United Kingdom
Green Hydrogen and its Unspoken Challenges for Energy Justice
Oct 2024
Publication
Green hydrogen is often promoted as a key facilitator for the clean energy transition but its implementation raises concerns around energy justice. This paper examines the socio-political and techno-economic challenges that green hydrogen projects may pose to the three tenets of energy justice: distributive procedural and recognition justice. From a socio-political perspective the risk of neocolonial resource extraction uneven distribution of benefits exclusion of local communities from decision-making and disregard for indigenous rights and cultures threaten all three justice tenets. Techno-economic factors such as water scarcity land disputes and resource-related conflicts in potential production hotspots further jeopardise distributive and recognition justice. The analysis framed by an adapted PEST model reveals that while green hydrogen holds promise for sustainable development its implementation must proactively address these justice challenges. Failure to do so could perpetuate injustices exploitation and marginalisation of vulnerable communities undermining the sustainability goals it aims to achieve. The paper highlights the need for inclusive and equitable approaches that respect local sovereignty integrate diverse stakeholders and ensure fair access and benefit-sharing. Only by centring justice considerations can the transition to green hydrogen catalyse positive social change and realise its full potential as a driver of sustainable energy systems.
Modelling Flexibility Requirements in Deep Decarbonisation Scenarios: The Role of Conventional Flexibility and Sector Coupling Options in the European 2050 Energy System
Feb 2024
Publication
Russia’s invasion of Ukraine has reaffirmed the importance of scaling up renewable energy to decarbonise Europe’s economy while rapidly reducing its exposure to foreign fossil fuel suppliers. Therefore the question of sources of flexibility to support a fully decarbonised European energy system is becoming even more critical in light of a renewable-dominated energy system. We developed and used a Pan-European energy system model to systematically assess and quantify sources of flexibility to meet deep decarbonisation targets. The electricity supply sector and electricity-based end-use technologies are crucial in achieving deep decarbonisation. Other low-carbon energy sources like biomethane hydrogen synthetic e-fuels and bioenergy with carbon capture and storage will also play a role. To support a fully decarbonised European energy system by 2050 both temporal and spatial flexibility will be needed. Spatial flexibility achieved through investments in national electricity networks and cross-border interconnections is crucial to support the aggressive roll-out of variable renewable energy sources. Cross-border trade in electricity is expected to increase and in deep decarbonisation scenarios the electricity transmission capacity will be larger than that of natural gas. Hydrogen storage and green hydrogen production will play a key role in providing traditional inter-seasonal flexibility and intraday flexibility will be provided by a combination of electrical energy storage hydrogen-based storage solutions (e.g. liquid H2 and pressurised storage) and hybrid heat pumps. Hydrogen networks and storage will become more critical as we move towards the highest decarbonisation scenario. Still the need for natural gas networks and storage will decrease substantially.
Zone Negligible Extent: Example of Specific Detailed Risk Assessment for Low Pressure Equipment in a Hydrogen Refuelling Station
Sep 2023
Publication
The MultHyFuel project aims to develop evidence-based guidelines for the safe implementation of Hydrogen Refueling Stations (HRS) in a multi-fuel context. As a part of the generation of good practice guidelines for HRS Hazardous Area Classification (HAC) methodologies were analyzed and applied to case studies representing example configurations of HRS. It has been anticipated that Negligible Extent (NE) classifications might be applicable for sections of the HRS for instance a hydrogen generator. A NE zone requires that an ignition of a flammable cloud would result in negligible consequences. In addition depending on the pressure of the system IEC 60079-10-1:2020 establishes specific requirements in order to classify the hazardous area as being of NE. One such requirement is that a zone of NE shall not be applied for releases from flammable gas systems at pressures above 2000 kPag (20 barg) unless a specific detailed risk assessment is documented. However there is no definition within the standard as to the requirements of the specific detailed risk assessment. In this work an example for a specific detailed risk assessment for the NE classification is presented:<br/>• Firstly the requirements of cloud volume dilution and background concentration for a zone of NE classification from IEC 60079-10-1:2020 are analyzed for hydrogen releases from equipment placed in a mechanically ventilated enclosure.<br/>• Secondly the consequences arising from the ignition of the localized cloud are estimated and compared to acceptable harm criteria in order to assess if negligible consequences are obtained from the scenario.<br/>• In addition a specific qualitative risk assessment for the ignition of the cloud in the enclosure was considered incorporating the estimated consequences and analyzing the available safeguards in the example system.<br/>Recommendations for the specific detailed risk assessment are proposed for this scenario with the intention to support improved definition of the requirement in future revisions of IEC 60079-10-1.
Review of Next Generation Hydrogen Production from Offshore Wind Using Water Electrolysis
Dec 2023
Publication
Hydrogen produced using renewable energy from offshore wind provides a versatile method of energy storage and power-to-gas concepts. However few dedicated floating offshore electrolyser facilities currently exist and therefore conditions of the offshore environment on hydrogen production cost and efficiency remain uncertain. Therefore this review focuses on the conversion of electrical energy to hydrogen using water electrolysis located in offshore areas. The challenges associated with the remote locations fluctuating power and harsh conditions are highlighted and recommendations for future electrolysis system designs are suggested. The latest research in polymer electrolyte membrane alkaline and membraneless electrolysis are evaluated in order to understand their capital costs efficiency and current research status for achieving scaled manufacturing to the GW scale required in the next three decades. Operating fundamentals that govern the performance of each device are investigated and future recommendations of research specifically for the integration of water electrolysers with offshore wind turbines is presented.
An Experimental Investigation of Hydrogen Production through Biomass Electrolysis
Jan 2024
Publication
This work investigated hydrogen production from biomass feedstocks (i.e. glucose starch lignin and cellulose) using a 100 mL h-type proton exchange membrane electrolysis cell. Biomass electrolysis is a promising process for hydrogen production although low in technology readiness level but with a series of recognised advantages: (i) lower-temperature conditions (compared to thermochemical processes) (ii) minimal energy consumption and low-cost post-production (iii) potential to synthesise high-volume H2 and (iv) smaller carbon footprint compared to thermochemical processes. A Lewis acid (FeCl3 ) was employed as a charge carrier and redox medium to aid in the depolymerisation/oxidation of biomass components. A comprehensive analysis was conducted measuring the H2 and CO2 emission volume and performing electrochemical analysis (i.e. linear sweep voltammetry and chronoamperometry) to better understand the process. For the first time the influence of temperature on current density and H2 evolution was studied at temperatures ranging from ambient temperature (i.e. 19 ◦C) to 80 ◦C. The highest H2 volume was 12.1 mL which was produced by FeCl3 -mediated electrolysis of glucose at ambient temperature which was up to two times higher than starch lignin and cellulose at 1.20 V. Of the substrates examined glucose also showed a maximum power-to-H2 -yield ratio of 30.99 kWh/kg. The results showed that hydrogen can be produced from biomass feedstock at ambient temperature when a Lewis acid (FeCl3 ) is employed and with a higher yield rate and a lower electricity consumption compared to water electrolysis.
Analysis of the Combustion Speed in a Spark Ignition Engine Fuelled with Hydrogen and Gasoline Blends at Different Air Fuel Ratios
Nov 2024
Publication
The use of hydrogen in internal combustion engines is a promising solution for the decarbonisation of the transport sector. The current transition scenario is marked by the unavailability and storage challenges of hydrogen. Dual fuel combustion of hydrogen and gasoline in current spark ignition engines is a feasible solution in the short and medium term as it can improve engine efficiency reduce pollutant emissions and contribute significantly in tank to wheel decarbonisation without major engine modification. However new research is needed to understand how the incorporation of hydrogen affects existing engines to effectively implement gasoline-hydrogen dual fuel option. Understanding the impact of hydrogen on the combustion process (e.g. combustion speed) will guide and optimize the operation of engines under dual fuel combustion conditions. In this work a commercial gasoline direct injection engine has been modified to operate with gasolinehydrogen fuels. The experiments have been carried out at various air–fuel ratios ranging from stoichiometric to lean combustion conditions at constant engine speed and torque. At each one of the 14 experimental points 200-cycle in-cylinder pressure traces were recorded and processed with a quasi-dimensional diagnostic model and a combustion speed analysis was then carried out. It has been understood that hydrogen mainly reduces the duration of the first combustion phase. Hydrogen also enables to increase air excess ratios (lean in fuel combustion) without significantly increasing combustion duration. Furthermore a correlation is proposed to predict combustion speed as a function of the fuel and air mixture properties. This correlation can be incorporated to calculate combustion duration in predictive models of engines operating under different fuel mixtures and different geometries of the combustion chamber with pent-roof cylinder head and flat piston head.
Multi-criteria Site Selection Workflow for Geological Storage of Hydrogen in Depleted Gas Fields: A Case for the UK
Oct 2023
Publication
Underground hydrogen storage (UHS) plays a critical role in ensuring the stability and security of the future clean energy supply. However the efficiency and reliability of UHS technology depend heavily on the careful and criteria-driven selection of suitable storage sites. This study presents a hybrid multi-criteria decision-making framework integrating the Analytical Hierarchy Process (AHP) and Preference Ranking Organisation Method for Enrichment of Evaluations (PROMETHEE) to identify and select the best hydrogen storage sites among depleted gas reservoirs in the UK. To achieve this a new set of site selection criteria is proposed in light of the technical and economic aspects of UHS including location reservoir rock quality and tectonic characteristics maximum achievable hydrogen well deliverability rate working gas capacity cushion gas volume requirement distance to future potential hydrogen clusters and access to intermittent renewable energy sources (RESs). The framework is implemented to rank 71 reservoirs based on their potential and suitability for UHS. Firstly the reservoirs are thoroughly evaluated for each proposed criterion and then the AHP-PROMETHEE technique is employed to prioritise the criteria and rank the storage sites. The study reveals that the total calculated working gas capacity based on single-well plateau withdrawal rates is around 881 TWh across all evaluated reservoirs. The maximum well deliverability rates for hydrogen withdrawal are found to vary considerably among the sites; however 22 % are estimated to have deliverability rates exceeding 100 sm3 /d and 63 % are located within a distance of 100 km from a major hydrogen cluster. Moreover 70 % have access to nearby RESs developments with an estimated cumulative RESs capacity of approximately 181 GW. The results highlight the efficacy of the proposed multicriteria site selection framework. The top five highest-ranked sites for UHS based on the evaluated criteria are the Cygnus Hamilton Saltfleetby Corvette and Hatfield Moors gas fields. The insights provided by this study can contribute to informed decision-making sustainable development and the overall progress of future UHS projects within the UK and globally.
Underground Hydrogen Storage: A UK Perspective
Oct 2023
Publication
Hydrogen is anticipated to play a key role in global decarbonization and within the UK’s pathway to achieving net zero targets. However as the production of hydrogen expands in line with government strategies a key concern is where this hydrogen will be stored for later use. This study assesses the different large-scale storage options in geological structures available to the UK and addresses the surrounding uncertainties moving towards establishing a hydrogen economy. Currently salt caverns look to be the most favourable option considering their proven experience in the storage of hydrogen especially high purity hydrogen natural sealing properties low cushion gas requirement and high charge and discharge rates. However their geographical availability within the UK can act as a major constraint. Additionally a substantial increase in the number of new caverns will be necessary to meet the UK’s storage demand. Salt caverns have greater applicability as a good short-term storage solution however storage in porous media such as depleted hydrocarbon reservoirs and saline aquifers can be seen as a long-term and strategic solution to meet energy demand and achieve energy security. Porous media storage solutions are estimated to have capacities which far exceed projected storage demand. Depleted fields have generally been well explored prior to hydrocarbon extraction. Although many saline aquifers are available offshore UK geological characterizations are still required to identify the right candidates for hydrogen storage. Currently the advantages of depleted gas reservoirs over saline aquifers make them the favoured option after salt caverns.
Deflagrations of Non-uniform Hydrogen/Air Clouds in a Tunnel
Sep 2023
Publication
This paper presents work undertaken by the HSE as part of the Hytunnel-CS project a consortium investigating safety considerations for fuel cell hydrogen (FCH) vehicles in tunnels and similar confined spaces.<br/>Hydrogen vehicles typically have a Thermally activated Pressure Release Device (TPRD) providing protection to the on-board storage of the vehicle. Upon activation the content of the vessel is released in a blowdown. The release of this hydrogen gas poses a significant hazard of ignition. The consequences of such an ignition could also be compounded by confinement or congestion.<br/>HSE undertook a series of experiments investigating the consequences of these events by releasing hydrogen into a tunnel and causing ignitions. A sub-section of these tests involved steel structures providing congestion in the tunnel. The mass of hydrogen released into the tunnel prior to ignition was varied by storage pressure (up to 59 MPa) release diameter and ignition delay. The ignition delays were set based on the expected worst-case predicted by pre-simulation models. To assess the consequences overpressure measurements were made down the tunnel walls and for the tests with congestion at the face and rear of the congestion structures. The flame arrival time was also measured using exposed-tip thermocouples resulting in an estimate for flame speed down the tunnel. The measured overpressure and flame extent results are presented and compared against overpressure levels of concern.
Recent Developments on Carbon Neutrality through Carbon Dioxide Capture and Utilization with Clean Hydrogen for Production of Alternative Fuels for Smart Cities
Jul 2024
Publication
This review comprehensively evaluates the integration of solar-powered electrolytic hydrogen (H2) production and captured carbon dioxide (CO2) management for clean fuel production considering all potential steps from H2 production methods to CO2 capture and separation processes. It is expected that the near future will cover CO2-capturing technologies integrated with solar-based H2 production at a commercially viable level and over 5 billion tons of CO2 are expected to be utilized potentially for clean fuel production worldwide in 2050 to achieve carbon-neutral levels. The H2 production out of hydrocarbon-based processes using fossil fuels emits greenhouse gas emissions of 17-38 kg CO2/kg H2. On the other hand . renewable energy based green hydrogen production emits less than 2 kg CO2/kg H2 which makes it really clean and appealing for implementation. In addition capturing CO2 and using for synthesizing alternative fuels with green hydrogen will help generate clean fuels for smart cities. In this regard the most sustainable and promising CO2 capturing method is post-combustion with an adsorption-separation-desorption processes using monoethanolamine adsorbent with high CO2 removal efficiencies from flue gases. Consequently this review article provides perspectives on the potential of integrating CO2-capturing technologies and renewable energy-based H2 production systems for clean production to create sustainable cities and communities.
Prospects for Long-Distance Cascaded Liquid—Gaseous Hydrogen Delivery: An Economic and Environmental Assessment
Oct 2024
Publication
As an important energy source to achieve carbon neutrality green hydrogen has always faced the problems of high use cost and unsatisfactory environmental benefits due to its remote production areas. Therefore a liquid-gaseous cascade green hydrogen delivery scheme is proposed in this article. In this scheme green hydrogen is liquefied into high-density and low-pressure liquid hydrogen to enable the transport of large quantities of green hydrogen over long distances. After longdistance transport the liquid hydrogen is stored and then gasified at transfer stations and converted into high-pressure hydrogen for distribution to the nearby hydrogen facilities in cities. In addition this study conducted a detailed model evaluation of the scheme around the actual case of hydrogen energy demand in Chengdu City in China and compared it with conventional hydrogen delivery methods. The results show that the unit hydrogen cost of the liquid-gaseous cascade green hydrogen delivery scheme is only 51.58 CNY/kgH2 and the dynamic payback periods of long- and short-distance transportation stages are 13.61 years and 7.02 years respectively. In terms of carbon emissions this scheme only generates indirect carbon emissions of 2.98 kgCO2/kgH2 without using utility electricity. In sum both the economic and carbon emission analyses demonstrate the advantages of the liquidgaseous cascade green hydrogen delivery scheme. With further reductions in electricity prices and liquefication costs this scheme has the potential to provide an economically/environmentally superior solution for future large-scale green hydrogen applications.
Innovations in Hydrogen Storage Materials: Synthesis, Applications, and Prospects
Jul 2024
Publication
Hydrogen globally recognized as the most efficient and clean energy carrier holds the potential to transform future energy systems through its use as a fuel and chemical resource. Although progress has been made in reversible hydrogen adsorption and release challenges in storage continue to impede widespread adoption. This review explores recent advancements in hydrogen storage materials and synthesis methods emphasizing the role of nanotechnology and innovative synthesis techniques in enhancing storage performance and addressing these challenges to drive progress in the field. The review provides a comprehensive overview of various material classes including metal hydrides complex hydrides carbon materials metal-organic frameworks (MOFs) and porous materials. Over 60 % of reviewed studies focused on metal hydrides and alloys for hydrogen storage. Additionally the impact of nanotechnology on storage performance and the importance of optimizing synthesis parameters to tailor material properties for specific applications are summarized. Various synthesis methods are evaluated with a special emphasis on the role of nanotechnology in improving storage performance. Mechanical milling emerges as a commonly used and cost-effective method for fabricating intermetallic hydrides capable of adjusting hydrogen storage properties. The review also explores hydrogen storage tank embrittlement mechanisms particularly subcritical crack growth and examines the advantages and limitations of different materials for various applications supported by case studies showcasing real-world implementations. The challenges underscore current limitations in hydrogen storage materials highlighting the need for improved storage capacity and kinetics. The review also explores prospects for developing materials with enhanced performance and safety providing a roadmap for ongoing advancements in the field. Key findings and directions for future research in hydrogen storage materials emphasize their critical role in shaping future energy systems.
A Systematic Comparison of the Energy and Emissions Intensity of Hydrogen Production Pathways in the United Kingdom
Sep 2024
Publication
Meeting climate targets requires profound transformations in the energy system. Most energy uses should be electrified but where this is not feasible hydrogen can be part of the solution. However 98% of global hydrogen production involves greenhouse gas emissions with an average of 12 kg CO2e/kg H2. Therefore new hydrogen production pathways are needed in order to make hydrogen production compatible with climate targets. In this work we fill this gap by systematically comparing the energy and emissions intensity of 173 hydrogen production pathways suitable for the UK. Scenarios include onshore and offshore pathways and the use of repurposed infrastructure. Unlike fossil-fuel based pathways the results show that electrolytic hydrogen powered by fixed offshore wind could align with proposed emissions standards either onshore or offshore. However the embodied and fugitive emissions are important to consider for electrolytic pathways as they result in 10–50% of the total emissions intensity.
Design of a Hydrogen Aircraft for Zero Persistent Contrails
Jul 2023
Publication
Contrails are responsible for a significant proportion of aviation’s climate impact. This paper uses data from the European Centre for Medium-Range Weather Forecasts to identify the altitudes and latitudes where formed contrails will not persist. This reveals that long-lived contrails may be prevented by flying lower in equatorial regions and higher in non-equatorial regions. Subsequently it is found that the lighter fuel and reduced seating capacity of hydrogen-powered aircraft lead to a reduced aircraft weight which increases the optimal operating altitude by about 2 km. In non-equatorial regions this would lift the aircraft’s cruise point into the region where long-lived contrails do not persist unlocking hydrogen-powered low-contrails operation. The baseline aircraft considered is an A320 retrofitted with in-fuselage hydrogen tanks. The impacts of the higher-altitude cruise on fuel burn and the benefits unlocked by optimizing the wing geometry for this altitude are estimated using a drag model based on theory proposed by Cavcar Lock and Mason and verified against existing aircraft. The weight penalty associated with optimizing wing geometry for this altitude is estimated using Torenbeek’s correlation. It is found that thinner wings with higher aspect ratios are particularly suited to this high-altitude operation and are enabled by the relaxation of the requirement to store fuel in the wings. An example aircraft design for the non-equatorial region is provided which cruises at a 14 km altitude at Mach 0.75 with a less than 1% average probability of generating long-lived contrails when operating at latitudes more than 35◦ from the equator. Compared to the A320 this concept design is estimated to have a 20% greater cruise lift–drag ratio due to the 33% thinner wings with a 50% larger aspect ratio enabling just 5% more energy use per passenger-km despite fitting 40% fewer seats.
Offshore Green Hydrogen Production from Wind Energy: Critical Review and Perspective
Feb 2024
Publication
Hydrogen is envisaged to play a major role in decarbonizing our future energy systems. Hydrogen is ideal for storing renewable energy over longer durations strengthening energy security. It can be used to provide electricity renewable heat power long-haul transport shipping and aviation and in decarbonizing several industrial processes. The cost of green hydrogen produced from renewable via electrolysis is dominated by the cost of electricity used. Operating electrolyzers only during periods of low electricity prices will limit production capacity and underutilize high investment costs in electrolyzer plants. Hydrogen production from deep offshore wind energy is a promising solution to unlock affordable electrolytic hydrogen at scale. Deep offshore locations can result in an increased capacity factor of generated wind power to 60–70% 4–5 times that of onshore locations. Dedicated wind farms for electrolysis can use the majority >80% of the produced energy to generate economical hydrogen. In some scenarios hydrogen can be the optimal carrier to transport the generated energy onshore. This review discusses the opportunities and challenges in offshore hydrogen production using electrolysis from wind energy and seawater. This includes the impact of site selection size of the electrolyzer and direct use of seawater without deionization. The review compares overall electrolysis system efficiency cost and lifetime when operating with direct seawater feed and deionized water feed using reverse osmosis and flash evaporation systems. In the short to medium term it is advised to install a reverse osmosis plant with an ion exchanger to feed the electrolysis instead of using seawater directly.
Green Hydrogen Production and Liquefaction Using Offshore Wind Power, Liquid Air, and LNG Cold Energy
Sep 2023
Publication
Coastal regions have abundant off-shore wind energy resources and surrounding areas have large-scale liquefied natural gas (LNG) receiving stations. From the engineering perspectives there are limitations in unstable off-shore wind energy and fluctuating LNG loads. This article offers a new energy scheme to combine these 2 energy units which uses surplus wind energy to produce hydrogen and use LNG cold energy to liquefy and store hydrogen. In addition in order to improve the efficiency of utilizing LNG cold energy and reduce electricity consumption for liquid hydrogen (LH2) production at coastal regions this article introduces the liquid air energy storage (LAES) technology as the intermediate stage which can stably store the cold energy from LNG gasification. A new scheme for LNG-LAES-LH2 hybrid LH2 production is built. The case study is based on a real LNG receiving station at Hainan province China and this article presents the design of hydrogen production/liquefaction process and carries out the optimizations at key nodes and proves the feasibility using specific energy consumption and exergy analysis. In a 100 MW system the liquid air storage round-trip efficiency is 71.0% and the specific energy consumption is 0.189 kWh/kg and the liquid hydrogen specific energy consumption is 7.87 kWh/kg and the exergy efficiency is 46.44%. Meanwhile the corresponding techno-economic model is built and for a LNGLAES-LH2 system with LH2 daily production 140.4 tons the shortest dynamic payback period is 9.56 years. Overall this novel hybrid energy scheme can produce green hydrogen using a more efficient and economical method and also can make full use of surplus off-shore wind energy and coastal LNG cold energy.
OIES Podcast - Aviation Fuels and the Potential of Hydrogen
Feb 2024
Publication
In the latest OIES podcast from the Hydrogen Programme James Henderson talks to Abdurahman Alsulaiman about his latest paper entitled “Navigating Turbulence: Hydrogen’s Role in the Decarbonisation of the Aviation Sector.” In the podcast we discuss the current balance of fuels in the aviation sector the importance of increasing efficiency of aero-engines and the impact of increasing passenger miles travelled. The podcast then considers different decarbonisation options for the sector focussing on a change of engine technology to allow the use of alternative fuels such as hydrogen or electricity but also looking at the potential for hydrogen to play an important role in the development of Sustainable Aviation Fuels (SAFs) for use with current engine technology. We also look at Low Carbon Aviation Fuels which are essentially existing fuels derived from a significantly decarbonised supply chain and assess whether they have an important role to play as the aviation sector targets a net zero outcome.
The podcast can be found on their website.
The podcast can be found on their website.
‘Greening’ an Oil Exporting Country: A Hydrogen, Wind and Gas Turbine Case Study
Feb 2024
Publication
In the quest for achieving decarbonisation it is essential for different sectors of the economy to collaborate and invest significantly. This study presents an innovative approach that merges technological insights with philosophical considerations at a national scale with the intention of shaping the national policy and practice. The aim of this research is to assist in formulating decarbonisation strategies for intricate economies. Libya a major oil exporter that can diversify its energy revenue sources is used as the case study. However the principles can be applied to develop decarbonisation strategies across the globe. The decarbonisation framework evaluated in this study encompasses wind-based renewable electricity hydrogen and gas turbine combined cycles. A comprehensive set of both official and unofficial national data was assembled integrated and analysed to conduct this study. The developed analytical model considers a variety of factors including consumption in different sectors geographical data weather patterns wind potential and consumption trends amongst others. When gaps and inconsistencies were encountered reasonable assumptions and projections were used to bridge them. This model is seen as a valuable foundation for developing replacement scenarios that can realistically guide production and user engagement towards decarbonisation. The aim of this model is to maintain the advantages of the current energy consumption level assuming a 2% growth rate and to assess changes in energy consumption in a fully green economy. While some level of speculation is present in the results important qualitative and quantitative insights emerge with the key takeaway being the use of hydrogen and the anticipated considerable increase in electricity demand. Two scenarios were evaluated: achieving energy self-sufficiency and replacing current oil exports with hydrogen exports on an energy content basis. This study offers for the first time a quantitative perspective on the wind-based infrastructure needs resulting from the evaluation of the two scenarios. In the first scenario energy requirements were based on replacing fossil fuels with renewable sources. In contrast the second scenario included maintaining energy exports at levels like the past substituting oil with hydrogen. The findings clearly demonstrate that this transition will demand great changes and substantial investments. The primary requirements identified are 20529 or 34199 km2 of land for wind turbine installations (for self-sufficiency and exports) and 44 single-shaft 600 MW combined-cycle hydrogen-fired gas turbines. This foundational analysis represents the commencement of the research investment and political agenda regarding the journey to achieving decarbonisation for a country.
Techno-economic Analysis of Underground Hydrogen Storage in Europe
Dec 2023
Publication
Hydrogen storage is crucial to developing secure renewable energy systems to meet the European Union’s 2050 carbon neutrality objectives. However a knowledge gap exists concerning the site-specific performance and economic viability of utilizing underground gas storage (UGS) sites for hydrogen storage in Europe. We compile information on European UGS sites to assess potential hydrogen storage capacity and evaluate the associated current and future costs. The total hydrogen storage potential in Europe is 349 TWh of working gas energy (WGE) with site-specific capital costs ranging from $10 million to $1 billion. Porous media and salt caverns boasting a minimum storage capacity of 0.5 TWh WGE exhibit levelized costs of $1.5 and $0.8 per kilogram of hydrogen respectively. It is estimated that future levelized costs associated with hydrogen storage can potentially decrease to as low as $0.4 per kilogram after three experience cycles. Leveraging these techno-economic considerations we identify suitable storage sites.
Environmental-economic Sustainability of Hydrogen and Ammonia Fuels for Short Sea Shipping Operations
Jan 2024
Publication
Alternative fuels of low or zero carbon content can decarbonise the shipping operations. This study aims at assessing the lifetime environmental-economic sustainability of ammonia and hydrogen as alternatives to diesel fuel for short sea shipping cargo vessels. A model is employed to calculate key performance indicators representing the lifetime financial sustainability and environmental footprint of the case ship using a realistic operating profile and considering several scenarios with different diesel substitution rates. Scenarios meeting the carbon emissions reduction targets set by the International Maritime Organisation (IMO) for 2030 are identified whereas policy measures for their implementation including the emissions taxation are discussed. The derived results demonstrate that the future implementation of carbon emissions taxation in the ranges of 136–965 €/t for hydrogen and 356–2647 €/t for ammonia can support these fuels financial sustainability in shipping. This study provides insights for adopting zero-carbon fuels and as such impacts the de-risking of shipping decarbonisation.
No more items...