Change Conference of the Parties (COP26) and on Consumers to reflect the challenging economic climate we currently face and to highlight the action being taken by the Scottish Government to ensure the cost of our energy transition does not fall unequally.
This statement provides an overview of our approach to supporting the energy sector in the lead up to COP26 and as we embark on a green economic recovery from the COVID-19 pandemic. It summarises how our recent policy publications such as our Hydrogen Policy Statement Local Energy Policy Statement and Offshore Wind Policy Statement collectively support the delivery of the Climate Change Plan update along with the future findings from our currently live consultations including our draft Heat in Buildings Strategy our Call for Evidence on the future development of the Low Carbon Infrastructure Transition Programme (LCITP) and our consultation on Scottish skills requirements for energy efficiency.
While this statement sets out our comprehensive programme of work across the energy sector the current Energy Strategy (2017) remains in place until any further Energy Strategy refresh is adopted by Ministers. It is at the stage of refreshing Scotland's Energy Strategy where we will embark on a series of stakeholder engagements and carry out the relevant impact assessments to inform our thinking on future policy development.
Enabling Large-scale Hydrogen Storage in Porous Media – The Scientific Challenges
Jan 2021
Publication
Niklas Heinemann,
Juan Alcalde,
Johannes M. Miocic,
Suzanne J. T. Hangx,
Jens Kallmeyer,
Christian Ostertag-Henning,
Aliakbar Hassanpouryouzband,
Eike M. Thaysen,
Gion J. Strobel,
Cornelia Schmidt-Hattenberger,
Katriona Edlmann,
Mark Wilkinson,
Michelle Bentham,
Stuart Haszeldine,
Ramon Carbonell and
Alexander Rudloff
Expectations for energy storage are high but large-scale underground hydrogen storage in porous media (UHSP) remains largely untested. This article identifies and discusses the scientific challenges of hydrogen storage in porous media for safe and efficient large-scale energy storage to enable a global hydrogen economy. To facilitate hydrogen supply on the scales required for a zero-carbon future it must be stored in porous geological formations such as saline aquifers and depleted hydrocarbon reservoirs. Large-scale UHSP offers the much-needed capacity to balance inter-seasonal discrepancies between demand and supply decouple energy generation from demand and decarbonise heating and transport supporting decarbonisation of the entire energy system. Despite the vast opportunity provided by UHSP the maturity is considered low and as such UHSP is associated with several uncertainties and challenges. Here the safety and economic impacts triggered by poorly understood key processes are identified such as the formation of corrosive hydrogen sulfide gas hydrogen loss due to the activity of microbes or permeability changes due to geochemical interactions impacting on the predictability of hydrogen flow through porous media. The wide range of scientific challenges facing UHSP are outlined to improve procedures and workflows for the hydrogen storage cycle from site selection to storage site operation. Multidisciplinary research including reservoir engineering chemistry geology and microbiology more complex than required for CH4 or CO2 storage is required in order to implement the safe efficient and much needed large-scale commercial deployment of UHSP.
Innovation Insights Brief - Five Steps to Energy Storage
Jan 2020
Publication
As the global electricity systems are shaped by decentralisation digitalisation and decarbonisation the World Energy Council’s Innovation Insights Briefs explore the new frontiers in energy transitions and the challenges of keeping pace with fast moving developments. We use leadership interviews to map the state of play and case studies across the whole energy landscape and build a broader and deeper picture of new developments within and beyond the new energy technology value chain and business ecosystem.<br/><br/>With major decarbonisation efforts and the scaling up of renewable power generation the widespread adoption of energy storage continues to be described as the key game changer for electricity systems. Affordable storage systems are a critical missing link between intermittent renewable power and a 24/7 reliability net-zero carbon scenario. Beyond solving this salient challenge energy storage is being increasingly considered to meet other needs such as relieving congestion or smoothing out the variations in power that occur independently of renewable-energy generation. However whilst there is plenty of visionary thinking recent progress has focused on short-duration and battery-based energy storage for efficiency gains and ancillary services; there is limited progress in developing daily weekly and even seasonal cost-effective solutions which are indispensable for a global reliance on intermittent renewable energy sources.
Hybrid Hydrogen PEM Fuel Cell and Batteries Without DC–DC Converter
Sep 2013
Publication
Concerns about greenhouse gases as well as the price and security of oil supply have acted as a spur to sustainable automobile development. The hydrogen fuel cells electric vehicle (HFCEV) is generally recognised by leading automobile manufacturers and scientists as one of the optimum technologies for long-term future low carbon vehicle. In a typical HFCEV power train a DC–DC converter is required to balance the voltage difference between the fuel cells (FCs) stack and batteries. However research shows that a considerable amount of energy generated by the hydrogen FCs stack is deplete during this conversion process as heat. This experiment aims to improve the power train efficiency by eliminating the DC–DC converter by finding the best combination of FC stack and batteries matching the size and capacity of the electrical components.
The UK Carbon Capture, Usage and Storage (CCUS) Deployment Pathway: An Action Plan
Nov 2018
Publication
CCUS has economy-wide qualities which could be very valuable to delivering clean industrial growth. It could deliver tangible results in tackling some of the biggest challenges we face in decarbonising our economy contributing to industrial competitiveness and generating new economic opportunities – a key part of our modern Industrial Strategy.
Our vision is to become a global leader in CCUS unlocking the potential of the technology and securing the added value which it can bring to our industrial centres and businesses all across the UK.
Our ambition is that the UK should have the option to deploy CCUS at scale during the 2030s subject to the costs coming down sufficiently.
Our Industrial Strategy set out four Grand Challenges to put the UK at the forefront of the industries of the future. The Clean Growth Grand Challenge seeks to maximise the advantages for UK industry from the global shift to clean growth. CCUS can be an important part of achieving these objectives.
Our vision is to become a global leader in CCUS unlocking the potential of the technology and securing the added value which it can bring to our industrial centres and businesses all across the UK.
Our ambition is that the UK should have the option to deploy CCUS at scale during the 2030s subject to the costs coming down sufficiently.
Our Industrial Strategy set out four Grand Challenges to put the UK at the forefront of the industries of the future. The Clean Growth Grand Challenge seeks to maximise the advantages for UK industry from the global shift to clean growth. CCUS can be an important part of achieving these objectives.
Biogas: Pathways to 2030
Mar 2021
Publication
Humans directly or indirectly generate over 105 billion tonnes of organic wastes globally each year all of which release harmful methane and other greenhouse gas emissions directly into the atmosphere as they decompose. These organic wastes include food waste sewage and garden wastes food and drink processing wastes and farm and agricultural wastes. Today only 2% of these are treated and recycled.
By simply managing these important bioresources more effectively we can cut global Greenhouse Gas (GHG) emissions by 10% by 2030. This report maps out how the global biogas industry can enable countries to deliver a 10% reduction in global GHG emissions by 2030. The pathways put humanity back on track to deliver by 2030 on the ambitions of both the Paris Agreement and UN Sustainable Development Goals (SDGs).
The report and the executive summary can be downloaded at this link
By simply managing these important bioresources more effectively we can cut global Greenhouse Gas (GHG) emissions by 10% by 2030. This report maps out how the global biogas industry can enable countries to deliver a 10% reduction in global GHG emissions by 2030. The pathways put humanity back on track to deliver by 2030 on the ambitions of both the Paris Agreement and UN Sustainable Development Goals (SDGs).
The report and the executive summary can be downloaded at this link
Unpacking Leadership-driven Global Scenarios Towards the Paris Agreement: Report Prepared for the UK Committee on Climate Change
Dec 2020
Publication
Outline
This independent report by Vivid Economics and University College London was commissioned to support the Climate Change Committee’s (CCC) 2020 report The Sixth Carbon Budget -The path to Net Zero. This research provided supporting information for Chapter 7 of the CCC’s report which considered the UK’s contribution to the global goals of the Paris Agreement.
Key recommendations
The report models ‘leadership-driven’ global scenarios that could reduce global emissions rapidly to Net Zero and analyses the levers available to developed countries such as the UK to help accelerate various key aspects of the required global transition.
It highlights a set of opportunities for the UK alongside other developed countries to help assist global decarbonisation efforts alongside achieving it’s domestic emissions reduction targets
This independent report by Vivid Economics and University College London was commissioned to support the Climate Change Committee’s (CCC) 2020 report The Sixth Carbon Budget -The path to Net Zero. This research provided supporting information for Chapter 7 of the CCC’s report which considered the UK’s contribution to the global goals of the Paris Agreement.
Key recommendations
The report models ‘leadership-driven’ global scenarios that could reduce global emissions rapidly to Net Zero and analyses the levers available to developed countries such as the UK to help accelerate various key aspects of the required global transition.
It highlights a set of opportunities for the UK alongside other developed countries to help assist global decarbonisation efforts alongside achieving it’s domestic emissions reduction targets
Hydrogen Embrittlement in Super Duplex Stainless Steels
Nov 2019
Publication
In super duplex stainless steels (SDSSs) both austenite and ferrite are susceptible to hydrogen embrittlement however there is a lack of understanding into the effect of hydrogen in each phase. In this study in neutron diffraction was applied on hydrogen-charged (H-charged) samples to investigate the hydrogen embrittlement behaviour in super duplex stainless steels. The result reveals that austenite maintains good plasticity during tensile testing whilst a loss of it is realised in ferrite. Fractography analysis reveals the diffusion of hydrogen induced a brittle-to-ductile transition from the sample surface towards the centre; hydrogen embrittlement vanishes as the specimen’s centre is approached while it is demonstrated to disappear first in austenite but not in ferrite. This transition can be predicted by applying a physics-based hydrogen embrittlement model which incorporates the effects of hydrogen concentration hydrogen diffusivity residual stress loading state and temperature. The present work demonstrates the dissimilar susceptibility of austenite and ferrite to hydrogen embrittlement providing a tool to describe it.
A Critical Review on the Principles, Applications, and Challenges of Waste-to-hydrogen Technologies
Sep 2020
Publication
Hydrogen sourced from energy recovery processes and conversion of waste materials is a method of providing both a clean fuel and a sustainable waste management alternative to landfill and incineration. The question is whether waste-to–hydrogen can become part of the zero-carbon future energy mix and serve as one of the cleaner hydrogen sources which is economically viable and environmentally friendly. This work critically assessed the potential of waste as a source of hydrogen production via various thermochemical (gasification and pyrolysis) and biochemical (fermentation and photolysis) processes. Research has shown hydrogen production yields of 33.6 mol/kg and hydrogen concentrations of 82% from mixed waste feedstock gasification. Biochemical methods such as fermentation can produce hydrogen up to 418.6 mL/g. Factors including feedstock quality process requirements and technology availability were reviewed to guide technology selection and system design. Current technology status and bottlenecks were discussed to shape future development priorities. These bottlenecks include expensive production and operation processes heterogeneous feedstock low process efficiencies inadequate management and logistics and lack of policy support. Improvements to hydrogen yields and production rates are related to feedstock processing and advanced energy efficiency processes such as torrefaction of feedstock which has shown thermal efficiency of gasification up to 4 MJ/kg. This will affect the economic feasibility and concerns around required improvements to bring the costs down to allow waste to viewed as a serious competitor for hydrogen production. Recommendations were also made for financially competitive waste-to-hydrogen development to be part of a combined solution for future energy needs.
CCS Deployment at Dispersed Industrial Sites: Element Energy for the Department for Business Energy and Industrial Strategy (BEIS)
Aug 2020
Publication
This report identifies and assesses a range of high-level deployment options for industrial carbon capture usage and storage (CCUS) technology located in non-clustered ‘dispersed’ sites that are isolated from potential carbon dioxide transport infrastructure in the UK.
It provides:
It provides:
- an identification of the challenges and barriers to CCUS deployment specifically at these dispersed sites
- an appraisal of the range of high-level options for CCUS deployment and the risks associated with each challenge
- an assessment of the most promising options based on their cost risk and emission reduction potential
- BEIS commissioned Element Energy to produce the report.
The Pathway to Net Zero Heating in the UK: A UKERC Policy Brief
Oct 2020
Publication
There is uncertainty over how heating might practically be decarbonised in the future. This briefing provides some clarity about the possible pathways forward focusing on the next 5-10 years.<br/>Meeting the UK government’s net zero emissions goal for 2050 will only be possible by complete decarbonisation of the building stock (both existing and new). There is uncertainty over the extent to which heating might practically be decarbonised in the future and what the optimal technologies may be. This paper provides some clarity about the pathways forward focusing on the next 5-10 years.
Optimal Energy Management System Using Biogeography Based Optimization for Grid-connected MVDC Microgrid with Photovoltaic, Hydrogen System, Electric Vehicles and Z-source Converters
Oct 2021
Publication
Currently the technology associated with charging stations for electric vehicles (EV) needs to be studied and improved to further encourage its implementation. This paper presents a new energy management system (EMS) based on a Biogeography-Based Optimization (BBO) algorithm for a hybrid EV charging station with a configuration that integrates Z-source converters (ZSC) into medium voltage direct current (MVDC) grids. The EMS uses the evolutionary BBO algorithm to optimize a fitness function defining the equivalent hydrogen consumption/generation. The charging station consists of a photovoltaic (PV) system a local grid connection two fast charging units and two energy storage systems (ESS) a battery energy storage (BES) and a complete hydrogen system with fuel cell (FC) electrolyzer (LZ) and hydrogen tank. Through the use of the BBO algorithm the EMS manages the energy flow among the components to keep the power balance in the system reducing the equivalent hydrogen consumption and optimizing the equivalent hydrogen generation. The EMS and the configuration of the charging station based on ZSCs are the main contributions of the paper. The behaviour of the EMS is demonstrated with three EV connected to the charging station under different conditions of sun irradiance. In addition the proposed EMS is compared with a simpler EMS for the optimal management of ESS in hybrid configurations. The simulation results show that the proposed EMS achieves a notable improvement in the equivalent hydrogen consumption/generation with respect to the simpler EMS. Thanks to the proposed configuration the output voltage of the components can be upgraded to MVDC while reducing the number of power converters compared with other configurations without ZSC.
Flexibility in Great Britain
May 2021
Publication
The Flexibility in Great Britain project analysed the system-level value of deploying flexibility across the heat transport industry and power sectors in Great Britain to provide a robust evidence-base on the role and value of flexibility in a net zero system.
Overview
Findings from this groundbreaking analysis of the future net zero energy system in Great Britain are expected to have profound implications for policymakers households and the wider energy sector across Great Britain.
Key findings include:
Read the Full Report here on the Carbon Trust Website
View the interactive analysis here at the Carbon Trust Website
Watch an accompanying video here at the Carbon Trust Youtube channel
Overview
Findings from this groundbreaking analysis of the future net zero energy system in Great Britain are expected to have profound implications for policymakers households and the wider energy sector across Great Britain.
Key findings include:
- Embedding greater flexibility across the entire energy system will reduce the cost of achieving net zero for all consumers while assuring energy security.
- Investing in flexibility is a no-regrets decision as it has the potential to deliver material net savings of up to £16.7bn per annum across all scenarios analysed in 2050.
- A more flexible system will accelerate the benefits of decarbonisation supported by decentralisation and digitalisation.
- To maximise the benefits of flexibility households and businesses should play an active role in the development and operation of the country’s future energy system as energy use for transport heat and appliances becomes more integrated.
- Policymakers should preserve existing flexibility options and act now to maximise future flexibility such as by building it into ‘smart’ appliances or building standards.
Read the Full Report here on the Carbon Trust Website
View the interactive analysis here at the Carbon Trust Website
Watch an accompanying video here at the Carbon Trust Youtube channel
Materials for Hydrogen-based Energy Storage - Past, Recent Progress and Future Outlook
Dec 2019
Publication
Michael Hirscher,
Volodymyr A. Yartys,
Marcello Baricco,
José Bellosta von Colbe,
Didier Blanchard,
Robert C. Bowman Jr.,
Darren P. Broom,
Craig Buckley,
Fei Chang,
Ping Chen,
Young Whan Cho,
Jean-Claude Crivello,
Fermin Cuevas,
William I. F. David,
Petra E. de Jongh,
Roman V. Denys,
Martin Dornheim,
Michael Felderhoff,
Yaroslav Filinchuk,
George E. Froudakis,
David M. Grant,
Evan MacA. Gray,
Bjørn Christian Hauback,
Teng He,
Terry D. Humphries,
Torben R. Jensen,
Sangryun Kim,
Yoshitsugu Kojima,
Michel Latroche,
Hai-wen Li,
Mykhaylo V. Lototskyy,
Joshua W. Makepeace,
Kasper T. Møller,
Lubna Naheed,
Peter Ngene,
Dag Noreus,
Magnus Moe Nygård,
Shin-ichi Orimo,
Mark Paskevicius,
Luca Pasquini,
Dorthe B. Ravnsbæk,
M. Veronica Sofianos,
Terrence J. Udovic,
Tejs Vegge,
Gavin Walker,
Colin Webb,
Claudia Weidenthaler and
Claudia Zlotea
Globally the accelerating use of renewable energy sources enabled by increased efficiencies and reduced costs and driven by the need to mitigate the effects of climate change has significantly increased research in the areas of renewable energy production storage distribution and end-use. Central to this discussion is the use of hydrogen as a clean efficient energy vector for energy storage. This review by experts of Task 32 “Hydrogen-based Energy Storage” of the International Energy Agency Hydrogen TCP reports on the development over the last 6 years of hydrogen storage materials methods and techniques including electrochemical and thermal storage systems. An overview is given on the background to the various methods the current state of development and the future prospects. The following areas are covered; porous materials liquid hydrogen carriers complex hydrides intermetallic hydrides electro-chemical storage of energy thermal energy storage hydrogen energy systems and an outlook is presented for future prospects and research on hydrogen-based energy storage
Gas Goes Green: Tomorrow's Heat, Today's Opportunity
Sep 2021
Publication
Cutting-edge world-leading energy network innovation is vital to ensuring that our economy can continue to access the energy it needs to safeguard jobs and to maintain our international competitiveness as the world goes through decarbonisation. In this report we build on the 2020 Gas Goes Green Zero Carbon Commitment to set out the scale of investment that Britain’s gas networks wish to deliver to hydrogen innovation projects and preparing the gas networks. This work will be focused over the next ten years creating highly-skilled high-tech green jobs through investment and ensuring that the impact of that innovation is felt in communities across the UK.
Webinar to Launch New Hydrogen Economy - Hope or Hype?
Jun 2019
Publication
On 26 June the World Energy Council held a webinar presenting the results of its latest Innovation Insights Brief on hydrogen engaging three key experts on the topic:
Nigel Brandon Dean of the Faculty of Engineering Imperial College London
Craig Knight Director of Industrial Solutions Horizon Fuel Cell Technology
Dan Sadler H21 Project Manager for Equinor
During the webinar the experts answered a series of policy technical and safety questions from the audience. The webinar started with a poll to get a sense of which sectors attendees saw hydrogen playing a key role in 2040 - 77% chose industrial processes 54% mobility and 31% power generation. The questions ranged from the opportunities and limitations of blending hydrogen with natural gas to safety concerns surrounding hydrogen.
KEY HIGHLIGHTS:
How much hydrogen can be blended with natural gas depends on the rules and regulation of each country. The general consensus is that blending 10% by volume of hydrogen presents no safety concerns or specific difficulties. This would provide an opportunity to develop low hydrogen markets. Nevertheless blending should not be the end destination. It is not sufficient to meet carbon abatement targets.
Low carbon ammonia has a role to play in the new hydrogen economy. It is a proven and understood technology which is easier to move around the world and could be used directly as ammonia or cracked back into hydrogen.
One of the main focus today should be to replace grey hydrogen with green hydrogen in existing supply chains as there would be no efficiency losses in the process.
In China the push for hydrogen is transport-related. This is driven by air quality and energy independence concerns. In the next 10 years the full life cost of fuel cell electric vehicles (FCEVs) is expected to be lower than for internal combustion engines. This is due to the fact that FCEVs require less maintenance and that the residual value in the fuel cells is relatively high. At the end of life 95% of the platinum in fuel cells can be repurposed.
FCEVs should not be regarded as competing with battery electric vehicles they sit next to each other on product maps. FCEVs can benefit from the all of the advances in electric drive train systems and electric motors.
To close the webinar attendees were asked whether hydrogen was going through another hype cycle or if it was here to stay. 10% answered hype and 90% here to stay.
Nigel Brandon Dean of the Faculty of Engineering Imperial College London
Craig Knight Director of Industrial Solutions Horizon Fuel Cell Technology
Dan Sadler H21 Project Manager for Equinor
During the webinar the experts answered a series of policy technical and safety questions from the audience. The webinar started with a poll to get a sense of which sectors attendees saw hydrogen playing a key role in 2040 - 77% chose industrial processes 54% mobility and 31% power generation. The questions ranged from the opportunities and limitations of blending hydrogen with natural gas to safety concerns surrounding hydrogen.
KEY HIGHLIGHTS:
How much hydrogen can be blended with natural gas depends on the rules and regulation of each country. The general consensus is that blending 10% by volume of hydrogen presents no safety concerns or specific difficulties. This would provide an opportunity to develop low hydrogen markets. Nevertheless blending should not be the end destination. It is not sufficient to meet carbon abatement targets.
Low carbon ammonia has a role to play in the new hydrogen economy. It is a proven and understood technology which is easier to move around the world and could be used directly as ammonia or cracked back into hydrogen.
One of the main focus today should be to replace grey hydrogen with green hydrogen in existing supply chains as there would be no efficiency losses in the process.
In China the push for hydrogen is transport-related. This is driven by air quality and energy independence concerns. In the next 10 years the full life cost of fuel cell electric vehicles (FCEVs) is expected to be lower than for internal combustion engines. This is due to the fact that FCEVs require less maintenance and that the residual value in the fuel cells is relatively high. At the end of life 95% of the platinum in fuel cells can be repurposed.
FCEVs should not be regarded as competing with battery electric vehicles they sit next to each other on product maps. FCEVs can benefit from the all of the advances in electric drive train systems and electric motors.
To close the webinar attendees were asked whether hydrogen was going through another hype cycle or if it was here to stay. 10% answered hype and 90% here to stay.
No more items...