United Kingdom
CFD Modeling OF LH2 Dispersion Using the ADREA-HF Code
Sep 2011
Publication
In the present work the computational fluid dynamics (CFD) code ADREA-HF has been applied to simulate the very recent liquefied hydrogen spill experiments performed by the Health Safety Laboratory (HSL). The experiment consists of four LH2 release trials over concrete at a fixed rate of 60 lt/min but with different release direction height and duration. In the modeling the hydrogen source was treated as a two phase jet enabling simultaneous modeling of pool formation spreading as well as hydrogen vapor dispersion. Turbulence was modeled with the standard k- model modified for buoyancy effects. The effect of solidification of the atmospheric humidity was taken into account. The predicted concentration at the experimental sensors? locations was compared with the observed one. The results from the comparison of the predicted concentration with and without solidification of the atmospheric humidity indicate that the released heat from the solidification affects significantly the buoyant behavior of the hydrogen vapor. Therefore the simulation with solidification of the atmospheric humidity is in better agreement with the experiment.
On Numerical Simulation of Liquefied and Gaseous Hydrogen Releases at Large Scales
Sep 2005
Publication
The large eddy simulation (LES) model developed at the University of Ulster has been applied to simulate releases of 5.11 m3 liquefied hydrogen (LH2) in open atmosphere and gaseous hydrogen (GH2) in 20-m3 closed vessel. The simulations of a spill of liquefied hydrogen confirmed the advantage of LES application to reproduce experimentally observed eddy structure of hydrogen-air cloud. The inclination angle of simulated cloud is close to experimentally reported 300. The processes of two phase hydrogen release and heat transfer were simplified by inflow of gaseous hydrogen with temperature 20 K equal to boiling point. It is shown that difference in inflow conditions geometry and grid resolution affects simulation results. It is suggested that phenomenon of air condensationevaporation in the cloud in temperature range 20-90 K should be accounted for in future. The simulations reproduced well experimental data on GH2 release and transport in 20-m3 vessel during 250 min including a phenomenon of hydrogen concentration growth at the bottom of the vessel. Higher experimental hydrogen concentration at the bottom is assumed to be due to non-uniformity of temperature of vessel walls generating additional convection. The comparison of convective and diffusion terms in Navie-Stokes equations has revealed that a value of convective term is more than order of magnitude prevail over a value of turbulent diffusion term. It is assumed that the hydrogen transport to the bottom of the vessel is driven by the remaining chaotic flow velocities superimposed on stratified hydrogen concentration field. Further experiments and simulations with higher accuracy have to be performed to confirm this phenomenon. It has been demonstrated that hydrogen-air mixture became stratified in about 1 min after release was completed. However one-dimensional models are seen not capable to reproduce slow transport of hydrogen during long period of time characteristic for scenarios such as leakage in a garage.
An Intercomparison Exercise on the Capabilities of CFD Models to Predict Deflagration of a Large-Scale H2-Air Mixture in Open Atmosphere
Sep 2005
Publication
This paper presents a compilation of the results supplied by HySafe partners participating in the Standard Benchmark Exercise Problem (SBEP) V2 which is based on an experiment on hydrogen combustion that is first described. A list of the results requested from participants is also included. The main characteristics of the models used for the calculations are compared in a very succinct way by using tables. The comparison between results together with the experimental data when available is made through a series of graphs. The results show quite good agreement with the experimental data. The calculations have demonstrated to be sensitive to computational domain size and far field boundary condition.
HyDeploy Gas Safe Webinar
Nov 2020
Publication
HyDeploy is a pioneering hydrogen energy project designed to help reduce UK CO2 emissions and reach the Government’s net zero target for 2050.
As the first ever live demonstration of hydrogen in homes HyDeploy aims to prove that blending up to 20% volume of hydrogen with natural gas is a safe and greener alternative to the gas we use now. It is providing evidence on how customers don’t have to change their cooking or heating appliances to take the blend which means less disruption and cost for them.
As the first ever live demonstration of hydrogen in homes HyDeploy aims to prove that blending up to 20% volume of hydrogen with natural gas is a safe and greener alternative to the gas we use now. It is providing evidence on how customers don’t have to change their cooking or heating appliances to take the blend which means less disruption and cost for them.
Can the Current EU Regulatory Framework Deliver Decarbonisation of Gas?
Jun 2020
Publication
This Energy Insight examines the current regulatory framework and challenges facing the natural gas industry (producers transporters suppliers and consumers) during the transition to a zero-carbon economy. The EU has declared its intention to be climate neutral by 2050 which means that the current level of natural gas usage will no longer be possible. However natural gas is a crucial component of energy supply representing 24 per cent of primary energy supply for the EU27+UK and 36 per cent of residential energy consumption. In some countries the use of natural gas is much higher – around 40 per cent of primary energy supply in Netherlands UK and Italy. The current framework impacting gas addresses two different market failures – natural monopolies for gas transportation and the externalities of Greenhouse Gas Emissions. The framework will not deliver decarbonisation of gas as it does not stimulate either supply or demand for alternatives such as hydrogen nor create the conditions to enable gas networks to transition to a decarbonised future. Policy makers need to prioritise their objectives to take account of the trade-offs involved in designing a new framework. Exclusion of certain low carbon technologies risks driving away investors and reduces the chances of targets being met whilst “picking winners” involves risks because of the many uncertainties involved such as future costs and time required to build new value chains.
Link to Document on Oxford Institute for Energy Studies website
Link to Document on Oxford Institute for Energy Studies website
Characterising Hydrogen Induced Cracking of Alloy 625+ Using Correlative SEM - EDX and NanoSIMS
Dec 2020
Publication
Hydrogen induced cracking behaviour of O&G nickel alloy 625+ (UNS N07716) was investigated. Deuterium was introduced electrochemically into samples by cathodic polarisation (3.5 wt.% NaCl.D2O) under different mechanical conditions. Subsequently deuterium distributions were mapped using NanoSIMS. Deuterium was used as an isotopic tracer instead of hydrogen to avoid the detection of hydrogen artefacts. Complimentary image analysis using scanning electron microscopy (SEM) and low voltage energy dispersive X-ray (EDX) allowed the identification of microstructural features corresponding to deuterium enrichments. The results provided experimental evidence of enrichments at dislocation slip bands (DSB) twin boundary and grain boundary features that include σ precipitates.
The Synergistic Effects of Alloying on the Performance and Stability of Co3Mo and Co7Mo6 for the Electrocatalytic Hydrogen Evolution Reaction
Oct 2020
Publication
Metal alloys have become a ubiquitous choice as catalysts for electrochemical hydrogen evolution in alkaline media. However scarce and expensive Pt remains the key electrocatalyst in acidic electrolytes making the search for earth-abundant and cheaper alternatives important. Herein we present a facile and efficient synthetic route towards polycrystalline Co3Mo and Co7Mo6 alloys. The single-phased nature of the alloys is confirmed by X-ray diffraction and electron microscopy. When electrochemically tested they achieve competitively low overpotentials of 115 mV (Co3Mo ) and 160 mV (Co7Mo6 ) at 10 mA cm−2 in 0.5 M H2SO4 and 120 mV (Co3Mo ) and 160 mV (Co7Mo6 ) at 10 mA cm−2 in 1 M KOH. Both alloys outperform Co and Mo metals which showed significantly higher overpotentials and lower current densities when tested under identical conditions confirming the synergistic effect of the alloying. However the low overpotential in Co3Mo comes at the price of stability. It rapidly becomes inactive when tested under applied potential bias. On the other hand Co7Mo6 retains the current density over time without evidence of current decay. The findings demonstrate that even in free-standing form and without nanostructuring polycrystalline bimetallic electrocatalysts could challenge the dominance of Pt in acidic media if ways for improving their stability were found.
Challenges to the Future of LNG: Decarbonisation, Affordability, and Profitability
Oct 2019
Publication
Decarbonisation should be very much on the radar of new LNG projects currently taking FID commissioning around 2024-25 and planning to operate up to 2050. The LNG community needs to replace an `advocacy’ message – based on the generality of emissions from combustion of natural gas being lower than from other fossil fuels – with certified data on carbon and methane emissions from specific elements of the value chain for individual projects. As carbon reduction targets tighten over the coming decade LNG cargoes which do not have value chain emissions certified by accredited authorities or which fail to meet defined emission levels run the risk of progressively being deemed to have a lower commercial value and eventually being excluded from jurisdictions with the strictest standards. There will be no place in this process for confidentiality; nothing less than complete transparency of data and methodologies will be acceptable.<br/>In relation to affordability prospects for new projects look much better than they did three years ago. Cost estimates for most new projects suggest that they will be able to deliver profitably to most established and anticipated import markets at or below the wholesale prices prevailing in those markets over the past decade although affordability in south Asian countries may be challenging. But new projects need to factor in costs related to future decarbonisation requirements in both exporting and importing countries. To the extent that LNG suppliers can meet standards through relatively low-cost offsets – forest projects low-cost biogas and biomethane – this may not greatly impact their commercial viability. However any requirement to transform methane into hydrogen with CCS in either the exporting or importing country would substantially impact project economics and the affordability of LNG relative to other energy choices.
Experimental Study of the Explosion Severity of Vented Methane/Hydrogen Deflagrations
Sep 2021
Publication
Adding hydrogen to mains natural gas has been identified as one of the main strategies to reduce CO2 emissions in the United Kingdom. This work aims to characterise the explosion severity of 80:20 v./v. methane/hydrogen blends (‘a blend’) and methane vented deflagrations. The explosion severity of homogenous mixtures was measured in a 15 m3 cubic steel chamber in which the relief area was provided by four windows and a door covered with polypropylene sheet. The pressure increase over time was characterised using piezo-resistive pressure transducers and the flame speed was estimated using ionisation probes installed in the walls of the enclosure. The explosion severity of both mixtures was determined for different equivalence ratios from lean to rich mixtures. The pressure over time presented very similar behaviour for both mixtures comprising multiple peaks divided into three main stages: a first stage related to a spherical confined explosion until the opening of the vent a second stage generated by increased combustion during venting and an oscillatory peak generated by acoustic disturbances with the enclosure. A slight increase in the first stage overpressure was observed for the blend in comparison with methane regardless of the equivalence ratio but no general trend in pressure was observed for other stages of the propagation. The effect of the blockage ratio on explosion severity was studied by adding metallic elements representing furniture in a room.
Intelligent Hydrogen Fuel Cell Range Extender for Battery Electric Vehicles
May 2019
Publication
Road transport is recognized as having a negative impact on the environment. Policy has focused on replacement of the internal combustion engine (ICE) with less polluting forms of technology including battery electric and fuel cell electric powertrains. However progress is slow and both battery and fuel cell based vehicles face considerable commercialization challenges. To understand these challenges a review of current electric battery and fuel cell electric technologies is presented. Based on this review this paper proposes a battery electric vehicle (BEV) where components are sized to take into account the majority of user requirements with the remainder catered for by a trailer-based demountable intelligent fuel cell range extender. The proposed design can extend the range by more than 50% for small BEVs and 25% for large BEVs (the extended range of vehicles over 250 miles) reducing cost and increasing efficiency for the BEV. It enables BEV manufacturers to design their vehicle battery for the most common journeys decreases charging time to provide convenience and flexibility to the drivers. Adopting a rent and drop business model reduces the demand on the raw materials bridging the gap in the amount of charging (refueling) stations and extending the lifespan for the battery pack.
Modifications in the Composition of CuO/ZnO/Al2O3 Catalyst for the Synthesis of Methanol by CO2 Hydrogenation
Jun 2021
Publication
Renewable methanol obtained from CO2 and hydrogen provided from renewable energy was proposed to close the CO2 loop. In industry methanol synthesis using the catalyst CuO/ZnO/Al2O3 occurs at a high pressure. We intend to make certain modification on the traditional catalyst to work at lower pressure maintaining high selectivity. Therefore three heterogeneous catalysts were synthesized by coprecipitation to improve the activity and the selectivity to methanol under mild conditions of temperature and pressure. Certain modifications on the traditional catalyst Cu/Zn/Al2O3 were employed such as the modification of the synthesis time and the addition of Pd as a dopant agent. The most efficient catalyst among those tested was a palladium-doped catalyst 5% Pd/Cu/Zn/Al2O3. This had a selectivity of 64% at 210 °C and 5 bar.
Sorption-enhanced Steam Methane Reforming for Combined CO2 Capture and Hydrogen Production: A State-of-the-Art Review
Oct 2021
Publication
The European Commission have just stated that hydrogen would play a major role in the economic recovery of post-COVID-19 EU countries. Hydrogen is recognised as one of the key players in a fossil fuel-free world in decades to come. However commercially practiced pathways to hydrogen production todays are associated with a considerable amount of carbon emissions. The Paris Climate Change Agreement has set out plans for an international commitment to reduce carbon emissions within the forthcoming decades. A sustainable hydrogen future would only be achievable if hydrogen production is “designed” to capture such emissions. Today nearly 98% of global hydrogen production relies on the utilisation of fossil fuels. Among these steam methane reforming (SMR) boasts the biggest share of nearly 3 50% of the global generation. SMR processes correspond to a significant amount of carbon emissions at various points throughout the process. Despite the dark side of the SMR processes they are projected to play a major role in hydrogen production by the first half of this century. This that a sustainable yet clean short/medium-term hydrogen production is only possible by devising a plan to efficiently capture this co-produced carbon as stated in the latest International Energy Agency (IEA) reports. Here we have carried out an in-depth technical review of the processes employed in sorption-enhanced steam methane reforming (SE-SMR) an emerging technology in low-carbon SMR for combined carbon capture and hydrogen production. This paper aims to provide an in-depth review on two key challenging elements of SE-SMR i.e. the advancements in catalysts/adsorbents preparation and current approaches in process synthesis and optimisation including the employment of artificial intelligence in SE-SMR processes. To the best of the authors‟ knowledge there is a clear gap in the literature where the above areas have been scrutinised in a systematic and coherent fashion. The gap is even more pronounced in the application of AI in SE-SMR technologies. As a result this work aims to fill this gap within the scientific literature.
Current Status of Automotive Fuel Cells for Sustainable Transport
May 2019
Publication
Automotive proton-exchange membrane fuel cells (PEMFCs) have finally reached a state of technological readiness where several major automotive companies are commercially leasing and selling fuel cell electric vehicles including Toyota Honda and Hyundai. These now claim vehicle speed and acceleration refueling time driving range and durability that rival conventional internal combustion engines and in most cases outperform battery electric vehicles. The residual challenges and areas of improvement which remain for PEMFCs are performance at high current density durability and cost. These are expected to be resolved over the coming decade while hydrogen infrastructure needs to become widely available. Here we briefly discuss the status of automotive PEMFCs misconceptions about the barriers that platinum usage creates and the remaining hurdles for the technology to become broadly accepted and implemented.
Which way to Net Zero? A Comparative Analysis of Seven UK 2050 Decarbonisation Pathways
Dec 2021
Publication
Since the UK’s Net Zero greenhouse gas emissions target was set in 2019 organisations across the energy systems community have released pathways on how we might get there – which end-use technologies are deployed across each sector of demand how our fossil fuel-based energy supply would be transferred to low carbon vectors and to what extent society must change the way it demands energy services. This paper presents a comparative analysis between seven published Net Zero pathways for the UK energy system collected from Energy Systems Catapult National Grid ESO Centre for Alternative Technology and the Climate Change Committee. The key findings reported are that (i) pathways that rely on less stringent behavioural changes require more ambitious technology development (and vice versa); (ii) electricity generation will increase by 51-160% to facilitate large-scale fuel-switching in heating and transport the vast majority of which is likely to be generated from variable renewable sources; (iii) hydrogen is an important energy vector in meeting Net Zero for all pathways providing 100-591 TWh annually by 2050 though the growth in demand is heavily dependent on the extent to which it is used in supplying heating and transport demand. This paper also presents a re-visited analysis of the potential renewable electricity generation resource in the UK. It was found that the resource for renewable electricity generation outstrips the UK’s projected 2050 electricity demand by a factor 12-20 depending on the pathway. As made clear in all seven pathways large-scale deployment of flexibility and storage is required to match this abundant resource to our energy demand.
A Review of the MSCA ITN ECOSTORE—Novel Complex Metal Hydrides for Efficient and Compact Storage of Renewable Energy as Hydrogen and Electricity
Mar 2020
Publication
Hydrogen as an energy carrier is very versatile in energy storage applications. Developments in novel sustainable technologies towards a CO2-free society are needed and the exploration of all-solid-state batteries (ASSBs) as well as solid-state hydrogen storage applications based on metal hydrides can provide solutions for such technologies. However there are still many technical challenges for both hydrogen storage material and ASSBs related to designing low-cost materials with low-environmental impact. The current materials considered for all-solid-state batteries should have high conductivities for Na+ Mg2+ and Ca2+ while Al3+-based compounds are often marginalised due to the lack of suitable electrode and electrolyte materials. In hydrogen storage materials the sluggish kinetic behaviour of solid-state hydride materials is one of the key constraints that limit their practical uses. Therefore it is necessary to overcome the kinetic issues of hydride materials before discussing and considering them on the system level. This review summarizes the achievements of the Marie Skłodowska-Curie Actions (MSCA) innovative training network (ITN) ECOSTORE the aim of which was the investigation of different aspects of (complex) metal hydride materials. Advances in battery and hydrogen storage materials for the efficient and compact storage of renewable energy production are discussed.
Delivering Clean Growth: CCUS Cost Challenge Taskforce Report
Jul 2018
Publication
An independent report by the CCUS Cost Challenge Taskforce setting out the industry’s view on how best to progress carbon capture usage and storage (CCUS) in the UK in order to enable the UK to have the option of deploying CCUS at scale during the 2030s subject to costs coming down sufficiently.
Investigating the Implications of a New-build Hybrid Power System for Roll-on/Roll-off Cargo Ships from a Sustainability Perspective – A Life Cycle Assessment Case Study
Aug 2016
Publication
Marine transport has been essential for international trade. Concern for its environmental impact was growing among regulators classification societies ship operators ship owners and other stakeholders. By applying life cycle assessment this article aimed to assess the impact of a new-build hybrid system (i.e. an electric power system which incorporated lithium ion batteries photovoltaic systems and cold-ironing) designed for Roll-on/Roll-off cargo ships. The study was carried out based on a bottom-up integrated system approach using the optimised operational profile and background information for manufacturing processes mass breakdown and end of life management plans. Resources such as metallic and non-metallic materials and energy required for manufacture operation maintenance dismantling and scrap handling were estimated. During operation 1.76 x 10^8 kg of marine diesel oil was burned releasing carbon monoxide carbon dioxide particulate matter hydrocarbons nitrogen oxides and sulphur dioxide which ranged 5–8 orders of magnitude. The operation of diesel gensets was the primary cause of impact categories that were relevant to particulate matter or respiratory inorganic health issues photochemical ozone creation eutrophication acidification global warming and human toxicity. Disposing metallic scrap was accountable for the most significant impact category ecotoxicity potential. The environmental benefits of the hybrid power system in most impact categories were verified in comparison with a conventional power system onboard cargo ships. The estimated results for individual impact categories were verified using scenario analysis. The study concluded that the life cycle of a new-build hybrid power system would result in significant impact on the environment human beings and natural reserves and therefore proper management of such a system was imperative.
Hydrogen Non-premixed Combustion in Enclosure with One Vent and Sustained Release: Numerical Experiments
Sep 2013
Publication
Numerical experiments are performed to understand different regimes of hydrogen non-premixed combustion in an enclosure with passive ventilation through one horizontal or vertical vent located at the top of a wall. The Reynolds averaged Navier–Stokes (RANS) computational fluid dynamics (CFD) model with a reduced chemical reaction mechanism is described in detail. The model is based on the renormalization group (RNG) k-ε turbulence model the eddy dissipation concept (EDC) model for simulation of combustion coupled with the 18-step reduced chemical mechanism (8 species) and the in-situ adaptive tabulation (ISAT) algorithm that accelerates the reacting flow calculations by two to three orders of magnitude. The analysis of temperature and species (hydroxyl hydrogen oxygen water) concentrations in time as well as the velocity through the vent shed a light on regimes and dynamics of indoor hydrogen fires. A well-ventilated fire is simulated in the enclosure at a lower release flow rate and complete combustion of hydrogen within the enclosure. Fire becomes under-ventilated at higher release flow rates with two different modes observed. The first mode is the external flame stabilised at the enclosure vent at moderate release rates and the second mode is the self-extinction of combustion inside and outside the enclosure at higher hydrogen release rates. The simulations demonstrated a complex reacting flow dynamics in the enclosure that leads to formation of the external flame or the self-extinction. The air intake into the enclosure at later stages of the process through the whole vent area is a characteristic feature of the self-extinction regime. This air intake is due to faster cooling of hot combustion products by sustained colder hydrogen leak compared to the generation of hot products by the ceasing chemical reactions inside the enclosure and hydrogen supply. In general an increase of hydrogen sustained release flow rate will change fire regime from the well-ventilated combustion within the enclosure through the external flame stabilised at the vent and finally to the self-extinction of combustion throughout the domain.
PEFC System Reactant Gas Supply Management and Anode Purging Strategy: An Experimental Approach
Jan 2022
Publication
In this report a 5 kW PEFC system running on dry hydrogen with an appropriately sized Balance of Plant (BoP) was used to conduct experimental studies and analyses of gas supply subsystems. The improper rating and use of BoP components has been found to increase parasitic loads which consequently has a direct effect on the polymer electrolyte fuel cell (PEFC) system efficiency. Therefore the minimisation of parasitic loads while maintaining desired performance is crucial. Nevertheless little has been found in the literature regarding experimental work on large stacks and BoP with the majority of papers concentrating on modelling. A particular interest of our study was the anode side of the fuel cell. Additionally the rationale behind the use of hydrogen anode recirculation was scrutinised and a novel anode purging strategy was developed and implemented. Through experimental modelling the use of cathode air blower was minimised since it was found to be the biggest contributor to the parasitic loads.
Heat and Buildings Strategy
Oct 2021
Publication
The heat and buildings strategy sets out the government’s plan to significantly cut carbon emissions from the UK’s 30 million homes and workplaces in a simple low-cost and green way whilst ensuring this remains affordable and fair for households across the country. Like the transition to electric vehicles this will be a gradual transition which will start by incentivizing consumers and driving down costs.<br/>There are about 30 million buildings in the UK. Heating these buildings contributes to almost a quarter of all UK emissions. Addressing the carbon emissions produced in heating and powering our homes workplaces and public buildings can not only save money on energy bills and improve lives but can support up to 240000 skilled green jobs by 2035 boosting the economic recovery levelling up across the country and ensuring we build back better.<br/>The heat and buildings strategy builds on the commitments made in Clean growth: transforming heating our Energy white paper and the Prime Minister’s 10 point plan. This strategy aims to provide a clear direction of travel for the 2020s set out the strategic decisions that need to be taken this decade and demonstrate how we plan to meet our carbon targets and remain on track for net zero by 2050.
Are Scenarios of Hydrogen Vehicle Adoption Optimistic? A Comparison with Historical Analogies
Nov 2015
Publication
There is a large literature exploring possible hydrogen futures using various modelling and scenario approaches. This paper compares the rates of transition depicted in that literature with a set of historical analogies. These analogies are cases in which alternative-fuelled vehicles have penetrated vehicle markets. The paper suggests that the literature has tended to be optimistic about the possible rate at which hydrogen vehicles might replace oil-based transportation. The paper compares 11 historical adoptions of alternative fuel vehicles with 24 scenarios from 20 studies that depict possible hydrogen futures. All but one of the hydrogen scenarios show vehicle adoption faster than has occurred for hybrid electric vehicles in Japan the most successful market for hybrids. Several scenarios depict hydrogen transitions occurring at a rate faster than has occurred in any of the historic examples. The paper concludes that scenarios of alternative vehicle adoption should include more pessimistic scenarios alongside optimistic ones.
Performance Analysis of a Flexi-Fuel Turbine-Combined Free-Piston Engine Generator
Jul 2019
Publication
The turbine-combined free-piston engine generator (TCFPEG) is a hybrid machine generating both mechanical work from the gas turbine and electricity from the linear electric generator for battery charging. In the present study the system performance of the designed TCFPEG system is predicted using a validated numerical model. A parametric analysis is undertaken based on the influence of the engine load valve timing the number of linear generators adopted and different fuels on the system performance. It is found that when linear electric generators are connected with the free-piston gas turbine the bottom dead centre the peak piston velocity and engine operation frequency are all reduced. Very minimal difference on the in-cylinder pressure and the compressor pressure is observed while the peak pressure in the bounce chamber is reduced. When coupled with a linear electric generator the system efficiency can be improved to nearly 50% by optimising engine load and the number of the linear generators adopted in the TCFPEG system. The system is able to be operated with different fuels as the piston is not limited by a mechanical system; the output power and system efficiency are highest when hydrogen is used as the fuel.
Feasibility of Hydrogen Production from Steam Reforming of Biodiesel (FAME) Feedstock on Ni-supported Catalysts
Jan 2015
Publication
The catalytic steam reforming of biodiesel was examined over Ni-alumina and Ni–ceria–zirconia catalysts at atmospheric pressure. Effects of temperatures of biodiesel preheating/vaporising (190–365 ◦C) and reforming (600–800 ◦C) molar steam to carbon ratio (S/C = 2–3) and residence time in the reformer represented by the weight hourly space velocity ‘WHSV’ of around 3 were examined for 2 h. Ni supported on calcium aluminate and on ceria–zirconia supports achieved steady state hydrogen product stream within 90% of the equilibrium yields although 4% and 1% of the carbon feed had deposited on the catalysts respectively during the combined conditions of start-up and steady state. Addition of dopants to ceria–zirconia supported catalyst decreased the performance of the catalyst. Increase in S/C ratio had the expected positive effects of higher H2 yield and lower carbon deposition.
Cold Hydrogen Blowdown Release: An Inter-comparison Study
Sep 2021
Publication
Hydrogen dispersion in stagnant environment resulting from blowdown of a vessel storing the gas at cryogenic temperature is simulated using different CFD codes and modelling strategies. The simulations are based on the DISCHA experiments that were carried out by Karlsruhe Institute of Technology (KIT) and Pro-Science (PS). The selected test for the current study involves hydrogen release from a 2.815 dm3 volume tank with an initial pressure of 200 barg and temperature 80 K. During the release the hydrogen pressure in the tank gradually decreased. A total of about 139 gr hydrogen is released through a 4 mm diameter. The temperature time series and the temperature decay rate of the minimum value predicted by the different codes are compared with each other and with the experimentally measured ones. Recommendations for future experimental setup and for modeling approaches for similar releases are provided based on the present analysis. The work is carried out within the EU-funded project PRESLHY.
Producing Low Carbon Gas- Future Gas Series part 2
Jul 2018
Publication
Of all the sectors in the UK decarbonising heat remains one of the most challenging. Heat used for industrial domestic and commercial purposes generates around a third of all UK carbon emissions 70% of which is due to burning natural gas. In order to meet our legally binding national climate change targets unabated natural gas use for heat must be phased out. Low carbon gas - including hydrogen and biogases - is one option to replace it. The Future Gas Series examines the opportunities and challenges associated with using low carbon gas to help decarbonise the UK economy.<br/><br/>This is the second report in the three-part Future Gas Series. Part 1: Next Steps for the Gas Grid explored the potential to decarbonise the existing gas grid. The report Part 2: the Production of Low Carbon Gas focuses on the issues related to the production of low carbon gas. It considers the different production technologies the potential scale of deployment of each method and the potential feedstocks. It also discusses issues related to bulk transport and storage of gas. Put together from expert evidence from across industry and academia it provides a balanced guide for policy makers in this area. It was a co-chaired by James Heappey MP (Conservative) Alan Whitehead MP (Labour) and Alistair Carmichael MP (SNP).<br/><br/>Carbon Connect suggests that biogases- such as biomethane and bioSNG- provide low regrets opportunities in the near term to provide low carbon heat and could also potentially make use of waste that would otherwise go to landfill. However they require further support to allow them to continue contributing to decarbonising the UK economy. Hydrogen could provide huge decarbonisation opportunities and has applications across the energy system from putting hydrogen in the gas grid to be burnt for heat in homes to hydrogen buses and trains. However to realise this potential a market for hydrogen must be built up. This should incentivise business to invest in hydrogen technologies reward those who use hydrogen and build up hydrogen infrastructure.<br/><br/>
Financing Efficiency Evaluation and Influencing Factors of Hydrogen Energy Listed Enterprises in China
Jan 2022
Publication
Existing studies of financing efficiency concentrate on capital structure and a single external environment or internal management characteristic. Few of the studies include the internal and external financing environments at the same time for hydrogen energy industry financing efficiency. This paper used the data envelopment analysis (DEA) model and the Malmquist index to measure the financing efficiency of 70 hydrogen energy listed enterprises in China from 2014 to 2020 from both static and dynamic perspectives. Then a tobit model was constructed to explore the influence of external environment and internal factors on the financing efficiency. The contributions of this paper are studying the internal and external financing environments and integrating financing cost efficiency and capital allocation efficiency into the financing efficiency of hydrogen energy enterprises. The results show that firstly the financing efficiency of China’s hydrogen energy listed enterprises showed an upward trend during the years 2014–2020. Secondly China’s hydrogen energy enterprises mainly gather in the eastern coastal areas and their financing efficiency is more than that in western areas. Thirdly the regional economic development level enterprise scale financing structure capital utilization efficiency and profitability have significant effects on the financing efficiency. These results can promote the achievement of “carbon neutrality” in China.
Incorporating Homeowners' Preferences of Heating Technologies in the UK TIMES Model
Feb 2018
Publication
Hot water and space heating account for about 80% of total energy consumption in the residential sector in the UK. It is thus crucial to decarbonise residential heating to achieve UK's 2050 greenhouse gas reduction targets. However the decarbonisation transitions determined by most techno-economic energy system models might be too optimistic or misleading for relying on cost minimisation alone and not considering households' preferences for different heating technologies. This study thus proposes a novel framework to incorporate heterogeneous households' (HHs) preferences into the modelling process of the UK TIMES model. The incorporated preferences for HHs are based on a nationwide survey on homeowners' choices of heating technologies. Preference constraints are then applied to regulate the HHs' choices of heating technologies to reflect the survey results. Consequently compared to the least cost transition pathway the preference-driven pathway adopts heating technologies gradually without abrupt increases of market shares. Heat pumps and electric heaters are deployed much less than in the cost optimal result. Extensive district heating using low-carbon fuels and conservation measures should thus be deployed to provide flexibility for decarbonisation. The proposed framework can also incorporate preferences for other energy consumption technologies and be applied to other linear programming based energy system models.
China Progress on Renewable Energy Vehicles: Fuel Cells, Hydrogen and Battery Hybrid Vehicles
Dec 2018
Publication
Clean renewable energy for Chinese cities is a priority in air quality improvement. This paper describes the recent Chinese advances in Polymer Electrolyte Membrane (PEM) hydrogen-fuel-cell-battery vehicles including buses and trucks. Following the 2016 Chinese government plan for new energy vehicles bus production in Foshan has now overtaken that in the EU USA and Japan combined. Hydrogen infrastructure requires much advance to catch up but numbers of filling stations are now increasing rapidly in the large cities. A particular benefit in China is the large number of battery manufacturing companies which fit well into the energy storage plan for hybrid fuel cell buses. The first city to manufacture thousands of PEM-battery hybrid buses is Foshan where the Feichi (Allenbus) company has built a new factory next to a novel fuel cell production line capable of producing 500 MW of fuel cell units per year. Hundreds of these buses are running on local Foshan routes this year while production of city delivery trucks has also been substantial. Results for energy consumption of these vehicles are presented and fitted to the Coulomb theory previously delineated.
Net Zero Strategy: Build Back Greener
Oct 2021
Publication
Last year the Prime Minister set out his 10 point plan for a green industrial revolution laying the foundations for a green economic recovery from the impact of COVID-19 with the UK at the forefront of the growing global green economy.
This strategy builds on that approach to keep us on track for UK carbon budgets our 2030 Nationally Determined Contribution and net zero by 2050. It includes:
This strategy builds on that approach to keep us on track for UK carbon budgets our 2030 Nationally Determined Contribution and net zero by 2050. It includes:
- our decarbonisation pathways to net zero by 2050 including illustrative scenarios
- policies and proposals to reduce emissions for each sector
- cross-cutting action to support the transition.
Thermal Management System Architecture for Hydrogen-Powered Propulsion Technologies: Practices, Thematic Clusters, System Architectures, Future Challenges, and Opportunities
Jan 2022
Publication
The thermal management system architectures proposed for hydrogen-powered propulsion technologies are critically reviewed and assessed. The objectives of this paper are to determine the system-level shortcomings and to recognise the remaining challenges and research questions that need to be sorted out in order to enable this disruptive technology to be utilised by propulsion system manufacturers. Initially a scientometrics based co-word analysis is conducted to identify the milestones for the literature review as well as to illustrate the connections between relevant ideas by considering the patterns of co-occurrence of words. Then a historical review of the proposed embodiments and concepts dating back to 1995 is followed. Next feasible thermal management system architectures are classified into three distinct classes and its components are discussed. These architectures are further extended and adapted for the application of hydrogen-powered fuel cells in aviation. This climaxes with the assessment of the available evidence to verify the reasons why no hydrogen-powered propulsion thermal management system architecture has yet been approved for commercial production. Finally the remaining research challenges are identified through a systematic examination of the critical areas in thermal management systems for application to hydrogen-powered air vehicles’ engine cooling. The proposed solutions are discussed from weight cost complexity and impact points of view by a system-level assessment of the critical areas in the field.
A Critique on the UK's Net Zero Strategy
Dec 2022
Publication
Before the Covid-19 pandemic UK passed net-zero emission law legislation to become the first major economy in the world to end its contribution to global warming by 2050. Following the UK’s legislation to reach net-zero emissions a long-term strategy for transition to a net-zero target was published in 2021. The strategy is a technology-led and with a top-down approach. The intention is to reach the target over the next three decades. The document targets seven sectors to reduce emissions and include a wide range of policies and innovations for decarbonization. This paper aims to accomplish a much needed review of the strategy in heat and buildings part and cover the key related areas in future buildings standard heat pumps and use of hydrogen as elaborated in the strategy. For that purpose this research reviews key themes in the policy challenges recent advancement and future possibilities. It provides an insight on the overall development toward sustainability and decarbonization of built environment in the UK by 2050. A foresight model Future Wheels is also used to visualize the findings from the review and provide a clear picture of the potential impact of the policy.
A Review on Recent Progress in the Integrated Green Hydrogen Production Processes
Feb 2022
Publication
The thermochemical water‐splitting method is a promising technology for efficiently con verting renewable thermal energy sources into green hydrogen. This technique is primarily based on recirculating an active material capable of experiencing multiple reduction‐oxidation (redox) steps through an integrated cycle to convert water into separate streams of hydrogen and oxygen. The thermochemical cycles are divided into two main categories according to their operating temperatures namely low‐temperature cycles (<1100 °C) and high‐temperature cycles (<1100 °C). The copper chlorine cycle offers relatively higher efficiency and lower costs for hydrogen production among the low‐temperature processes. In contrast the zinc oxide and ferrite cycles show great potential for developing large‐scale high‐temperature cycles. Although several challenges such as energy storage capacity durability cost‐effectiveness etc. should be addressed before scaling up these technologies into commercial plants for hydrogen production. This review critically examines various aspects of the most promising thermochemical water‐splitting cycles with a particular focus on their capabilities to produce green hydrogen with high performance redox pairs stability and the technology maturity and readiness for commercial use.
Transitioning to Hydrogen
Jan 2020
Publication
The UK is investigating supplying hydrogen to homes and businesses instead of natural gas by “repurposing” the gas network. It presents a major engineering challenge which has never been done anywhere else in the world.
In a new report titled ‘Transitioning to hydrogen’ experts from a cross-professional engineering institution (PEI) working group including the IET have assessed the engineering risks and uncertainties and concluded there is no reason why repurposing the gas network to hydrogen cannot be achieved. But there are several engineering risks and uncertainties which need to be addressed.
In a new report titled ‘Transitioning to hydrogen’ experts from a cross-professional engineering institution (PEI) working group including the IET have assessed the engineering risks and uncertainties and concluded there is no reason why repurposing the gas network to hydrogen cannot be achieved. But there are several engineering risks and uncertainties which need to be addressed.
Governing the UK’s Transition to Decarbonised Heating: Lessons from a Systematic Review of Past and Ongoing Heat Transitions
May 2020
Publication
According to the UK’s Committee on Climate Change the economically efficient achievement of Government’s legally-binding carbon-reduction target will require full decarbonisation of all heat in buildings and the decarbonisation of most industrial heat over the next 20 to 30 years (BEIS 2018). This goliath task is not unprecedented. Indeed the scale of this transition is similar to the UK’s former transition from coal to natural gas heating. Albeit the rate of transition away from natural gas will certainly need to be greater than the rate of the transition toward natural gas to achieve net zero greenhouse gas emissions by 2050.<br/><br/>At present Government’s commitment stands in sharp contrast with its inaction on heat decarbonisation to date. Under pressure to progress this agenda Government has charged the Clean Heat Directorate with the task of outlining the process for determining the UK’s long-term heat policy framework to be published in the ‘Roadmap for policy on heat decarbonisation’ in the summer of 2020 (BEIS 2017). This report resulting from one of six EPSRC-funded secondments is designed to support early thinking on the roadmap by answering the research question: How can ‘Transitions’ research informs the roadmap for governing the UK’s heating transition?<br/><br/>‘Transitions’ research is an interdisciplinary field of study within the Social Sciences and Humanities that investigates the co-evolution of social and technological systems (such as the UK heating system) and the dynamics by which fundamental change in these systems occur. To investigate what insights this area of research may hold for the governance of the UK’s heat transition a systematic literature review was conducted focusing specifically on past and ongoing heat transitions across Europe.<br/><br/>The review uncovered learnings about the role of path dependency; power and politics; complexity; cross-sector interactions; multi-level governance; and intermediaries in shaping non-linear transitions toward renewable heat. This report illustrates each learning with real-world examples from case studies undertaken by Transitions researchers and concludes with a long list of policy and process-oriented governance recommendations for the UK Government.
Conceptual Propulsion System Design for a Hydrogen-powered Regional Train
Apr 2015
Publication
Many railway vehicles use diesel as their energy source but exhaust emissions and concerns about economical fuel supply demand alternatives. Railway electrification is not cost effective for some routes particularly low-traffic density regional lines. The journey of a regional diesel–electric train is simulated over the British route Birmingham Moor Street to Stratford-upon-Avon and return to establish a benchmark for the conceptual design of a hydrogen-powered and hydrogen-hybrid vehicle. A fuel cell power plant compressed hydrogen at 350 and 700 bar and metal-hydride storage are evaluated. All equipment required for the propulsion can be accommodated within the space of the original diesel– electric train while not compromising passenger-carrying capacity if 700 bar hydrogen tanks are employed. The hydrogen trains are designed to meet the benchmark journey time of 94 min and the operating range of a day without refuelling. An energy consumption reduction of 34% with the hydrogen-powered vehicle and a decrease of 55% with the hydrogen-hybrid train are achieved compared with the original diesel–electric. The well-to-wheel carbon dioxide emissions are lower for the conceptual trains: 55% decrease for the hydrogen-powered and 72% reduction for the hydrogen-hybrid assuming that the hydrogen is produced from natural gas.
Concepts for Improving Hydrogen Storage in Nanoporous Materials
Feb 2019
Publication
Hydrogen storage in nanoporous materials has been attracting a great deal of attention in recent years as high gravimetric H2 capacities exceeding 10 wt% in some cases can be achieved at 77 K using materials with particularly high surface areas. However volumetric capacities at low temperatures and both gravimetric and volumetric capacities at ambient temperature need to be improved before such adsorbents become practically viable. This article therefore discusses approaches to increasing the gravimetric and volumetric hydrogen storage capacities of nanoporous materials and maximizing the usable capacity of a material between the upper storage and delivery pressures. In addition recent advances in machine learning and data science provide an opportunity to apply this technology to the search for new materials for hydrogen storage. The large number of possible component combinations and substitutions in various porous materials including Metal-Organic Frameworks (MOFs) is ideally suited to a machine learning approach; so this is also discussed together with some new material types that could prove useful in the future for hydrogen storage applications.
On the Response of a Lean-premixed Hydrogen Combustor to Acoustic and Dissipative-dispersive Entropy Waves
May 2019
Publication
Combustion of hydrogen or hydrogen containing blends in gas turbines and industrial combustors can activate thermoacoustic combustion instabilities. Convective instabilities are an important and yet less investigated class of combustion instability that are caused by the so called “entropy waves”. As a major shortcoming the partial decay of these convective-diffusive waves in the post-flame region of combustors is still largely unexplored. This paper therefore presents an investigation of the annihilating effects due to hydrodynamics heat transfer and flow stretch upon the nozzle response. The classical compact analysis is first extended to include the decay of entropy waves and heat transfer from the nozzle. Amplitudes and phase shifts of the responding acoustical waves are then calculated for subcritical and supercritical nozzles subject to acoustic and entropic forcing. A relation for the stretch of entropy wave in the nozzle is subsequently developed. It is shown that heat transfer and hydrodynamic decay can impart considerable effects on the entropic response of the nozzle. It is further shown that the flow stretching effects are strongly frequency dependent. The results indicate that dissipation and dispersion of entropy waves can significantly influence their conversion to sound and therefore should be included in the entropy wave models.
Evaluation of Performance Characteristics of a Novel Hydrogen-fuelled Free-piston Engine Generator
Mar 2020
Publication
In this work we present the experimental results obtained from hydrogen fuelled spark-ignited dual piston free-piston engine generator (FPEG) prototype operated in two-stroke and four-stroke mode. The FPEG testing was successfully conducted at 3.7 compression ratio engine speed between 5 Hz and 11 Hz and with different equivalence ratios. The FPEG technical details experimental set-up and operational control are explained in detail. Performance indicators show that both equivalence ratio and engine speed affect the engine operation characteristics. For every set of specified FPEG parameters appropriate range of equivalence ratio is recommended to prevent unwanted disturbance to electric generator operation. Both two-stroke and four-stroke cycle mode were tested and the results showed different combustion characteristics with the two thermodynamic cycles. Four-stroke cycle mode could operate with indicated thermal efficiency gain up to 13.2% compared with the two-stroke cycle.
Hydrogen Effects in Non-ferrous Alloys: Discussion
Jun 2017
Publication
This is a transcript of the discussion session on the effects of hydrogen in the non-ferrous alloys of zirconium and titanium which are anisotropic hydride-forming metals. The four talks focus on the hydrogen embrittlement mechanisms that affect zirconium and titanium components which are respectively used in the nuclear and aerospace industries. Two specific mechanisms are delayed hydride cracking and stress corrosion cracking.
This article is a transcription of the recorded discussion of the session ‘Hydrogen in non-ferrous alloys’ at the Royal Society Discussion Meeting Challenges of Hydrogen in Metals 16–18 January 2017. The text is approved by the contributors. M.P. transcribed the session. M.A.S. assisted in the preparation of the manuscript.
Link to document download on Royal Society Website
This article is a transcription of the recorded discussion of the session ‘Hydrogen in non-ferrous alloys’ at the Royal Society Discussion Meeting Challenges of Hydrogen in Metals 16–18 January 2017. The text is approved by the contributors. M.P. transcribed the session. M.A.S. assisted in the preparation of the manuscript.
Link to document download on Royal Society Website
Bioanode as a Limiting Factor to Biocathode Performance in Microbial Electrolysis Cells
Mar 2017
Publication
The bioanode is important for a microbial electrolysis cell (MEC) and its robustness to maintain its catalytic activity affects the performance of the whole system. Bioanodes enriched at a potential of +0.2 V (vs. standard hydrogen electrode) were able to sustain their oxidation activity when the anode potential was varied from -0.3 up to +1.0 V. Chronoamperometric test revealed that the bioanode produced peak current density of 0.36 A/m2 and 0.37 A/m2 at applied potential 0 and +0.6 V respectively. Meanwhile hydrogen production at the biocathode was proportional to the applied potential in the range from -0.5 to -1.0 V. The highest production rate was 7.4 L H2/(m2 cathode area)/day at -1.0 V cathode potential. A limited current output at the bioanode could halt the biocathode capability to generate hydrogen. Therefore maximum applied potential that can be applied to the biocathode was calculated as -0.84 V without overloading the bioanode.
Business Energy and Industrial Strategy Committee Inquiry into Post-Pandemic Economic Growth
Sep 2020
Publication
The Hydrogen Taskforce welcomes the opportunity to submit evidence to the Business Energy and
Industrial Strategy Committee’s inquiry into post-pandemic economic growth.
It is the Taskforce’s view that:
You can download the whole document from the Hydrogen Taskforce website here
Industrial Strategy Committee’s inquiry into post-pandemic economic growth.
It is the Taskforce’s view that:
- Due to its various applications hydrogen is critical for the UK to reach net zero by 2050;
- The UK holds world-class advantages in hydrogen production distribution and application;
- Other economies are moving ahead in the development of this sector and the UK must respond;
- The post pandemic economic recovery planning should reflect the need to achieve deep decarbonisation and support wider objectives such as achieving net zero and levelling up the
- economy; and
- The hydrogen sector is well-placed to play a key role in the UK’s economic recovery with the right policies and financial structures in place.
- Development of a cross departmental UK Hydrogen Strategy within UK Government;
- Commit £1bn of capex funding over the next spending review period to hydrogen production storage and distribution projects;
- Develop a financial support scheme for the production of hydrogen in blending industry power and transport;
- Amend Gas Safety Management Regulations (GSMR) to enable hydrogen blending and take the next steps towards 100 per cent hydrogen heating through supporting public trials and
- mandating 100 per cent hydrogen-ready boilers by 2025; and
- Commit to the support of 100 Hydrogen Refuelling Stations (HRS) by 2025 to support the rollout of hydrogen transport.
You can download the whole document from the Hydrogen Taskforce website here
Cryogenic Hydrogen Jets: Flammable Envelope Size and Hazard Distances for Jet Fire
Sep 2019
Publication
Engineering tools for calculation of hazard distances for cryogenic hydrogen jets are currently missing. This study aims at the development of validated correlations for calculation of hazard distances for cryogenic unignited releases and jet fires. The experiments performed by Sandia National Laboratories (SNL) on jets from storage temperature in the range 46-295 K and pressure up to 6 bar abs are used to expand the validation domain of the correlations. The Ulster’s under-expanded jet theory is applied to calculate parameters at the real nozzle exit. The similarity law for concentration decay in momentum-dominated jets is shown to be capable to reproduce experimental data of SNL on 9 unignited cryogenic releases. The accuracy of the similarity law to predict experimentally measured axial concentration decay improves with the increase of the release diameter. This is thought due to decrease of the effect of friction and minor losses for large release orifices. The dimensionless flame length correlation is applied to analyse 30 cryogenic jet fire tests. The deviation of calculated flame length from measured in experiments is mostly within acceptable accuracy for engineering correlations 20% similarly to releases from storage and equipment at atmospheric temperatures. It is concluded that the similarity law and the dimensionless flame correlation can be used as universal engineering tools for calculation of hazard distances for hydrogen releases at any storage temperature including cryogenic.
Mobile Phone Infrastructure Development: Lessons for the Development of a Hydrogen Infrastructure
Apr 2014
Publication
The development of new infrastructure is often a consideration in the introduction of new innovations. Currently there is some confusion around how to develop a hydrogen infrastructure to support the introduction of FCVs. Lessons can be learned from similar technology introduction in the past and therefore this paper investigates how mobile phone infrastructure was developed allowing the mass-market penetration of mobile phones. Based on this successful infrastructural development suggestions can be made on the development of a hydrogen infrastructure. It is suggested that a hydrogen infrastructure needs to be pre-developed 3–5 years before the market introduction of FCVs can successfully occur. A lack of infrastructural pre-development will cause to the market introduction of FCVs to fail.
Unattended Hydrogen Vehicle Fueling Challenges and Historical Context
Sep 2019
Publication
Hydrogen fuelling in the US is unattended activity although this precedent is not without several challenges that have been addressed in the past decade. This paper provides the recent history and the generic safety case which has established this precedent for hydrogen. The paper also explores the longer history of unattended gasoline fuelling and attempts to help place hydrogen fuelling into the longer history of fuelling personal vehicles.
Oxford Energy Podcast – Energy Transition Post-Pandemic in the Gulf: Clean Energy, Sustainability and Hydrogen
Jun 2021
Publication
The COVID-19 pandemic has exacerbated challenges faced by hydrocarbon exporters in the Gulf owing to the global push to transition to cleaner energy sources. In this podcast Manal Shehabi (OIES) discusses with David Ledesma a recent OIES-KFAS workshop held in April 2021 titled “Energy Transition Post-Pandemic in the Gulf States” held with support from the Kuwait Foundation for the Advancement of Sciences (KFAS). They discuss separate but interrelated issues on clean energy economic and climate sustainability and hydrogen. Specially they examine how the global energy transition outlook has changed post-pandemic along with its impacts on Gulf States’ economies and energy transition projects. They explain implications to Gulf states’ sustainability evaluating whether these countries are fiscally sustainable post-pandemic and their urgent need for energy and economic diversification. They focus in on the possibility of the Gulf States’ using hydrogen to diversify both in domestic and export markets evaluating opportunities and challenges for both blue and green hydrogen. A preliminary case study on the economics of hydrogen in Kuwait is highlighted as indication of whether Gulf states can produce green hydrogen competitively. They conclude with policy recommendations to increase economic sustainability and resilience post-pandemic both through the energy transition and responses to it.
The podcast can be found on their website
The podcast can be found on their website
Energy White Paper: Powering our Net Zero Future
Dec 2020
Publication
The Prime Minister’s Ten Point Plan has set out the measures that will help ensure the UK is at the forefront of this revolution just as we led the first over two centuries ago. As nations move out of the shadow of coronavirus and confront the challenge of climate change with renewed vigour markets for new green products and services will spring up round the world. Taking action now will help ensure not just that we end our contribution to climate change by achieving our target of net zero emissions. It will help position UK companies and our world class research base to seize the business opportunities which flow from it creating jobs and wealth for our country.
Following on from the Ten Point Plan and the National Infrastructure Strategy the Energy White Paper provides further clarity on the Prime Minister’s measures and puts in place a strategy for the wider energy system that:
Following on from the Ten Point Plan and the National Infrastructure Strategy the Energy White Paper provides further clarity on the Prime Minister’s measures and puts in place a strategy for the wider energy system that:
- Transforms energy building a cleaner greener future for our country our people and our planet
- Supports a green recovery growing our economy supporting thousands of green jobs across the country in new green industries and leveraging new green export opportunities
- Creates a fair deal for consumers protecting the fuel poor providing opportunities to save money on bills giving us warmer more comfortable homes and balancing investment against bill impacts.
Thermal Radiation Properties of Large Hydrogen Leaks from Gas Distribution Networks
Sep 2019
Publication
Determination of the behaviour of hydrogen when leaking from pipework on gas distribution assets is essential in assessing the comparative risk associated with using pure hydrogen in place of natural gas in existing assets. Experimental work considering the behaviour of gaseous hydrogen when released in large volumes from gas distribution pipework at pressures of up to 7 barg through holes of up to 200mm in diameter in both buried and unburied scenarios is currently underway. The present paper presents and briefly discusses the results from a set of ignited 20mm diameter releases of hydrogen at pressures up to 7 barg vertically upwards from a pipe in an open excavation. Gaseous releases which find a direct route to atmosphere have the potential to create significant volumes of flammable gas and subsequently significant fires in the case of ignition. It is important to understand both the dispersion distances and thermal hazard field to be able to understand the comparative risk posed when compared to natural gas releases in similar situations. Results of current work completed to date are presented alongside comparisons with known properties of natural gas releases and the potential implications to the comparative risk of hydrogen network operation. The work has been conducted at the DNV GL Spadeadam Testing and Research Centre UK as part of the UK Gas Distribution Networks and Ofgem National Innovation Competition funded H21 project.
Achieving Carbon-neutral Iron and Steelmaking in Europe Through the Deployment of Bioenergy with Carbon Capture and Storage
Jan 2019
Publication
The 30 integrated steel plants operating in the European Union (EU) are among the largest single-point CO2 emitters in the region. The deployment of bioenergy with carbon capture and storage (bio-CCS) could significantly reduce their emission intensities. In detail the results demonstrate that CO2 emission reduction targets of up to 20% can be met entirely by biomass deployment. A slow CCS technology introduction on top of biomass deployment is expected as the requirement for emission reduction increases further. Bio-CCS could then be a key technology particularly in terms of meeting targets above 50% with CO2 avoidance costs ranging between €60 and €100 tCO2−1 at full-scale deployment. The future of bio-CCS and its utilisation on a larger scale would therefore only be viable if such CO2 avoidance cost were to become economically appealing. Small and medium plants in particular would economically benefit from sharing CO2 pipeline networks. CO2 transport however makes a relatively small contribution to the total CO2 avoidance cost. In the future the role of bio-CCS in the European iron and steelmaking industry will also be influenced by non-economic conditions such as regulations public acceptance realistic CO2 storage capacity and the progress of other mitigation technologies.
Oxford Energy Podcast – Hydrogen in Europe
Apr 2021
Publication
The EU and a number of its member states have now published hydrogen strategies and Europe continues to lead the way in the decarbonisation of its gas sector. In this latest OIES Energy Podcast James Henderson talks with Martin Lambert and Simon Schulte about their latest paper entitled “Contrasting European Hydrogen Pathways” which examines the plans in six major EU countries. They discuss the outlook for various forms of hydrogen supply contrasting the potential for green hydrogen from renewable energy with the outlook for blue hydrogen using steam-reforming of methane as well as hydrogen generated from surplus nuclear energy. They also examine the potential sources of demand considering existing use of hydrogen in industrial processes as well as the potential for hydrogen to displace hydrocarbons in the steel and cement industries. Finally the podcast also looks at the potential for imports of hydrogen and its distribution within Europe while also considering some key milestones that can provide indicators of how the region’s hydrogen plans are playing out.
The podcast can be found on their website
The podcast can be found on their website
Meeting Net Zero with Decarbonised Gas
Aug 2019
Publication
Although the UK has done a great job of decarbonising electricity generation to get to net zero we need to tackle harder-to-decarbonise sectors like heat transport and industry. Decarbonised gas – biogases hydrogen and the deployment of carbon capture usage and storage (CCUS) – can make our manufacturing more sustainable minimise disruption to families and deliver negative emissions.
Safety and Environmental Standards for Fuel Storage Sites
Jan 2009
Publication
The main purpose of this report is to specify the minimum standards of control which should be in place at all establishments storing large volumes of gasoline.<br/>The PSLG also considered other substances capable of giving rise to a large flammable vapour cloud in the event of a loss of primary containment. However to ensure priority was given to improving standards of control to tanks storing gasoline PSLG has yet to determine the scale and application of this guidance to such substances. It is possible that a limited number of other substances (with specific physical properties and storage arrangements) will be addressed in the future.<br/>This report also provides guidance on good practice in relation to secondary and tertiary containment for facilities covered by the CA Control of Major Accident Hazards (COMAH) Parts of this guidance may also be relevant to other major hazard establishments.
Tracking the Evolution of a Single Composite Particle During Redox Cycling for Application in H2 Production
Mar 2020
Publication
Composite materials consisting of metal and metal oxide phases are being researched intensively for application in various energy conversion and storage technologies. In these applications composites are often expected to operate under redox conditions at elevated temperature. The understanding of the dynamics of composite phase and morphology evolution during redox cycling is still very limited yet critical to maximising performance and increasing durability. Here we track the microstructural evolution of a single composite particle over 200 redox cycles for hydrogen production by chemical looping using multi-length scale X-ray computed tomography. We show that redox cycling triggers a centrifugal redispersion of the metal phase and a centripetal clustering of porosity both seemingly driven by the asymmetric nature of oxygen exchange in composites. We show that initially the particle develops a large amount of internal porosity which boosts activity but on the long term this facilitates structural and compositional reorganisation and eventually degradation. We also correlate the microstructural data with phase and activity analysis to identify structure-property correlations which not only provide valuable insight into the evolution of composite materials under redox conditions but also for the design of new composite materials with enhanced durability.
Hydrogen Taskforce: The Role of Hydrogen in Delivering Net Zero
Feb 2020
Publication
Hydrogen is essential to the UK meeting its net zero emissions target. We must act now to scale hydrogen solutions and achieve cost effective deep decarbonisation. With the support of Government UK industry is ready to deliver.
The potential to deploy hydrogen at scale as an energy vector has risen rapidly in the political and industrial consciousness in recent years as the benefits and opportunities have become better understood. Early stage projects across the globe have demonstrated the potential of hydrogen to deliver deep decarbonisation reduce the cost of renewable power and balance energy supply and demand. Governments and major industrial and commercial organisations across the world have set out their ambition to deploy hydrogen technologies at scale. This has created a growing confidence that hydrogen will present both a viable decarbonisation pathway and a global market opportunity. Hydrogen will have an important role to play in meeting the global climate goals set out in the Paris Climate Agreement and due to be discussed later this year at COP26.
The UK’s commitment to a net zero greenhouse gas emissions target has sharpened the conversation around hydrogen. Most experts agree that net zero by 2050 cannot be achieved through electrification alone and as such there is a need for a clean molecule to complement the electron. Hydrogen has properties which lend themselves to the decarbonisation of parts of the energy system which are less well suited to electrification such as industrial processes heating and heavy and highly utilised vehicles. Hydrogen solutions can be scaled meaning that the contribution of hydrogen to meeting net zero could be substantial.
A steady start has been made to exploring the hydrogen opportunity. Partnerships between policymakers and industry exist on several projects which are spread out right across the country from London to many industrial areas in the north east and north west. Existing projects include the early stage roll out of transport infrastructure and vehicles feasibility studies focused on large scale hydrogen production technologies projects exploring the decarbonisation of the gas grid and the development of hydrogen appliances.
The Government recently announced new funding for hydrogen through the Hydrogen Supply Programme and Industrial Fuel Switching Competition. These programmes are excellent examples of collaboration between Government and industry in driving UK leadership in hydrogen and developing solutions that will be critical for meeting net zero.
If the UK is going to meet net zero and capitalise on the economic growth opportunities presented by domestic and global markets for hydrogen solutions and expertise it is critical that the 2020s deliver a step change in hydrogen activity building on the unique strengths and expertise developed during early stage technology development.
The Hydrogen Taskforce brings together leading companies pushing hydrogen into the mainstream in the UK to offer a shared view of the opportunity and a collective position on the next steps that must be taken to ensure that the UK capitalises on this opportunity. There are questions to be answered and challenges that must be overcome as hydrogen technologies develop yet by focusing on what can be done today the benefits of hydrogen can be immediately realised whilst industry expertise and knowledge is built.
You can download the whole document from the Hydrogen Taskforce website here
The potential to deploy hydrogen at scale as an energy vector has risen rapidly in the political and industrial consciousness in recent years as the benefits and opportunities have become better understood. Early stage projects across the globe have demonstrated the potential of hydrogen to deliver deep decarbonisation reduce the cost of renewable power and balance energy supply and demand. Governments and major industrial and commercial organisations across the world have set out their ambition to deploy hydrogen technologies at scale. This has created a growing confidence that hydrogen will present both a viable decarbonisation pathway and a global market opportunity. Hydrogen will have an important role to play in meeting the global climate goals set out in the Paris Climate Agreement and due to be discussed later this year at COP26.
The UK’s commitment to a net zero greenhouse gas emissions target has sharpened the conversation around hydrogen. Most experts agree that net zero by 2050 cannot be achieved through electrification alone and as such there is a need for a clean molecule to complement the electron. Hydrogen has properties which lend themselves to the decarbonisation of parts of the energy system which are less well suited to electrification such as industrial processes heating and heavy and highly utilised vehicles. Hydrogen solutions can be scaled meaning that the contribution of hydrogen to meeting net zero could be substantial.
A steady start has been made to exploring the hydrogen opportunity. Partnerships between policymakers and industry exist on several projects which are spread out right across the country from London to many industrial areas in the north east and north west. Existing projects include the early stage roll out of transport infrastructure and vehicles feasibility studies focused on large scale hydrogen production technologies projects exploring the decarbonisation of the gas grid and the development of hydrogen appliances.
The Government recently announced new funding for hydrogen through the Hydrogen Supply Programme and Industrial Fuel Switching Competition. These programmes are excellent examples of collaboration between Government and industry in driving UK leadership in hydrogen and developing solutions that will be critical for meeting net zero.
If the UK is going to meet net zero and capitalise on the economic growth opportunities presented by domestic and global markets for hydrogen solutions and expertise it is critical that the 2020s deliver a step change in hydrogen activity building on the unique strengths and expertise developed during early stage technology development.
The Hydrogen Taskforce brings together leading companies pushing hydrogen into the mainstream in the UK to offer a shared view of the opportunity and a collective position on the next steps that must be taken to ensure that the UK capitalises on this opportunity. There are questions to be answered and challenges that must be overcome as hydrogen technologies develop yet by focusing on what can be done today the benefits of hydrogen can be immediately realised whilst industry expertise and knowledge is built.
You can download the whole document from the Hydrogen Taskforce website here
Sustainable Hydrogen Production: A Role for Fusion
Apr 2007
Publication
This Meeting Report summarises the findings of a two-day workshop in April 2007 at the Culham Science Centre and Worcester College Oxford which explored the potential for large-scale Hydrogen production through methods other than electrolysis.<br/>Operating at the cusp of research and policy-making the UK Energy Research Centre's mission is to be the UK's pre-eminent centre of research and source of authoritative information and leadership on sustainable energy systems. The Centre takes a whole systems approach to energy research incorporating economics engineering and the physical environmental and social sciences while developing and maintaining the means to enable cohesive research in energy. A key supporting function of UKERC is the Meeting Place based in Oxford which aims to bring together members of the UK energy community and overseas experts from different disciplines to learn identify problems develop solutions and further the energy debate.
Environmental Audit Committee Inquiry into Hydrogen
Jun 2020
Publication
The Hydrogen Taskforce welcomes the opportunity to submit evidence to the Environmental Audit Committee’s inquiry into Hydrogen. It is the Taskforce’s view that:
You can download the whole document from the Hydrogen Taskforce website here
- Due to its various applications hydrogen is critical for the UK to reach net zero by 2050;
- The UK holds world-class advantages in hydrogen production distribution and application; and
- Other economies are moving ahead in the development of this sector and the UK must respond.
- Development of a cross departmental UK Hydrogen Strategy within UK Government;
- Commit £1bn of capex funding over the next spending review period to hydrogen production storage and distribution projects;
- Develop a financial support scheme for the production of hydrogen in blending industry power and transport;
- Amend Gas Safety Management Regulations (GSMR) to enable hydrogen blending and take the next steps towards 100% hydrogen heating through supporting public trials and mandating 100% hydrogen-ready boilers by 2025; and
- Commit to the support of 100 Hydrogen Refuelling Stations (HRS) by 2025 to support the roll-out of hydrogen transport.
You can download the whole document from the Hydrogen Taskforce website here
Hydrogen Embrittlement: Future Directions—Discussion
Jun 2017
Publication
The final session of the meeting consisted of a discussion panel to propose future directions for research in the field of hydrogen embrittlement and the potential impact of this research on public policy.
This article is a transcription of the recorded discussion of ‘Hydrogen Embrittlement: Future Directions’ at the Royal Society Scientific Discussion Meeting Challenges of Hydrogen and Metals Jan 16th–18th 2017. The text is approved by the contributors. H.L. transcribed the session and drafted the manuscript. Y.C. assisted in the preparation of the manuscript.
Link to document download on Royal Society Website
This article is a transcription of the recorded discussion of ‘Hydrogen Embrittlement: Future Directions’ at the Royal Society Scientific Discussion Meeting Challenges of Hydrogen and Metals Jan 16th–18th 2017. The text is approved by the contributors. H.L. transcribed the session and drafted the manuscript. Y.C. assisted in the preparation of the manuscript.
Link to document download on Royal Society Website
Acorn: Developing Full-chain Industrial Carbon Capture and Storage in a Resource- and Infrastructure-rich Hydrocarbon Province
Jun 2019
Publication
Juan Alcalde,
Niklas Heinemann,
Leslie Mabon,
Richard H. Worden,
Heleen de Coninck,
Hazel Robertson,
Marko Maver,
Saeed Ghanbari,
Floris Swennenhuis,
Indira Mann,
Tiana Walker,
Sam Gomersal,
Clare E. Bond,
Michael J. Allen,
Stuart Haszeldine,
Alan James,
Eric J. Mackay,
Peter A. Brownsort,
Daniel R. Faulkner and
Steve Murphy
Research to date has identified cost and lack of support from stakeholders as two key barriers to the development of a carbon dioxide capture and storage (CCS) industry that is capable of effectively mitigating climate change. This paper responds to these challenges through systematic evaluation of the research and development process for the Acorn CCS project a project designed to develop a scalable full-chain CCS project on the north-east coast of the UK. Through assessment of Acorn's publicly-available outputs we identify strategies which may help to enhance the viability of early-stage CCS projects. Initial capital costs can be minimised by infrastructure re-use particularly pipelines and by re-use of data describing the subsurface acquired during oil and gas exploration activity. Also development of the project in separate stages of activity (e.g. different phases of infrastructure re-use and investment into new infrastructure) enables cost reduction for future build-out phases. Additionally engagement of regional-level policy makers may help to build stakeholder support by situating CCS within regional decarbonisation narratives. We argue that these insights may be translated to general objectives for any CCS project sharing similar characteristics such as legacy infrastructure industrial clusters and an involved stakeholder-base that is engaged with the fossil fuel industry.
Liverpool-Manchester Hydrogen Cluster: A Low Cost, Deliverable Project
Aug 2017
Publication
Emissions from natural gas combustion and use are the largest source of greenhouse gas (GHG) emissions in the UK. The use of hydrogen in place of natural gas in principle offers a potential route to long term widespread decarbonisation of gas distribution networks as shown by the Leeds City Gate (‘H21’) study.1 The purpose of considering conversion to hydrogen is to deliver widespread carbon abatement across the UK at lower cost than alternative decarbonisation strategies.<br/>The Government is to finalise and publish the long-awaited ‘Clean Growth Plan’ along with an Industrial Strategy White Paper in Autumn 2017. Conversion from natural gas to hydrogen potentially on an incremental basis would likely represent a major opportunity for new industrial growth. This might be through the longer term stability or potential expansion of existing (newly decarbonised) energy intensive industry or through business opportunities and growth created from new technologies developed to facilitate the transition to hydrogen as the UK becomes a global leader and major exporter of equipment and skills. Job creation and the resulting gross value added (GVA) to the economy could therefore be significant in delivery of the goals of the Industrial Strategy Challenge Fund (ISCF).<br/>The core requirement is to supply low carbon hydrogen in bulk matching production to distribution network demand at an affordable cost. The H21 study concluded that to do so reliably hydrogen is best produced by reducing natural gas in steam methane reformers (SMRs) fitted with Carbon Capture and Storage (CCS). The study proposed that the considerable inter-seasonal and daily fluctuations in network demand can be managed by storing hydrogen in underground salt formations. It concluded that the SMRs with associated carbon dioxide (CO2) capture should be located near to where CO2 transport and storage infrastructure was likely to be created and noted that candidate locations for this are Teesside Humberside Grangemouth and the Liverpool-Manchester (L-M) area. Two of these Humberside and the L-M area are within the Cadent Gas Ltd (‘Cadent’) network and are also industrial ‘clusters’ with significant populations.<br/>The work reported here builds upon the approach proposed in the H21 project by focussing on defining ‘low carbon’ hydrogen supply and distribution systems in Humberside and the L-M area at a system scale sufficient to supply a large city.2 Both the Humber and L-M clusters are close to salt deposits which are suitable for both daily and inter-seasonal storage of hydrogen (for initial or expanded projects). Furthermore new large-scale gas Combined Cycle Gas Turbine (CCGT) plants widely assumed as likely anchor projects for CCS infrastructure have been consented in both cluster areas confirming that they are both strong candidates as locations for the first CCS clusters and hence as locations for a hydrogen supply system.
Transitioning to Hydrogen - Assessing the Engineering Risks and Uncertainties
Jun 2016
Publication
Transitioning to Hydrogen a joint report from five engineering organisations focuses on the engineering challenges of replacing natural gas in the gas distribution network with hydrogen in order to reduce emissions. The production of this report is timely following the commitment from Government this week to legislate for net zero emissions by 2050. It is expected that hydrogen will play a big part in the reduction of emissions from the heating transport and industrial sectors.<br/><br/>The report concludes that there is no reason why repurposing the gas network to hydrogen cannot be achieved but there are some engineering risks and uncertainties that need to be addressed. In the development of the report many questions were posed and members of IMechE IChemE IET and IGEM were surveyed to better understand the challenges faced by the hydrogen production and gas industries planning to undertake this ambitious transition. Further information was obtained from the Health and Safety Laboratories.<br/><br/>The report also highlights 20 ongoing projects in the UK that are looking at various aspects of hydrogen production distribution and use.
Welsh Government’s Department for Economy, Skills & Natural Resources Briefing: Cardiff University’s Expertise to Help Address the Challenges to Creating a CO2 Circular Economy for Wales
Oct 2021
Publication
Through its “Reducing Carbon whilst Creating Social Value: How to get Started’ initiative Welsh Government is keen to explore whether a ‘circular economy’ (and industry) could be developed for Wales for CO2.<br/>Although most companies have targets to reduce their CO2 by 2030 Wales does not have the space to store or bury any excess with the current choice to ship or ‘move the problem’ elsewhere. Meanwhile other industry sectors in Wales are experiencing shortages of CO2 e.g. food production.<br/>Net Zero commitments will require dealing with CO2 emissions from agricultural and industrial sectors and from the production of blue and grey hydrogen during the transition time of switching to green hydrogen. Sequestration and shipping off of CO2 could be costly are not currently possible at large scale and are not sustainable. The use of CO2 by industry e.g. in construction materials and in food production processes can play a major role in addressing CO2 waste production from grey and blue hydrogen.<br/>In a Cradle-to-Cradle approach everything has a use. Is Wales missing out on creating and developing a new innovative industry around a CO2 circular economy?
Hydrogen adsorption on transition metal carbides
Jan 2019
Publication
Transition metal carbides are a class of materials widely known for both their interesting physical properties and catalytic activity. In this work we have used plane-wave DFT methods to study the interaction with increasing amounts of molecular hydrogen on the low-index surfaces of four major carbides – TiC VC ZrC and NbC. Adsorption is found to be generally exothermic and occurs predominantly on the surface carbon atoms. We identify trends over the carbides and their surfaces for the energetics of the adsorption as a function of their electronic and geometrical characteristics. An ab initio thermodynamics formalism is used to study the properties of the slabs as the hydrogen coverage is increased.
Advances in Reforming and Partial Oxidation of Hydrocarbons for Hydrogen Production and Fuel Cell Applications
May 2019
Publication
One of the most attractive routes for the production of hydrogen or syngas for use in fuel cell applications is the reforming and partial oxidation of hydrocarbons. The use of hydrocarbons in high temperature fuel cells is achieved through either external or internal reforming. Reforming and partial oxidation catalysis to convert hydrocarbons to hydrogen rich syngas plays an important role in fuel processing technology. The current research in the area of reforming and partial oxidation of methane methanol and ethanol includes catalysts for reforming and oxidation methods of catalyst synthesis and the effective utilization of fuel for both external and internal reforming processes. In this paper the recent progress in these areas of research is reviewed along with the reforming of liquid hydrocarbons from this an overview of the current best performing catalysts for the reforming and partial oxidizing of hydrocarbons for hydrogen production is summarized.
Health and safety in the new energy economy
Dec 2010
Publication
Over the next decade and beyond the UK is set to take significant steps towards a new energy economy. This will be an economy where the technologies meeting<br/>our electricity heat and fuel needs have to deliver against three key criteria: sustainability security and affordability.<br/><br/>In this context a wide range of emerging energy technologies are expected to play an important role in reshaping the way we satisfy our energy requirements. The extent to which they do so however will depend fundamentally on their ability to be harnessed safely.<br/><br/>Compiled by HSE’s Emerging Energy Technologies Programme this report provides a current assessment of the health and safety hazards that key emerging energy technologies could pose both to workers and to the public at large. (Nuclear energy technologies fall outside the scope of this report.) But it also highlights how an appropriate framework can be and is being put in place to help ensure that these hazards are managed and controlled effectively – an essential<br/>element in enabling the technologies to make a major contribution to the UK’s energy future.
Oxford Energy Podcast – Saudi Aramco’s Perspectives on Hydrogen: Opportunities and Challenges
Jun 2021
Publication
As the world’s largest integrated energy and chemicals company Saudi Aramco continues to invest in technologies and innovative business models to enable the sustainable use of hydrocarbon resources across the value chain. In this podcast David Ledesma discusses with Yasser Mufti Vice President Strategy & Market Analysis Saudi Aramco about Saudi Aramco’s perspectives on hydrogen its opportunities and challenges. This wide-ranging interview discusses Saudi Aramco’s investment in new technologies and the sustainable use of its hydrocarbon resources before addressing the role of hydrogen in achieving a low emissions economy possible business models and the barriers to achieving hydrogen’s growth. The podcast then moves on to discuss ammonia carbon capture utilisation and storage finishing up with a forward-looking perspective on the vision for Saudi Aramco asking how will the company look in 2050 and specifically whether it will still be a hydrocarbon company?
The podcast can be found on their website
The podcast can be found on their website
The Ten Point Plan for a Green Industrial Revolution: Building Back Better, Supporting Green Jobs, and Accelerating Our Path to Net Zero
Nov 2020
Publication
As the world looks to recover from the impact of coronavirus on our lives livelihoods and economies we have the chance to build back better: to invest in making the UK a global leader in green technologies.
The plan focuses on increasing ambition in the following areas:
The plan focuses on increasing ambition in the following areas:
- advancing offshore wind
- driving the growth of low carbon hydrogen
- delivering new and advanced nuclear power
- accelerating the shift to zero emission vehicles
- green public transport cycling and walking
- ‘jet zero’ and green ships
- greener buildings
- investing in carbon capture usage and storage
- protecting our natural environment
- green finance and innovation
Spontaneous Ignition of Hydrogen- Literature Review
Jan 2008
Publication
Objectives
The aim of this review is to establish which available literature may be of use as part of the HSE funded project which will investigate spontaneous ignition of accidental hydrogen releases (JR02071). It will identify phenomena that have the potential to cause spontaneous ignition of releases of pressured hydrogen and identify literature that may be of use when formulating the experimental program.
Main Findings
The identification of important work that shows conclusive evidence of spontaneous ignition of hydrogen due to the failure of a boundary layer.
The aim of this review is to establish which available literature may be of use as part of the HSE funded project which will investigate spontaneous ignition of accidental hydrogen releases (JR02071). It will identify phenomena that have the potential to cause spontaneous ignition of releases of pressured hydrogen and identify literature that may be of use when formulating the experimental program.
Main Findings
The identification of important work that shows conclusive evidence of spontaneous ignition of hydrogen due to the failure of a boundary layer.
Oxford Energy Podcast – How a Traded Hydrogen Market Might Develop – Lessons from the Natural Gas Industry
Jun 2021
Publication
The appetite for a ‘hydrogen market’ has been growing in the past year or two and is often called a ‘market’ by governments regulators and other energy industry players. The question is what ‘hydrogen market’ are they referring to as there is currently no such market established? In this podcast David Ledesma talks to Patrick Heather Senior Research Fellow at the OIES and discusses how a future traded hydrogen market might develop what the prerequisites would be for the development of a wholesale market and whether there are lessons to be learned from the development of the European natural gas market. The podcast ends up by asking the fundamental question – If the European gas market took 25-30 years to liberalise and develop a liquid traded pricing hub where are we headed with hydrogen? Will we ever see a traded market in hydrogen and what must happen to get there? Patrick is cautiously optimistic in his response!
The podcast can be found on their website
The podcast can be found on their website
HyMotion- Network Supplied Hydrogen Unlocks Low Carbon Opportunities
Jun 2019
Publication
The Government’s recently published ‘Road to Zero’ strategy sets out objectives to electrify cars and reduce emissions from heavy goods vehicles (HGVs) through policies such as ending the sale of diesel and petrol cars and subsidising electric charging infrastructure. The CCC response to the strategy however stated that the proposed measures do not go far enough. New Government policies combined with action from industry will be required for mobility related carbon reduction targets to be met.<br/>Hydrogen has been identified by the Government and CCC as one potential solution. The CCC report on a possible future hydrogen economy recognises that in particular hydrogen may have an important role to play for long distance journeys and heavy goods transport. This view was echoed further in the recent CCC ‘Net Zero’ report.<br/>Cadent’s HyNet project will produce low carbon hydrogen through reformation of natural gas combined with carbon capture utilisation and storage (CCUS). HyNet has primarily been designed to supply low carbon heat to industry and a blend of hydrogen to Cadent’s existing natural gas network but also provides the opportunity to supply low cost hydrogen for mobility. The HyMotion project has considered the relative merits of such an approach modelled potential demand scenarios and sought to determine technical and commercial solutions to enable deployment.<br/>Hydrogen fuel cell electric vehicles (FCEVs) share powertrain technologies with battery electric vehicles (BEVs) but the roll-out of BEVs is currently ahead of FCEVs. This is largely due to a lack of low cost low carbon bulk hydrogen production and refuelling infrastructure both of which HyNet seeks to address.
Injecting Hydrogen into the Gas Network- A Literature Search
Jan 2015
Publication
Hydrogen injection into the GB gas network is a likely consequence of using excess offshore wind generated electricity to power large-scale onshore electrolysis plants. Government and DECC in particular now have a keen interest in supporting technologies that can take advantage of the continued use of the gas networks. HSE can contribute to the government’s Growth and Green agendas by effectively regulating and safely enabling this technology.
This report will allow HSE to regulate effectively by pulling together scientific and engineering knowledge regarding the hazards of conveying hydrogen/methane mixtures in network pipes and its use in consumer appliances into a single ‘state-of-play’ report. It enables Energy Division to consider and assess submissions for ‘gas quality’ exemptions to the Gas Safety (Management) Regulations 1996 (GSMR).
In particular the report has examined the following hazards:
This report will allow HSE to regulate effectively by pulling together scientific and engineering knowledge regarding the hazards of conveying hydrogen/methane mixtures in network pipes and its use in consumer appliances into a single ‘state-of-play’ report. It enables Energy Division to consider and assess submissions for ‘gas quality’ exemptions to the Gas Safety (Management) Regulations 1996 (GSMR).
In particular the report has examined the following hazards:
- conveyance of H2/CH4 mixtures in network pipes
- use of H2/CH4 mixtures in consumer appliances (domestic/commercial/industrial)
- explosion and damage characteristics (and ignition likelihood) of H2/CH4 mixtures
- effects on odourisation
Potential Economic Impacts of the HyNet North West Project
Jan 2018
Publication
The objective of the analysis is to provide a robust assessment of the economic impact of HyNet NW over the period to 2050 across both the North West of England and the UK as a whole. Impact is assessed through modelling of direct indirect and induced effect frameworks:
Consideration is also given to the potential impacts of inward investment attracted to the North West/UK in the wake of the Project.
- Direct effects – activities that directly accrue due to the construction and operation of the facilities;
- Indirect effects – the purchase of goods and services to facilitate construction/operation; and
- Induced effects – spending of wages and salaries generated directly and indirectly through construction and operation.
Consideration is also given to the potential impacts of inward investment attracted to the North West/UK in the wake of the Project.
Effect of the Time Dependent Loading of Type IV Cylinders Using a Multi-scalemodel
Sep 2019
Publication
The current requirements for composite cylinders are still based on an arbitrary approach derived from the behaviour of metal structures that the designed burst pressure should be at least 2.5 times the maximum in-service pressure. This could lead to an over-designed composite cylinder for which the weight saving would be less than optimum. Moreover predicting the lifetime of composite cylinders is a challenging task due to their anisotropic characteristics. A federal research institute in Germany (BAM) has proposed a minimum load-cycle requirement that mitigates this issue by using a MonteCarlo analysis of the burst test results. To enrich this study more experiments are required however they are normally limited by the necessity of long duration testing times (loading rate and number of cylinders) and the design (stacking sequence of the composite layer). A multi-scale model incorporating the micromechanical behaviour of composite structures has been developed at Mines ParisTech. The model has shown similar behaviour to that of composite cylinders under different loading rates. This indicates that the model could assist the Monte-Carlo analysis study. An evaluation of the multi-scale model therefore has been carried out to determine its limitations in predicting lifetimes of composite cylinders. The evaluation starts with the comparison of burst pressures with type IV composite cylinders under different loading rates. A μCT-Scan of a type IV cylinder has been carried out at the University of Southampton. The produced images were analysed using the Fast-Fourier Transform (FFT) technique to determine the configuration of the composite layers which is required by the model. Finally the time dependent effect studied by using the multi scale model has been described. In the long-term this study can be used to conduct a parametric study for creating more efficient design of type IV cylinders.
Economic Impact Assessment: Hydrogen is Ready to Power the UK’s Green Recovery
Aug 2020
Publication
Hydrogen solutions have a critical role to play in the UK not only in helping the nation meet its net-zero target but in creating the economic growth and jobs that will kickstart the green recovery.
The Government must act now to ensure that the UK capitalises on the opportunity presented by hydrogen and builds a world-leading industry.
COVID-19 has caused significant economic upheaval across the country with unemployment expected to reach up to 14.8 per cent by the end of 20201. The UK must identify those areas of the economy which have significant economic growth potential and can deliver long-term and sustainable increases in GVA and jobs. It will be important to consider regional factors and ensure that investment is targeted in those areas that have been hardest hit by the crisis.
Many major economies have identified hydrogen as a key part of both decarbonisation and economic recovery. As part of its stimulus package Germany announced a €9billion investment in green hydrogen solutions aiming to deploy 5GW by 2030. The Hydrogen Council estimates a future hydrogen and equipment market worth $2.5 trillion globally by 2050 supporting 30 million new jobs.
Hydrogen offers the UK a pathway to deep cost-effective decarbonisation while delivering economic growth and job creation. It should therefore be at the heart of the Government’s green recovery programme ensuring that the UK builds back better and greener.
The Government must act now to ensure that the UK capitalises on the opportunity presented by hydrogen and builds a world-leading industry.
COVID-19 has caused significant economic upheaval across the country with unemployment expected to reach up to 14.8 per cent by the end of 20201. The UK must identify those areas of the economy which have significant economic growth potential and can deliver long-term and sustainable increases in GVA and jobs. It will be important to consider regional factors and ensure that investment is targeted in those areas that have been hardest hit by the crisis.
Many major economies have identified hydrogen as a key part of both decarbonisation and economic recovery. As part of its stimulus package Germany announced a €9billion investment in green hydrogen solutions aiming to deploy 5GW by 2030. The Hydrogen Council estimates a future hydrogen and equipment market worth $2.5 trillion globally by 2050 supporting 30 million new jobs.
Hydrogen offers the UK a pathway to deep cost-effective decarbonisation while delivering economic growth and job creation. It should therefore be at the heart of the Government’s green recovery programme ensuring that the UK builds back better and greener.
You can download the whole document from the Hydrogen Taskforce website at the following links
- Economic Impact Assessment Summary
- Economic impact Assessment Methodology
- Economic impact Assessment of the Hydrogen Value Chain of the UK infographic
- Imperial College Consultants Review of the EIA.
Exploring Possible Transition Pathways for Hydrogen Energy: A Hybrid Approach Using Socio-technical Scenarios and Energy System Modelling
Jul 2014
Publication
Hydrogen remains an important option for long-term decarbonisation of energy and transport systems. However studying the possible transition paths and development prospects for a hydrogen energy system is challenging. The long-term nature of technological transitions inevitably means profound uncertainties diverging perspectives and contested priorities. Both modelling approaches and narrative storyline scenarios are widely used to explore the possible future of hydrogen energy but each approach has shortcomings.<br/>This paper presents a hybrid approach to assessing hydrogen transitions in the UK by confronting qualitative socio-technical scenarios with quantitative energy systems modelling through a process of ‘dialogue’ between scenario and model. Three possible transition pathways are explored each exploring different uncertainties and possible decision points. Conclusions are drawn for both the future of hydrogen and on the value of an approach that brings quantitative formal models and narrative scenario techniques into dialogue.
Freeze-dried Ammonia Borane-polyethylene Oxide Composites: Phase Behaviour and Hydrogen Release
Feb 2018
Publication
A solid-state hydrogen storage material comprising ammonia borane (AB) and polyethylene oxide (PEO) has been produced by freeze-drying from aqueous solutions from 0% to 100% AB by mass. The phase mixing behaviour of AB and PEO has been investigated using X-ray diffraction which shows that a new ‘intermediate’ crystalline phase exists different from both AB and PEO as observed in our previous work (Nathanson et al. 2015). It is suggested that hydrogen bonding interactions between the ethereal oxygen atom (–O–) in the PEO backbone and the protic hydrogen atoms attached to the nitrogen atom (N–H) of AB molecules promote the formation of a reaction intermediate leading to lowered hydrogen release temperatures in the composites compared to neat AB. PEO also acts to significantly reduce the foaming of AB during hydrogen release. A temperature-composition phase diagram has been produced for the AB-PEO system to show the relationship between phase mixing and hydrogen release.
Hydrogen Effects in Corrosion: Discussion
Jun 2017
Publication
This session contained talks on the characterization of hydrogen-enhanced corrosion of steels and nickel-based alloys emphasizing the different observations across length scales from atomic-scale spectrographic to macro-scale fractographic examinations.
This article is the transcription of the recorded discussion of the session ‘Hydrogen Effects in Corrosion’ at the Royal Society discussion meeting Challenges of Hydrogen and Metals 16–18 January 2017. The text is approved by the contributors. M.A.S. transcribed the session and E.L.S. assisted in the preparation of the manuscript.
Link to document download on Royal Society Website
This article is the transcription of the recorded discussion of the session ‘Hydrogen Effects in Corrosion’ at the Royal Society discussion meeting Challenges of Hydrogen and Metals 16–18 January 2017. The text is approved by the contributors. M.A.S. transcribed the session and E.L.S. assisted in the preparation of the manuscript.
Link to document download on Royal Society Website
Combustion and Exhaust Emission Characteristics, and In-cylinder Gas Composition, of Hydrogen Enriched Biogas Mixtures in a Diesel Engine
Feb 2017
Publication
This paper presents a study undertaken on a naturally aspirated direct injection diesel engine investigating the combustion and emission characteristics of CH4-CO2 and CH4-CO2 -H2 mixtures. These aspirated gas mixtures were pilot-ignited by diesel fuel while the engine load was varied between 0 and 7 bar IMEP by only adjusting the flow rate of the aspirated mixtures. The in-cylinder gas composition was also investigated when combusting CH4-CO2 and CH4-CO2-H2 mixtures at different engine loads with in cylinder samples collected using two different sampling arrangements. The results showed a longer ignition delay period and lower peak heat release rates when the proportion of CO2 was increased in the aspirated mixture. Exhaust CO2 emissions were observed to be higher for 60 CH4:40CO2 mixture but lower for the 80CH4:20CO2 mixture as compared to diesel fuel only combustion at all engine loads. Both exhaust and in-cylinder NOx levels were observed to decrease when the proportion of CO2 was increased; NOx levels increased when the proportion of H2 was increased in the aspirated mixture. In-cylinder NOx levels were observed to be higher in the region between the sprays as compared to within the spray core attributable to higher gas temperatures reached post ignition in that region.
Hydrogen Jet Fires in a Passively Ventilated Enclosure
Oct 2015
Publication
This paper describes a combined experimental analytical and numerical modelling investigation into hydrogen jet fires in a passively ventilated enclosure. The work was funded by the EU Fuel Cells and Hydrogen Joint Undertaking project Hyindoor. It is relevant to situations where hydrogen is stored or used indoors. In such situations passive ventilation can be used to prevent the formation of a flammable atmosphere following a release of hydrogen. Whilst a significant amount of work has been reported on unignited releases in passively ventilated enclosures and on outdoor hydrogen jet fires very little is known about the behaviour of hydrogen jet fires in passively ventilated enclosures. This paper considers the effects of passive ventilation openings on the behaviour of hydrogen jet fires. A series of hydrogen jet fire experiments were carried out using a 31 m3 passively ventilated enclosure. The test programme included subsonic and chocked flow releases with varying hydrogen release rates and vent configurations. In most of the tests the hydrogen release rate was sufficiently low and the vent area sufficiently large to lead to a well-ventilated jet fire. In a limited number of tests the vent area was reduced allowing under-ventilated conditions to be investigated. The behaviour of a jet fire in a passively ventilated enclosure depends on the hydrogen release rate the vent area and the thermal properties of the enclosure. An analytical model was used to quantify the relative importance of the hydrogen release rate and vent area whilst the influence of the thermal properties of the enclosure were investigated using a CFD model. Overall the results indicate that passive ventilation openings that are sufficiently large to safely ventilate an unignited release will tend to be large enough to prevent a jet fire from becoming under-ventilated.
Photocatalytic Hydrogen Production by Biomimetic Indium Sulfide Using Mimosa Pudica Leaves as Template
Jan 2019
Publication
Biomimetic sulfur-deficient indium sulfide (In2.77S4) was synthesized by a template-assisted hydrothermal method using leaves of Mimosa pudica as a template for the first time. The effect of this template in modifying the morphology of the semiconductor particles was determined by physicochemical characterization revealing an increase in surface area decrease in microsphere size and pore size and an increase in pore volume density in samples synthesized with the template. X-ray photoelectron spectroscopy (XPS) analysis showed the presence of organic sulfur (Ssingle bondO/Ssingle bondC/Ssingle bondH) and sulfur oxide species (single bondSO2 SO32− SO42−) at the surface of the indium sulfide in samples synthesized with the template. Biomimetic indium sulfide also showed significant amounts of Fe introduced as a contaminant present on the Mimosa pudica leaves. The presence of these sulfur and iron species favors the photocatalytic activity for hydrogen production by their acting as a sacrificial reagent and promoting water oxidation on the surface of the templated particles respectively. The photocatalytic hydrogen production rates over optimally-prepared biomimetic indium sulfide and indium sulfide synthesized without the organic template were 73 and 22 μmol g−1 respectively indicating an improvement by a factor of three in the templated sample.
Simulation of Hydrogen Dispersion under Cryogenic Release Conditions
Sep 2013
Publication
The use of hydrogen as fuel should always be accompanied by a safety assessment in case of an accidental release. To evaluate the potential hazards in a spill accident both experiments and simulations are performed. In the present work the CFD code ADREA-HF is used to simulate the liquefied hydrogen (LH2) spill experiments (test 5 6 7) conducted by the Health and Safety Laboratory (HSL). In these tests LH2 was spilled at a fixed rate of 60lt/min in several directions and for several durations. The factors that influence the vapor dispersion under cryogenic release conditions that were examined in this study are: the air humidity the wind direction and the slip effect of droplets formed by both the cryogenic liquid and the condensation of air humidity. The numerical results were compared with the experimental measurements and the effect of each abovementioned factors in the vapor dispersion is being discussed.
The Impact of Disruptive Powertrain Technologies on Energy Consumption and Carbon Dioxide Emissions from Heavy-duty Vehicles
Jan 2020
Publication
Minimising tailpipe emissions and the decarbonisation of transport in a cost effective way remains a major objective for policymakers and vehicle manufacturers. Current trends are rapidly evolving but appear to be moving towards solutions in which vehicles which are increasingly electrified. As a result we will see a greater linkage between the wider energy system and the transportation sector resulting in a more complex and mutual dependency. At the same time major investments into technological innovation across both sectors are yielding rapid advancements into on-board energy storage and more compact/lightweight on-board electricity generators. In the absence of sufficient technical data on such technology holistic evaluations of the future transportation sector and its energy sources have not considered the impact of a new generation of innovation in propulsion technologies. In this paper the potential impact of a number of novel powertrain technologies are evaluated and presented. The analysis considers heavy duty vehicles with conventional reciprocating engines powered by diesel and hydrogen hybrid and battery electric vehicles and vehicles powered by hydrogen fuel cells and freepiston engine generators (FPEGs). The benefits are compared for each technology to meet the expectations of representative medium and heavy-duty vehicle drivers. Analysis is presented in terms of vehicle type vehicle duty cycle fuel economy greenhouse gas (GHG) emissions impact on the vehicle etc.. The work shows that the underpinning energy vector and its primary energy source are the most significant factor for reducing primary energy consumption and net CO2 emissions. Indeed while an HGV with a BEV powertrain offers no direct tailpipe emissions it produces significantly worse lifecycle CO2 emissions than a conventional diesel powertrain. Even with a de-carbonised electricity system (100 g CO2/kWh) CO2 emissions are similar to a conventional Diesel fuelled HGV. For the HGV sector range is key to operator acceptability of new powertrain technologies. This analysis has shown that cumulative benefits of improved electrical powertrains on-board storage efficiency improvements and vehicle design in 2025 and 2035 mean that hydrogen and electric fuelled vehicles can be competitive on gravimetric and volumetric density. Overall the work demonstrates that presently there is no common powertrain solution appropriate for all vehicle types but how subtle improvements at a vehicle component level can have significant impact on the design choices for the wider energy system.
Hydrogen-diesel Fuel Co-combustion Strategies in Light Duty and Heavy Duty CI Engines
Apr 2018
Publication
The co-combustion of diesel fuel with H2 presents a promising route to reduce the adverse effects of diesel engine exhaust pollutants on the environment and human health. This paper presents the results of H2-diesel co-combustion experiments carried out on two different research facilities a light duty and a heavy duty diesel engine. For both engines H2 was supplied to the engine intake manifold and aspirated with the intake air. H2 concentrations of up to 20% vol/vol and 8% vol/vol were tested in the light duty and heavy duty engines respectively. Exhaust gas circulation (EGR) was also utilised for some of the tests to control exhaust NOx emissions.<br/>The results showed NOx emissions increase with increasing H2 in the case of the light duty engine however in contrast for the heavy duty engine NOx emissions were stable/reduced slightly with H2 attributable to lower in-cylinder gas temperatures during diffusion-controlled combustion. CO and particulate emissions were observed to reduce as the intake H2 was increased. For the light duty H2 was observed to auto-ignite intermittently before diesel fuel injection had started when the intake H2 concentration was 20% vol/vol. A similar effect was observed in the heavy duty engine at just over 8% H2 concentration.
Results of the HySafe CFD Validation Benchmark SBEPV5
Sep 2007
Publication
The different CFD tools used by the NoE HySafe partners are applied to a series of integral complex Standard Benchmark Exercise Problems (SBEPs). All benchmarks cover complementarily physical phenomena addressing application relevant scenarios and refer to associated experiments with an explicit usage of hydrogen. After the blind benchmark SBEPV1 and SBEPV3 with subsonic vertical release in a large vessel and in a garage like facility SBEPV4 with a horizontal under-expanded jet release through a small nozzle SBEPV5 covers the scenario of a subsonic horizontal jet release in a multi-compartment room.<br/>As the associated dispersion experiments conducted by GEXCON Norsk Hydro and STATOIL were disclosed to the participants the whole benchmark was conducted openly. For the purpose of validation only the low momentum test D27 had to be simulated.<br/>The experimental rig consists of a 1.20 m x 0.20 m x 0.90 m (Z vertical) vessel divided into 12 compartments partially even physically by four baffle plates. In each compartment a hydrogen concentration sensor is mounted. There is one vent opening at the wall opposite the release location centrally located about 1 cm above floor with dimensions 0.10 m (Y) times 0.20 m (Z). The first upper baffle plate close to the release point is on a sensitive location as it lies nearly perfectly in the centre of the buoyant jet and thus separates the flow into the two compartments. The actual release was a nominally constant flow of 1.15 norm liters for 60 seconds. With a 12mm nozzle diameter this corresponds to an average exit velocity of 10.17 m/s.<br/>6 CFD packages have been applied by 7 HySafe partners to simulate this experiment: ADREAHF by NCSRD FLACS by GexCon and DNV KFX by DNV FLUENT by UPM and UU CFX by HSE/HSL and GASFLOW by FZK. The results of the different participants are compared against the experimental data. Sensitivity studies were conducted by FZK using GASFLOW and by DNV applying KFX.<br/>Conclusions based on the comparisons and the sensitivity studies related to the performance of the applied turbulence models and discretisation schemes in the release and diffusion phase are proposed. These are compared to the findings of the previous benchmark exercises.
Project Cavendish - National Grid Gas Transmission
Sep 2020
Publication
The Isle of Grain (IoG) presents a technically feasible commercially viable strategic location to build and operate a hydrogen production facility which would be a key enabler to the UK meeting the Net Zero 2050 target.
As highlighted in the ‘Net Zero – The UK’s contribution to stopping global warming’ report published by The Committee on Climate Change in May 2019 hydrogen is set to have a major part to play in reducing UK carbon dioxide emissions. Carbon Capture and Storage (CCS) is also seen as essential to support those supplies.
The report further recognises that this will involve increased investments and that CCS and hydrogen will require both capital funding and revenue support.
For hydrogen to have a part to play in the decarbonisation of London and the south east of England a large-scale hydrogen production facility will be required which will provide a multi vector solution through the decarbonisation of the gas grid.
This report and any attachment is freely available on the ENA Smarter Networks Portal here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
As highlighted in the ‘Net Zero – The UK’s contribution to stopping global warming’ report published by The Committee on Climate Change in May 2019 hydrogen is set to have a major part to play in reducing UK carbon dioxide emissions. Carbon Capture and Storage (CCS) is also seen as essential to support those supplies.
The report further recognises that this will involve increased investments and that CCS and hydrogen will require both capital funding and revenue support.
For hydrogen to have a part to play in the decarbonisation of London and the south east of England a large-scale hydrogen production facility will be required which will provide a multi vector solution through the decarbonisation of the gas grid.
This report and any attachment is freely available on the ENA Smarter Networks Portal here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
Hy4Heat Hydrogen Odorant - Work Package 2
Nov 2020
Publication
This work programme was focused on identifying a suitable odorant for use in a 100% hydrogen gas grid (domestic use such as boilers and cookers). The research involved a review of existing odorants (used primarily for natural gas) and the selection of five suitable odorants based on available literature. One odorant was selected based on possible suitability with a Polymer Electrolyte Membrane (PEM) based fuel cell vehicle which could in future be a possible end-user of grid hydrogen. NPL prepared Primary Reference Materials containing the five odorants in hydrogen at the relevant amount fraction levels (as would be found in the grid) including ones provided by Robinson Brothers (the supplier of odorants for natural gas in the UK). These mixtures were used by NPL to perform tests to understand the effects of the mixtures on pipeline (metal and plastic) appliances (a hydrogen boiler provided by Worcester Bosch) and PEM fuel cells. HSE investigated the health and environmental impact of these odorants in hydrogen. Olfactory testing was performed by Air Spectrum to characterise the ‘smell’ of each odorant. Finally an economic analysis was performed by E4tech. The results confirm that Odorant NB would be a suitable odorant for use in a 100% hydrogen gas grid for combustion applications but further research would be required if the intention is to supply grid hydrogen to stationery fuel cells or fuel cell vehicles. In this case further testing would need to be performed to measure the extent of fuel cell degradation caused by the non-sulphur odorant obtained as part of this work programme and also other UK projects such as the Hydrogen Grid to Vehicle (HG2V) project[1] would provide important information about whether a purification step would be required regardless of the odorant before the hydrogen purity would be suitable for a PEM fuel cell vehicle. If purification was required it would be fine to use Odorant NB as this would be removed during the purification step.
This report and any attachment is freely available on the Hy4Heat website here. The report can also be downloaded directly by clicking on the pdf icon above
This report and any attachment is freely available on the Hy4Heat website here. The report can also be downloaded directly by clicking on the pdf icon above
Molecular Transport Effects of Hydrocarbon Addition on Turbulent Hydrogen Flame Propagation
Sep 2007
Publication
We analytically investigated the influence of light hydrocarbons on turbulent premixed H2/air atmospheric flames under lean conditions in view of safe handling of H2 systems applications in H2 powered IC engines and gas turbines and also with an orientation towards modelling of H2 combustion. For this purpose an algebraic flame surface wrinkling model included with pressure and fuel type effects is used. The model predictions of turbulent premixed flames are compared with the set of corresponding experimental data of Kido et al. (Kido Nakahara et al. 2002). These expanding spherical flame data include H2–air mixtures doped with CH4 and C3H8 while the overall equivalence ratio of all the fuel/air mixtures is fixed at 0.8 for constant unstretched laminar flame speed of 25 cm/s by varying N2 composition. The model predictions show that there is little variation in turbulent flame speed ST for C3H8 additions up to 20-vol%. However for 50 vol% doping flame speed decreases by as much as 30 % from 250 cm/s that of pure H2–air mixtures for turbulence intensity of 200 cm/s. With respect to CH4 for 50 vol% doping ST reduces by only 6 % cf. pure H2/air mixture. In the first instance the substantial decrease of ST with C3H8 addition may be attributed to the increase in the Lewis number of the dual-fuel mixture and proportional restriction of molecular mobility of H2. That is this decrease in flame speed can be explained using the concept of leading edges of the turbulent flame brush (Lipatnikov and Chomiak 2005). As these leading edges have mostly positive curvature (convex to the unburned side) preferential-diffusive-thermal instabilities cause recognizable impact on flame speed at higher levels of turbulence with the effect being very strong for lean H2 mixtures. The lighter hydrocarbon substitutions tend to suppress the leading flame edges and possibly transition to detonation in confined structures and promote flame front stability of lean turbulent premixed flames. Thus there is a necessity to develop a predictive reaction model to quantitatively show the strong influence of molecular transport coefficients on ST.
Hy4Heat Conversion of Industrial Heating Equipment to Hydrogen - Work Package 6
Jan 2020
Publication
The study focuses on converting current industrial natural gas heating technologies to use 100% hydrogen considering the evidence which must be available before a decision on the UK’s decarbonisation pathway for heating could be made. The aim of the study is to assess the technical requirements and challenges associated with industrial hydrogen conversion and estimate the associated costs and timeframes.
This report and any attachment is freely available on the Hy4Heat website here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
This report and any attachment is freely available on the Hy4Heat website here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
Hy4Heat Hydrogen Purity - Work Package 2
Feb 2020
Publication
The report makes a recommendation for a minimum hydrogen purity standard to be used by manufacturers developing prototype hydrogen appliances and during their subsequent demonstration as part of the Hy4Heat programme. It makes a recommendation for a hydrogen purity level with the aim that it is reasonable and practicable and considers implications related to hydrogen production the gas network and cost.
This report and any attachment is freely available on the Hy4Heat website here. The report can also be downloaded directly by clicking on the pdf icon above
This report and any attachment is freely available on the Hy4Heat website here. The report can also be downloaded directly by clicking on the pdf icon above
Role of Batteries and Fuel Cells in Achieving Net Zero- Session 1
Mar 2021
Publication
The House of Lords Science and Technology Committee will question experts on the role of batteries and fuel cells for decarbonisation and how much they can contribute to meeting the net-zero target.
Tuesday’s evidence session will be the first of the committee’s new decarbonisation inquiry which was launched on Wednesday 3 March and is currently accepting written evidence submissions.
The session will give an overview of battery and fuel cell technologies and their applications in transport and other sectors. The Committee will ask how battery manufacture can be scaled up to meet wide-scale deployment of electric vehicles and whether technical challenges can be overcome to allow batteries and fuel cells to be used in HGVs and trains. The Committee will also investigate the wider use of batteries and fuel cells in various sectors including integration into power grids and heating systems.
Inquiry Role of batteries and fuel cells in achieving Net Zero
Professor Nigel Brandon Dean of the Faculty of Engineering at Imperial College London
Professor Mauro Pasta Associate Professor of Materials at University of Oxford
Professor Pam Thomas CEO at Faraday Institution and Pro Vice Chancellor for Research at University of Warwick
Mr Amer Gaffar Director of Manchester Fuel Cell Innovation Centre at Manchester Metropolitan University
Possible questions
What contribution are battery and fuel cell technologies currently making towards decarbonization in the UK?
What advances do we expect to see in battery and fuel cell technologies and over what timeframes?
How quickly can UK battery and fuel cell manufacture be scaled up to meet electrification demands?
What are the challenges facing technological innovation and deployment in heavy transport?
Are there any sectors where battery and fuel cell technologies are not currently used but could contribute to decarbonisation?
What are the life cycle environmental impacts of batteries and fuel cells?
Parliament TV video of the meeting
This is part one of a three part enquiry.
Part two can be found here and part three can be found here.
Tuesday’s evidence session will be the first of the committee’s new decarbonisation inquiry which was launched on Wednesday 3 March and is currently accepting written evidence submissions.
The session will give an overview of battery and fuel cell technologies and their applications in transport and other sectors. The Committee will ask how battery manufacture can be scaled up to meet wide-scale deployment of electric vehicles and whether technical challenges can be overcome to allow batteries and fuel cells to be used in HGVs and trains. The Committee will also investigate the wider use of batteries and fuel cells in various sectors including integration into power grids and heating systems.
Inquiry Role of batteries and fuel cells in achieving Net Zero
Professor Nigel Brandon Dean of the Faculty of Engineering at Imperial College London
Professor Mauro Pasta Associate Professor of Materials at University of Oxford
Professor Pam Thomas CEO at Faraday Institution and Pro Vice Chancellor for Research at University of Warwick
Mr Amer Gaffar Director of Manchester Fuel Cell Innovation Centre at Manchester Metropolitan University
Possible questions
What contribution are battery and fuel cell technologies currently making towards decarbonization in the UK?
What advances do we expect to see in battery and fuel cell technologies and over what timeframes?
How quickly can UK battery and fuel cell manufacture be scaled up to meet electrification demands?
What are the challenges facing technological innovation and deployment in heavy transport?
Are there any sectors where battery and fuel cell technologies are not currently used but could contribute to decarbonisation?
What are the life cycle environmental impacts of batteries and fuel cells?
Parliament TV video of the meeting
This is part one of a three part enquiry.
Part two can be found here and part three can be found here.
The Hydrogen Economy - Evaluation of the Materials Science and Engineering Issues
Jan 2005
Publication
The main objectives were to identify materials issues relating to the widespread use of hydrogen as a fuel.
MAIN FINDINGS
MAIN FINDINGS
- Hydrogen is seen by many as the answer to the environmental problems of reliance on fossil fuels for energy needs. A great deal of effort is currently being invested in research into all areas of the hydrogen economy such as fuel cells hydrogen generation transportation and storage.
- Fuel cells have the potential to provide power for a very wide range of applications ranging from small portable electronics devices to large stationary electricity production and vehicles covering the whole range of road vehicles and possibly extending to rail marine and even aviation.
- The main obstacles to achieving a viable hydrogen economy are costs of producing hydrogen from renewable sources issues relating to transportation and storage due to the low energy density of hydrogen gas and the cost and reliability of fuel cells.
- The main material considerations relating to the use of hydrogen are hydrogen embrittlement material properties at cryogenic temperatures (due to use of liquid hydrogen) and permeability.
- A number of new materials are likely to come to prominence in a hydrogen economy; high performance composites are likely to be used extensively for high pressure hydrogen cylinders new materials or combinations of materials may be used for hydrogen pipelines and a range of new materials are currently being considered for hydrogen storage such as metal hydrides and carbon nanotubes.
- Due to the effect of hydrogen on materials it is important to test any materials in the environment in which they would be used. Depending on the type of test this could require the use of very specialist expensive equipment.
Net Zero Public Dialogue
Mar 2021
Publication
This research project brought together members of the public from across the UK to participate in online workshops to explore:
- public understanding and perceptions of what reaching climate targets in the UK will mean for them individually and for society as a whole
- public attitudes and preferences towards the role that individual behaviour change should have in reaching net zero
- public perceptions of the easiest and toughest areas of change to help reach net zero
- public views on how they would prefer to engage with net zero policies and relevant initiatives that they feel could support the delivery of net zero
The Role of CCS in Meeting Climate Policy Targets
Oct 2017
Publication
Carbon capture and storage (CCS) refers to a set of technologies that may offer the potential for large-scale removal of CO2 emissions from a range of processes – potentially including the generation of electricity and heat industrial processes and the production of hydrogen and synthetic fuels. CCS has both proponents and opponents. Like other emerging low carbon technologies CCS is not without risks or uncertainties and there are various challenges that would need to be overcome if it were to be widely deployed. Policy makers’ decisions as to whether to pursue CCS should be based on a judgement as to whether the risks and uncertainties associated with attempting to deploy CCS outweigh the risks of not having it available as part of a portfolio of mitigation options in future years.
The full report can be found on the Global CSS Institute website at this link
The full report can be found on the Global CSS Institute website at this link
Heat Pump Manufacturing Supply Chain Research Project Report
Dec 2020
Publication
The Department for Business Energy and Industrial Strategy (BEIS) commissioned a study to research the capacity of the manufacturing supply chain to meet expected future demand for heat pumps. This report contains analysis of the existing supply chain including component parts and also assesses the risks to and opportunities for growth in domestic heat pump manufacture and export.<br/><br/>Alongside a literature review the findings in this report were supported by interviews with organisations involved in the manufacture of heat pumps and an online workshop held with a range of businesses throughout the supply chain.
Industrial Decarbonisation Policies for a UK Net-Zero Target
Dec 2020
Publication
To inform our Sixth Carbon Budget advice the Climate Change Committee (CCC) asked the University of Leeds to undertake independent research to evaluate which policies (and combinations of policies) would enable industrial decarbonisation in line with the UK’s net zero target without inducing carbon leakage. The research focused on policies applicable to the manufacturing sector but with some consideration also given to the policies required to decarbonise the Fossil Fuel Production and Supply and Non-Road Mobile Machinery sectors. This report:
Sets out a comprehensive review of existing policies;
The paper can be downloaded from the CCC website
Sets out a comprehensive review of existing policies;
- Identifies future policy mechanisms that address key challenges in decarbonising industry;
- Explores how combinations of policies might work together strategically in the form of ‘policy packages’ and how these packages might evolve over the period to 2050;
- Evaluates a series of illustrative policy packages and considers any complementary policies required to minimise carbon leakage and deliver ‘just’ industrial decarbonisation.
- The findings were developed through a combination of literature review and extensive stakeholder engagement with industry government and academic experts.
The paper can be downloaded from the CCC website
Policy-driven, Narrative-based Evidence Gathering: UK Priorities for Decarbonisation Through Biomass
May 2015
Publication
Evidence-based policy-making has been a much-debated concept. This paper builds on various insights for a novel perspective: policy-driven narrative-based evidence gathering. In a case study of UK priority setting for bioenergy innovation documents and interviews were analysed to identify links between diagnoses of the problem societal visions policy narratives and evidence gathering. This process is illuminated by the theoretical concept of sociotechnical imaginaries—technoscientific projects which the state should promote for a feasible desirable future. Results suggest that evidence has been selectively generated and gathered within a specific future vision whereby bioenergy largely provides an input-substitute within the incumbent centralised infrastructure. Such evidence is attributed to an external expertise thus helping to legitimise the policy framework. Evidence has helped to substantiate policy commitments to expand bioenergy. The dominant narrative has been reinforced by the government’s multi-stakeholder consultation favouring the incumbent industry and by incentive structures for industry co-investment.
Recent Studies of Hydrogen Embrittlement in Structural Materials
Dec 2018
Publication
Mechanical properties of metals and their alloys are most often determined by interstitial atoms. Hydrogen as one common interstitial element is often found to degrade the fracture behavior and lead to premature or catastrophic failure in a wide range of materials known as hydrogen embrittlement. This topic has been studied for more than a century yet the basic mechanisms of such degradation remain in dispute for many metallic systems. This work attempts to link experimentally and theoretically between failure caused by the presence of hydrogen and second phases lattice distortion and deformation levels.
Disruptive and Uncertain: Policy Makers’ Perceptions on UK Heat Decarbonisation
May 2020
Publication
<br/>The decarbonisation of heating represents a transformative challenge for many countries. The UK’s net-zero greenhouse gas emissions target requires the removal of fossil fuel combustion from heating in just three decades. A greater understanding of policy processes linked to system transformations is expected to be of value for understanding systemic change; how policy makers perceive policy issues can impact on policy change with knock-on effects for energy system change. This article builds on the literature considering policy maker perceptions and focuses on the issue of UK heat policy. Using qualitative analysis we show that policy makers perceive heat decarbonisation as disruptive technological pathways are seen as deeply uncertain and heat decarbonisation appears to offer policy makers little ‘up-side’. Perceptions are bounded by uncertainty affected by concerns over negative impacts influenced by external influences and relate to ideas of continuity. Further research and evidence on optimal heat decarbonisation and an adaptive approach to governance could support policy makers to deliver policy commensurate with heat decarbonisation. However even with reduced uncertainty and more flexible governance the perceptions of disruption to consumers mean that transformative heat policy may remain unpopular for policy makers potentially putting greenhouse mitigation targets at risk of being missed.
Releases of Unignited Liquid Hydrogen
Jan 2014
Publication
If the hydrogen economy is to progress more hydrogen fuelling stations are required. In the short term in the absence of a hydrogen distribution network these fuelling stations will have to be supplied by liquid hydrogen road tanker. Such a development will increase the number of tanker offloading operations significantly and these may need to be performed in close proximity to the general public.<br/>The aim of this work is to identify and address hazards relating to the storage and transport of bulk liquid hydrogen (LH2) that are associated with hydrogen refuelling stations located in urban environments. Experimental results will inform the wider hydrogen community and contribute to the development of more robust modelling tools. The results will also help to update and develop guidance for codes and standards.<br/>The first phase of the project was to develop an experimental and modelling strategy for the issues associated with liquid hydrogen spills; this was documented in HSL report XS/10/06[1].<br/>The second phase of the project was to produce a position paper on the hazards of liquid hydrogen which was published in 2009 XS/09/72[2]. This was also published as a HSE research report RR769 in 2010[3].<br/>This report details experiments performed to investigate spills of liquid hydrogen at a rate of 60 litres per minute. Measurements were made on unignited releases which included concentration of hydrogen in air thermal gradient in the concrete substrate liquid pool formation and temperatures within the pool. Computational modelling of the unignited releases has been undertaken at HSL and reported in MSU/12/01 [4]. Ignited releases of hydrogen have also been performed as part of this project; the results and findings from this work are reported in XS/11/77[5].
Egypt’s Low Carbon Hydrogen Development Prospects
Nov 2021
Publication
Egypt has one of the largest economies in the Middle East and North Africa (MENA) region and several of its industries are large sources of greenhouse gas (GHG) emissions. As part of its contribution to mitigate GHG emissions within the framework of the 2015 Paris Agreement on climate change Egypt is focusing on the development of an ambitious renewable energy programme.
Some of Egypt’s main industries are big consumers of hydrogen which is produced locally using indigenous natural gas without abatement of the CO2 emissions resulting from this production process. In the long-term the production and consumption of this unabated hydrogen known as grey hydrogen could become a serious challenge for Egypt’s exports of manufactured products. Thus the Egyptian government is planning to develop low carbon hydrogen alternatives and has set up an inter-ministerial committee to prepare a national hydrogen strategy for Egypt.
This paper explores the prospects for low carbon hydrogen (blue and green hydrogen) developments in Egypt focusing on the potential replacement of Egypt’s large domestic production of grey hydrogen with cleaner low carbon hydrogen alternatives.
The research paper can be found on their website
Some of Egypt’s main industries are big consumers of hydrogen which is produced locally using indigenous natural gas without abatement of the CO2 emissions resulting from this production process. In the long-term the production and consumption of this unabated hydrogen known as grey hydrogen could become a serious challenge for Egypt’s exports of manufactured products. Thus the Egyptian government is planning to develop low carbon hydrogen alternatives and has set up an inter-ministerial committee to prepare a national hydrogen strategy for Egypt.
This paper explores the prospects for low carbon hydrogen (blue and green hydrogen) developments in Egypt focusing on the potential replacement of Egypt’s large domestic production of grey hydrogen with cleaner low carbon hydrogen alternatives.
The research paper can be found on their website
Application of Hydrides in Hydrogen Storage and Compression: Achievements, Outlook and Perspectives
Feb 2019
Publication
José Bellosta von Colbe,
Jose-Ramón Ares,
Jussara Barale,
Marcello Baricco,
Craig Buckley,
Giovanni Capurso,
Noris Gallandat,
David M. Grant,
Matylda N. Guzik,
Isaac Jacob,
Emil H. Jensen,
Julian Jepsen,
Thomas Klassen,
Mykhaylo V. Lototskyy,
Kandavel Manickam,
Amelia Montone,
Julian Puszkiel,
Martin Dornheim,
Sabrina Sartori,
Drew Sheppard,
Alastair D. Stuart,
Gavin Walker,
Colin Webb,
Heena Yang,
Volodymyr A. Yartys,
Andreas Züttel and
Torben R. Jensen
Metal hydrides are known as a potential efficient low-risk option for high-density hydrogen storage since the late 1970s. In this paper the present status and the future perspectives of the use of metal hydrides for hydrogen storage are discussed. Since the early 1990s interstitial metal hydrides are known as base materials for Ni – metal hydride rechargeable batteries. For hydrogen storage metal hydride systems have been developed in the 2010s [1] for use in emergency or backup power units i. e. for stationary applications.<br/>With the development and completion of the first submarines of the U212 A series by HDW (now Thyssen Krupp Marine Systems) in 2003 and its export class U214 in 2004 the use of metal hydrides for hydrogen storage in mobile applications has been established with new application fields coming into focus.<br/>In the last decades a huge number of new intermetallic and partially covalent hydrogen absorbing compounds has been identified and partly more partly less extensively characterized.<br/>In addition based on the thermodynamic properties of metal hydrides this class of materials gives the opportunity to develop a new hydrogen compression technology. They allow the direct conversion from thermal energy into the compression of hydrogen gas without the need of any moving parts. Such compressors have been developed and are nowadays commercially available for pressures up to 200 bar. Metal hydride based compressors for higher pressures are under development. Moreover storage systems consisting of the combination of metal hydrides and high-pressure vessels have been proposed as a realistic solution for on-board hydrogen storage on fuel cell vehicles.<br/>In the frame of the “Hydrogen Storage Systems for Mobile and Stationary Applications” Group in the International Energy Agency (IEA) Hydrogen Task 32 “Hydrogen-based energy storage” different compounds have been and will be scaled-up in the near future and tested in the range of 500 g to several hundred kg for use in hydrogen storage applications.
Installation Permitting Guidance for Hydrogen and Fuel Cell Stationary Applications: UK Version
Jan 2009
Publication
The HYPER project a specific targeted research project (STREP) funded by the European Commission under the Sixth Framework Programme developed an Installation Permitting Guide (IPG) for hydrogen and fuel cell stationary applications. The IPG was developed in response to the growing need for guidance to foster the use and facilitate installation of these systems in Europe. This document presents a modified version of the IPG specifically intended for the UK market. For example reference is made to UK national regulations standards and practices when appropriate as opposed to European ones.<br/>The IPG applies to stationary systems fuelled by hydrogen incorporating fuel cell devices with net electrical output of up to 10 kWel and with total power outputs of the order of 50 kW (combined heat + electrical) suitable for small back up power supplies residential heating combined heat-power (CHP) and small storage systems. Many of the guidelines appropriate for these small systems will also apply to systems up to 100 kWel which will serve small communities or groups of households. The document is not a standard but is a compendium of useful information for a variety of users with a role in installing these systems including design engineers manufacturers architects installers operators/maintenance workers and regulators.<br/>This report and the work it describes were funded by the Health and Safety Executive (HSE). Its contents including any opinions and/or conclusions expressed are those of the authors alone and do not necessarily reflect HSE policy.
No more items...