United Kingdom
OIES Podcast - The EU Hydrogen and Gas Decarbonisation Package
Mar 2023
Publication
David Ledesma discusses with Alex Barnes the European Commission’s decision to make hydrogen a key part of its decarbonisation strategy. The 2022 REPowerEU Strategy set a target of 20MT consumption of renewable hydrogen by 2030. The Commission is keen to promote a single European market in hydrogen similar to the current one for natural gas. To this end it has published proposals on the regulation of future European hydrogen infrastructure (pipelines storage facilities and import terminals). The EU Council (representing Member States) and the EU Parliament are finalising their amendments to the Commission proposals prior to ‘trilogue’ negotiations and final agreement later this year. The OIES’s paper ‘The EU Hydrogen and Gas Decarbonisation Package: help or hindrance for the development of a European hydrogen market?’ published in March 2023 examines the EU Commission proposals and their suitability for a developing hydrogen market.
The podcast can be found on their website.
The podcast can be found on their website.
Assessing the Performance of Fuel Cell Electric Vehicles Using Synthetic Hydrogen Fuel
Mar 2024
Publication
The deployment of hydrogen fuel cell electric vehicles (FCEVs) is critical to achieve zero emissions. A key parameter influencing FCEV performance and durability is hydrogen fuel quality. The real impact of contaminants on FCEV performance is not well understood and requires reliable measurements from real-life events (e.g. hydrogen fuel in poor-performing FCEVs) and controlled studies on the impact of synthetic hydrogen fuel on FCEV performance. This paper presents a novel methodology to flow traceable hydrogen synthetic fuel directly into the FCEV tank. Four different synthetic fuels containing N2 (90–200 µmol/mol) CO (0.14–5 µmol/mol) and H2S (4–11 nmol/mol) were supplied to an FCEV and subsequently sampled and analyzed. The synthetic fuels containing known contaminants powered the FCEV and provided real-life performance testing of the fuel cell system. The results showed for the first time that synthetic hydrogen fuel can be used in FCEVs without the requirement of a large infrastructure. In addition this study carried out a traceable H2 contamination impact study with an FCEV. The impact of CO and H2S at ISO 14687:2019 threshold levels on FCEV performance showed that small exceedances of the threshold levels had a significant impact even for short exposures. The methodology proposed can be deployed to evaluate the composition of any hydrogen fuel.
Future Pathways for Energy Networks: A Review of International Experiences in High Income Countries
Oct 2022
Publication
Energy networks are the systems of pipes and wires by which different energy vectors are transported from where they are produced to where they are needed. As such these networks are central to facilitating countries’ moves away from a reliance on fossil fuels to a system based around the efficient use of renewable and other low carbon forms of energy. In this review we highlight the challenges facing energy networks from this transition in a sample of key high income countries. We identify the technical and other innovations being implemented to meet these challenges and describe some of the new policy and regulatory developments that are incentivising the required changes. We then review evidence from the literature about the benefits of moving to a more integrated approach based on the concept of a Multi-Vector Energy Network (MVEN). Under this approach the different networks are planned and operated together to achieve greater functionality and performance than simply the sum of the individual networks. We find that most studies identify a range of benefits from an MVEN approach but that these findings are based on model simulations. Further work is therefore needed to verify whether the benefits can be realised in practice and to identify how any risks can be mitigated.
Hydrogenerally - Episode 8: Hydrogen for Combustion
Jan 2023
Publication
In this episode Steffan Eldred Hydrogen Knowledge Transfer Manager and Debra Jones Chemistry Knowledge Transfer Manager from Innovate UK KTN talk about hydrogen combustion with special guest Duncan Engeham European Research and Development Director at Cummins Inc.
The podcast can be found on their website.
The podcast can be found on their website.
Assessing the Sustainability of Liquid Hydrogen for Future Hypersonic Aerospace Flight
Dec 2022
Publication
This study explored the applications of liquid hydrogen (LH2 ) in aerospace projects followed by an investigation into the efficiency of ramjets scramjets and turbojets for hypersonic flight and the impact of grey blue and green hydrogen as an alternative to JP-7 and JP-8 (kerosene fuel). The advantage of LH2 as a propellant in the space sector has emerged from the relatively high energy density of hydrogen per unit volume enabling it to store more energy compared to conventional fuels. Hydrogen also has the potential to decarbonise space flight as combustion of LH2 fuel produces zero carbon emissions. However hydrogen is commonly found in hydrocarbons and water and thus it needs to be extracted from these molecular compounds before use. Only by considering the entire lifecycle of LH2 including the production phase can its sustainability be understood. The results of this study compared the predicted Life Cycle Assessment (LCA) emissions of the production of LH2 using grey blue and green hydrogen for 2030 with conventional fuel (JP-7 and JP-8) and revealed that the total carbon emissions over the lifecycle of LH2 were greater than kerosene-derived fuels.
A Techno-economic Analysis of Ammonia-fuelled Powertrain Systems for Rail Freight
Apr 2023
Publication
All diesel-only trains in the UK will be removed from services by 2040. High volumetric density rapid refuelling ability and sophisticated experience in infrastructure and logistics make ammonia a perfect hydrogen carrying fuel for rail freight which urgently requires an economically viable solution. This study conducted a novel techno-economic study of ammonia-fuelled fuel cell powertrains to be compared with current diesel engine-based system and emerging direct hydrogen-fuelled fuel cell system. The results demonstrate that hydrogen-fuelled Proton Exchange Membrane Fuel Cells (PEMFCs) and ammonia-fuelled PEMFCs (using an ammonia cracker) are more cost-effective in terms of Levelized Cost of Electricity. The ammonia fuel storage requires 61.5-75 % less space compared to the hydrogen storage. Although the ammonia-fuelled Solid Oxide Fuel Cells (SOFCs) powertrain has the highest electricity generation efficiency (56%) the overall cost requires a major reduction by 70% before it could be considered as an economically viable solution.
The Impact of the Energy Crisis on the UK's Net Zero Transition
Mar 2023
Publication
Recent drastic increases in natural gas prices have brought into sharp focus the inherent tensions between net zero transitions energy security and affordability. We investigate the impact of different fuel prices on the energy system transition explicitly accounting for the increasingly coupled power and heating sectors and also incorporate the emerging hydrogen sector. The aim is to identify low-regret decisions and optimal energy system transitions for different fuel prices. We observe that the evolution of the heating sector is highly sensitive to the gas price whereas the composition of the power sector is not qualitatively impacted by gas prices. We also observe that bioenergy plays an important role in the energy system transition and the balance between gas price and biomass prices determines the optimal technology portfolios. The future evolution of the prices of these two resources is highly uncertain and future energy systems must be resilient to these uncertainties.
CCS Industrial Clusters: Building a Social License to Operate
Jun 2022
Publication
This paper explores the opportunities for and progress in establishing a social licence to operate (SLO) for CCS in industrial clusters in the UK focusing on the perspectives of key stakeholders. The evolution of narratives and networks relating to geographical clusters as niches for CCS in industrial decarbonisation is evaluated in relation to seven pillars supporting SLO. Evidence is drawn from a combination of cluster mapping documentary analysis and stakeholder interviews to identify the wider contexts underpinning industrial decarbonisation stakeholder networks interaction and communication critical narratives the conditions for establishing trust and confidence different scales of social licence and maintaining a SLO. The delivery of a sustainable industrial decarbonisation strategy will depend on multiple layers of social licence involving discourses at different scales and potentially for different systems (heat transport different industrial processes). Despite setbacks as a result of funding cancellations and changes to government policy the UK is positioned to be at the forefront of CCS deployment. While there is a high ambition and a strong narrative from government of the urgency to accelerate projects involving CCS clear coordinated strategy and funding frameworks are necessary to build confidence that UK policy is both compatible with net zero and economically viable.
The EU Hydrogen and Gas Decarbonisation Package: Help or Hindrance for the Development of a European Hydrogen Market?
Mar 2023
Publication
The European Commission has identified hydrogen as a key part of its decarbonisation strategy. The 2022 REPowerEU Strategy set a target of 20MT consumption of renewable hydrogen by 2030. The Commission is keen to promote a single European market in hydrogen similar to the current one for natural gas. To this end it has published proposals on the regulation of future European hydrogen infrastructure (pipelines storage facilities and import terminals). The European Council (representing Member States) and the European Parliament are finalising their amendments to the Commission proposals prior to ’trilogue’ negotiations and final agreement later this year. The paper ‘The EU Hydrogen and Gas Decarbonisation Package: help or hindrance for the development of a European hydrogen market?’ examines the European Commission proposals and their suitability for a developing hydrogen market.
An Inter-laboratory Comparison between 13 International Laboratories for Eight Components Relevant for Hydrogen Fuel Quality Assessment
Mar 2024
Publication
The quality of the hydrogen delivered by refuelling stations is critical for end-users and society. The purity of the hydrogen dispensed at hydrogen refuelling points should comply with the technical specifications included in the ISO 14687:2019 and EN 17124:2022 standards. Once laboratories have set up methods they need to verify their performances for example through participation in interlaboratory comparisons. Due to the challenge associated with the production of stable reference materials and transport of these which are produced in hydrogen at high pressure (>10 bar) interlaboratory comparisons have been organized in different steps with increasing extent. This study describes an inter-laboratory comparison exercise for hydrogen fuel involving a large number of participants (13 laboratories) completed in less than a year and included eight key contaminants of hydrogen fuel at level close to the ISO14687 threshold. These compounds were selected based on their high probability of occurrence or because they have been found in hydrogen fuel samples. For the results of the intercomparison it appeared that fully complying with ISO 21087:2019 is still challenging for many participants and highlighted the importance of organising these types of exercises. Many laboratories performed corrective actions based on their results which in turn significantly improved their performances.
A Multi-period Sustainable Hydrogen Supply Chain Model Considering Pipeline Routing and Carbon Emissions: The Case Study of Oman
Nov 2022
Publication
This paper presents a mathematical model for a multi-period hydrogen supply chain design problem considering several design features not addressed in other studies. The model is formulated as a mixed-integer program allowing the production and storage facilities to be extended over time. Pipeline and tube trailer transport modes are considered for carrying hydrogen. The model also allows finding the optimal pipeline routes and the number of transport units. The objective is to obtain an efficient supply chain design within a given time frame in a way that the demand and carbon dioxide emissions constraints are satisfied and the total cost is minimized. A computer program is developed to ease the problem-solving process. The computer program extracts the geographical information from Google Maps and solves the problem using an optimization solver. Finally the applicability of the proposed model is demonstrated in a case study from Oman.
Heating Economics Evaluated Against Emissions: An Analysis of Low-carbon Heating Systems with Spatiotemporal and Dwelling Variations
Oct 2022
Publication
An understanding of heating technologies from the consumers’ perspective is critical to ensure low-carbon technologies are adopted for reducing their current associated emissions. Existing studies from the consumers’ perspective do not compare and optimise the full range and combinations of potential heating systems. There is also little consideration of how spatiotemporal and dwelling variations combined alter the economic and environmental effectiveness of technologies. The novelty of this paper is the creation and use of a new comprehensive framework to capture the range of heating technologies and their viability for any specific dwelling’s traits and climate from customers’ perspective which is missing from current studies. The model optimises combinations of prime heaters energy sources ancillary solar technologies and sizes thermal energy storage sizes and tariffs with hourly heating simulation across a year and compares their operation capital and lifetime costs alongside emissions to realise the true preferential heating systems for customers which could be used by various stakeholders. Using the UK as a case study the results show electrified heating is generally the optimum lifetime cost solution mainly from air source heat pumps coupled with photovoltaics. However direct electrical heating becomes more economically viable as dwelling demands reduce from smaller dwellings or warmer climates as shorter durations of the ownership are considered or with capital cost constraints from lower income households. Understanding this is of high importance as without correctly targeted incentives a larger uptake of direct electrical heating may occur which will burden the electrical network and generation to a greater extent than more efficient heat pumps.
Hydrogen Trapping and Embrittlement in Metals - A Review
Apr 2024
Publication
Hydrogen embrittlement in metals (HE) is a serious challenge for the use of high strength materials in engineering practice and a major barrier to the use of hydrogen for global decarbonization. Here we describe the factors and variables that determine HE susceptibility and provide an overview of the latest understanding of HE mechanisms. We discuss hydrogen uptake and how it can be managed. We summarize hydrogen trapping and the techniques used for its characterization. We also review literature that argues that hydrogen trapping can be used to decrease HE susceptibility. We discuss the future research that is required to advance the understanding of HE and hydrogen trapping and to develop HE-resistant alloys.
Future Energy Scenarios 2022
Jul 2022
Publication
Future Energy Scenarios (FES) represent a range of different credible ways to decarbonise our energy system as we strive towards the 2050 target.<br/>We’re less than 30 years away from the Net Zero deadline which isn’t long when you consider investment cycles for gas networks electricity transmission lines and domestic heating systems.<br/>FES has an important role to play in stimulating debate and helping to shape the energy system of the future.
The Socio-technical Dynamics of Net-zero Industrial Megaprojects: Outside-in and Inside-out Analyses of the Humber Industrial Cluster
Feb 2023
Publication
Although energy-intensive industries are often seen as ‘hard-to-decarbonise’ net-zero megaprojects for industrial clusters promise to improve the technical and economic feasibility of hydrogen fuel switching and carbon capture and storage (CCS). Mobilising insights from the megaproject literature this paper analyses the dynamics of an ambitious first-of-kind net-zero megaproject in the Humber industrial cluster in the United Kingdom which includes CCS and hydrogen infrastructure systems industrial fuel switching CO2 capture green and blue hydrogen production and hydrogen storage. To analyse the dynamics of this emerging megaproject the article uses a socio-technical system lens to focus on developments in technology actors and institutions. Synthesising multiple megaproject literature insights the paper develops a comprehensive framework that addresses both aggregate (‘outside-in’) developments and the endogenous (‘inside-out’) experiences and activities regarding three specific challenges: technical system integration actor coordination and institutional alignment. Drawing on an original dataset involving expert interviews (N = 46) site visits (N = 7) and document analysis the ‘outside-in’ analysis finds that the Humber megaproject has progressed rapidly from outline visions to specific technical designs enacted by new coalitions and driven by strengthening policy targets and financial support schemes. The complementary ‘inside-out’ analysis however also finds 12 alignment challenges that can delay or derail materialisation of the plans. While policies are essential aggregate drivers institutional misalignments presently also prevent project-actors from finalising design and investment decisions. Our analysis also finds important tensions between the project's high-pace delivery focus (to meet government targets) and allowing sufficient time for pilot projects learning-by-doing and design iterations.
Hydrogen Net Zero Investment Roadmap: Leading the Way to Net Zero
Apr 2023
Publication
This net zero investment roadmap summarises government’s hydrogen policies and available investment opportunities.
Socio-economic Aspects of Hydrogen Energy: An Integrative Review
Apr 2023
Publication
Hydrogen can be recognized as the most plausible fuel for promoting a green environment. Worldwide developed and developing countries have established their hydrogen research investment and policy frameworks. This analysis of 610 peer-reviewed journal articles from the last 50 years provides quantitative and impartial insight into the hydrogen economy. By 2030 academics and business professionals believe that hydrogen will complement other renewable energy (RE) sources in the energy revolution. This study conducts an integrative review by employing software such as Bibliometrix R-tool and VOSviewer on socio-economic consequences of hydrogen energy literature derived from the Scopus database. We observed that most research focuses on multidisciplinary concerns such as generation storage transportation application feasibility and policy development. We also present the conceptual framework derived from in-depth literature analysis as well as the interlinkage of concepts themes and aggregate dimensions to highlight research hotspots and emerging patterns. In the future factors such as green hydrogen generation hydrogen permeation and leakage management efficient storage risk assessment studies blending and techno-economic feasibility shall play a critical role in the socio-economic aspects of hydrogen energy research.
The Role of Hydrogen for Deep Decarbonization of Energy Systems: A Chilean Case Study
Mar 2023
Publication
In this paper we implement a long-term multi-sectoral energy planning model to evaluate the role of green hydrogen in the energy mix of Chile a country with a high renewable potential under stringent emission reduction objectives in 2050. Our results show that green hydrogen is a cost-effective and environmentally friendly route especially for hard-to-abate sectors such as interprovincial and freight transport. They also suggest a strong synergy of hydrogen with electricity generation from renewable sources. Our numerical simulations show that Chile should (i) start immediately to develop hydrogen production through electrolyzers all along the country (ii) keep investing in wind and solar generation capacities ensuring a low cost hydrogen production and reinforce the power transmission grid to allow nodal hydrogen production (iii) foster the use of electric mobility for cars and local buses and of hydrogen for long-haul trucks and interprovincial buses and (iv) develop seasonal hydrogen storage and hydrogen cells to be exploited for electricity supply especially for the most stringent emission reduction objectives.
Hydrogenerally - Episode 6: Waste to Hydrogen
Nov 2022
Publication
In this sixth episode Steffan Eldred Hydrogen Innovation Network Knowledge Transfer Manager and Debra Jones Chemistry Knowledge Transfer Manager from Innovate UK KTN discuss why converting waste to hydrogen is so important and explore the hydrogen transition opportunities and challenges in this sector alongside their special guest Rob Dent Senior Research Engineer - Energy Linde and Application Sales Engineer at BOC UK & Ireland.
The podcast can be found on their website.
The podcast can be found on their website.
Techno-economic Assessment of Offshore Wind-to-hydrogen Scenarios: A UK Case Study
Jan 2023
Publication
The installed capacity electricity generation from wind and the curtailment of wind power in the UK between 2011 and 2021 showed that penetration levels of wind energy and the amount of energy that is curtailed in future would continue to rise whereas the curtailed energy could be utilised to produce green hydrogen. In this study data were collected technologies were chosen systems were designed and simulation models were developed to determine technical requirements and levelised costs of hydrogen produced and transported through different pathways. The analysis of capital and operating costs of the main components used for onshore and offshore green hydrogen production using offshore wind including alternative strategies for hydrogen storage and transport and hydrogen carriers showed that a significant reduction in cost could be achieved by 2030 enabling the production of green hydrogen from offshore wind at a competitive cost compared to grey and blue hydrogen. Among all scenarios investigated in this study compressed hydrogen produced offshore is the most cost-effective scenario for projects starting in 2025 although the economic feasibility of this scenario is strongly affected by the storage period and the distance to the shore of the offshore wind farm. Alternative scenarios for hydrogen storage and transport such as liquefied hydrogen and methylcyclohexane could become more cost-effective for projects starting in 2050 when the levelised cost of hydrogen could reach values of about £2 per kilogram of hydrogen or lower.
No more items...