United Kingdom
The Role of Negative Emissions Technologies in the UK's Net-zero Strategy
Jun 2024
Publication
The role of negative emissions technologies (NETs) in climate change mitigation remains contentious. Although numerous studies indicate significant carbon dioxide removal (CDR) requirements for Paris Agreement mitigation goals to be achieved others point out challenges and risks associated with high CDR strategies. Using a multiscale modeling approach we explore NETs’ potential for a single country the United Kingdom (UK). Here we report that the UK has cost-effective potential to remove 79 MtCO2 per year by 2050 rising to 126–134 MtCO2 per year with well-integrated NETs in industrial clusters. Results highlight that biomass gasification for hydrogen generation with CCS is emerging as a key NET despite biomass availability being a limiting factor. Moreover solid DACCS systems utilizing industrial waste heat integration offer a solution to offsetting increases in demand from transportation and industrial sectors. These results emphasize the importance of a multiscale whole-systems assessment for integrating NETs into industrial strategies.
European Hydrogen Train the Trainer Framework for Responders: Outcomes of the Hyresponder Project
Sep 2023
Publication
Síle Brennan,
Didier Bouix,
Christian Brauner,
Dominic Davis,
Natalie DeBacker,
Alexander Dyck,
André Vagner Gaathaug,
César García Hernández,
Laurence Grand-Clement,
Etienne Havret,
Deborah Houssin-Agbomson,
Petr Kupka,
Laurent Lecomte,
Eric Maranne,
Vladimir V. Molkov,
Pippa Steele,
Adolfo Pinilla,
Paola Russo and
Gerhard Schoepf
HyResponder is a European Hydrogen Train the Trainer programme for responders. This paper describes the key outputs of the project and the steps taken to develop and implement a long-term sustainable train the trainer programme in hydrogen safety for responders across Europe and beyond. This FCH2 JU (now Clean Hydrogen Joint Undertaking) funded project has built on the successful outcomes of the previous HyResponse project. HyResponder has developed further and updated educational operational and virtual reality training for trainers of responders to reflect the state-of-the-art in hydrogen safety including liquid hydrogen and expand the programme across Europe and specifically within the 10 countries represented directly within the project consortium: Austria Belgium the Czech Republic France Germany Italy Norway Spain Switzerland and the United Kingdom. For the first time four levels of educational materials from fire fighter through to specialist have been developed. The digital training resources are available on the e-Platform (https://hyresponder.eu/e-platform/). The revised European Emergency Response Guide is now available to all stakeholders. The resources are intended to be used to support national training programs. They are available in 8 languages: Czech Dutch English French German Italian Norwegian and Spanish. Through the HyResponder activities trainers from across Europe have undertaken joint actions which are in turn being used to inform the delivery of regional and national training both within and beyond the project. The established pan-European network of trainers is shaping the future in the important for inherently safer deployment of hydrogen systems and infrastructure across Europe and enhancing the reach and impact of the programme.
Clean Hydrogen Roadmap: Is Greater Realism Leading to more Credible Paths Forward?
Sep 2023
Publication
"The Oxford Institute for Energy Studies started researching the role of hydrogen in the energy transition in 2020. Since then the interest in hydrogen has continued to grow globally across the energy industry. A key research question has been the extent to which clean hydrogen can be scaled up at reasonable cost and whether it can play a significant role in the global energy system. In April 2022 OIES launched a new Hydrogen Research Programme under the overarching theme of ’building business cases for a hydrogen economy’. This overarching theme was selected based on the observation that most clean hydrogen developments to date had been relatively small-scale pilot or demonstration projects typically funded by government grants or subsidies. For clean hydrogen to play a significant role there will need to be business cases developed in order to attract the many hundreds of billions of dollars of investment required most of which will need to come from the private sector albeit ultimately underpinned by government-backed decarbonisation policies. Just over a year has passed since the start of the Hydrogen Research Programme and the intention of this paper is to pull together key themes which have emerged from the research so far and which can form a useful framework for further research both by OIES and others.<br/>The six key themes in this paper listed below are intended to create a framework to at least start to address the challenges:<br/>Hydrogen is in competition with other decarbonisation alternatives.<br/>The business case for clean hydrogen relies on government policy to drive decarbonisation.<br/>It is essential to understand emissions associated with potential hydrogen investments.<br/>Hydrogen investments need to consider the full value chain and its geopolitics.<br/>Transport of hydrogen is expensive and so should be minimised.<br/>Storage of hydrogen is an essential part of the value chain and requires more focus.
Hydrogen Embrittlement Characteristics in Cold-drawn High-strength Stainless Steel Wires
Mar 2023
Publication
Hydrogen uptake and embrittlement characteristics of a cold-drawn austenitic stainless steel wire were investigated. Slow strain rate testing and fracture surface analysis were applied to determine the hydrogen embrittlement resistance providing an apparent decrease in resistance to hydrogen embrittlement for a 50% degree of cold deformation. The hydrogen content was assessed by thermal desorption and laser-induced breakdown spectroscopy establishing a correlation between the total absorbed hydrogen and the intensity of near-surface hydrogen. The sub-surface hydrogen content of the hot-rolled specimen was determined to be 791 wt.ppm.
Particle Swarm Optimisation for a Hybrid Freight Train Powered by Hydrogen or Ammonia Solid Oxide Fuel Cells
May 2024
Publication
All diesel-only trains in the UK will be phased out by 2040. Hydrogen and ammonia emerge as alternative zerocarbon fuel for greener railway. Solid Oxide Fuel Cells (SOFCs) provide an alternative prime mover option which efficiently convert zero-carbon fuels into electricity without emitting nitrogen oxides (NOx) unlike traditional engines. Superior to Proton Exchange Membrane Fuel Cells (PEMFCs) in efficiency SOFCs fulfil MW-scale power needs and can use ammonia directly. This study investigates innovative strategies for integrating SOFCs into hybrid rail powertrains using hydrogen or ammonia. Utilizing an optimization framework incorporating Particle Swarm Optimization (PSO) the study aims to minimize operational costs while considering capital and replacement expenditures powertrain performance and component sizing. The findings suggest that hybrid powertrains based on ammonia-fueled SOFCs may potentially reduce costs by 30% compared to their hydrogen counterparts albeit requiring additional space for engine compartments. Ammonia-fueled SOFCs trains also exhibit a 5% higher efficiency at End-of-Life (EoL) showing less performance degradation than those powered by hydrogen. The State of Charge (SoC) of the batteries in range of 30–70% for both cases is identified as most costeffective.
Hydrogen, A Less Disruptive Pathway for Domestic Heat? Exploratory Findings from Public Perception Research
Aug 2023
Publication
The disruption associated with heat decarbonisation has been identified as a key opportunity for hydrogen technologies in temperate countries and regions where established distribution infrastructure and familiarity with natural gas boilers predominate. A key element of such claims is the empirically untested belief that citizens will prefer to minimise disruption and perceive hydrogen to be less disruptive than the network upgrades and retrofit measures needed to support electric and other low carbon heating technologies. This article reports on exploratory deliberative research with residents of Cardiff Wales which examined public perceptions of heating disruptions. Our findings suggest that concerns over public responses to disruption may be overstated particularly as they relate to construction and road excavation for network upgrade. Disruptions arising from permanent changes to building fabric may be more problematic for heat pump retrofit however these may be greatly overshadowed by anxieties over the cost implications of moving to hydrogen fuel. Furthermore the biographical patterning of citizen preferences raises significant questions for hydrogen roll-out strategies relying on regionalised network conversion. We conclude by arguing that far from a non-disruptive alternative to electrification hydrogen risks being seen as posing substantial disruptions to precarious household finances and lifestyles.
Modelling of Hydrogen Blending into the UK Natural Gas Network Driven by a Solid Oxide Fuel Cell for Electricity and District Heating System
Aug 2023
Publication
A thorough investigation of the thermodynamics and economic performance of a cogeneration system based on solid oxide fuel cells that provides heat and power to homes has been carried out in this study. Additionally different percentages of green hydrogen have been blended with natural gas to examine the techno-economic performance of the suggested cogeneration system. The energy and exergy efficiency of the system rises steadily as the hydrogen blending percentage rises from 0% to 20% then slightly drops at 50% H2 blending and then rises steadily again until 100% H2 supply. The system’s minimal levelised cost of energy was calculated to be 4.64 £/kWh for 100% H2. Artificial Neural Network (ANN) model was also used to further train a sizable quantity of data that was received from the simulation model. Heat power and levelised cost of energy estimates using the ANN model were found to be extremely accurate with coefficients of determination of 0.99918 0.99999 and 0.99888 respectively.
Optimizing the Operational Efficiency of the Underground Hydrogen Storage Scheme in a Deep North Sea Aquifer through Compositional Simulations
Aug 2023
Publication
In this study we evaluate the technical viability of storing hydrogen in a deep UKCS aquifer formation through a series of numerical simulations utilising the compositional simulator CMG-GEM. Effects of various operational parameters such as injection and production rates number and length of storage cycles and shut-in periods on the performance of the underground hydrogen storage (UHS) process are investigated in this study. Results indicate that higher H2 operational rates degrade both the aquifer's working capacity and H2 recovery during the withdrawal phase. This can be attributed to the dominant viscous forces at higher rates which lead to H2 viscous fingering and gas gravity override of the native aquifer water resulting in an unstable displacement of water by the H2 gas. Furthermore analysis of simulation results shows that longer and less frequent storage cycles lead to higher storage capacity and decreased H2 retrieval. We conclude that UHS in the studied aquifer is technically feasible however a thorough evaluation of the operational parameters is necessary to optimise both storage capacity and H2 recovery efficiency.
Hydrogen Pipelines vs. HVDC Lines: Should We Transfer Green Molecules or Electrons?
Nov 2023
Publication
As the world races to decarbonize its energy systems the choice between transmitting green energy as electrons through high-voltage direct current (HVDC) lines or as molecules via hydrogen pipelines emerges as a critical decision. This paper considers this pivotal choice and compares the technoeconomic characteristics of these two transmission technologies. Hydrogen pipelines offer the advantage of transporting larger energy volumes but existing projects are dwarfed by the vast networks of HVDC transmission lines. Advocates for hydrogen pipelines see potential in expanding these networks capitalizing on hydrogen’s physical similarities to natural gas and the potential for cost savings. However hydrogen’s unique characteristics such as its small molecular size and compression requirements present construction challenges. On the other hand HVDC lines while less voluminous excel in efficiently transmitting green electrons over long distances. They already form an extensive global network and their efficiency makes them suitable for various applications. Yet intermittent renewable energy sources pose challenges for both hydrogen and electricity systems necessitating solutions like storage and blending. Considering these technologies as standalone competitors belies their complementary nature. In the emerging energy landscape they will be integral components of a complex system. Decisions on which technology to prioritize depend on factors such as existing infrastructure adaptability risk assessment and social acceptance. Furthermore while both HVDC lines and hydrogen pipelines are expected to proliferate other factors such as market maturity of the relevant energy vector government policies and regulatory frameworks around grid development and utilization are also expected to play a crucial role. Energy transition is a multifaceted challenge and accommodating both green molecules and electrons in our energy infrastructure may be the key to a sustainable future. This paper’s insights underline the importance of adopting a holistic perspective and recognising the unique strengths of each technology in shaping a resilient and sustainable energy ecosystem.
OIES Podcast - Hydrogen Pipelines vs. HVDC Lines
Nov 2023
Publication
In this podcast David Ledesma talks to Aliaksei Patonia and Veronika Lenivova about Hydrogen pipelines and high-voltage direct current (HVDC) transmission lines and how Hydrogen pipelines offer the advantage of transporting larger energy volumes but existing projects are dwarfed by the vast networks of HVDC transmission lines. The podcast discusses how advocates for hydrogen pipelines see potential in expanding these networks capitalizing on hydrogen’s physical similarities to natural gas and the potential for cost savings. However hydrogen’s unique characteristics such as its small molecular size and compression requirements present construction challenges. On the other hand HVDC lines while less voluminous excel in efficiently transmitting green electrons over long distances. They already form an extensive global network and their efficiency makes them suitable for various applications. Yet intermittent renewable energy sources pose challenges for both hydrogen and electricity systems necessitating solutions like storage and blending.
The podcast can be found on their website.
The podcast can be found on their website.
Design Investigation of Potential Long-Range Hydrogen Combustion Blended Wing Body Aircraft with Future Technologies
Jun 2023
Publication
Present work investigates the potential of a long-range commercial blended wing body configuration powered by hydrogen combustion engines with future airframe and propulsion technologies. Future technologies include advanced materials load alleviation techniques boundary layer ingestion and ultra-high bypass ratio engines. The hydrogen combustion configuration was compared to the configuration powered by kerosene with respect to geometric properties performance characteristics energy demand equivalent CO2 emissions and Direct Operating Costs. In addition technology sensitivity studies were performed to assess the potential influence of each technology on the configuration. A multi-fidelity sizing methodology using low- and mid-fidelity methods for rapid configuration sizing was created to assess the configuration and perform robust analyses and multi-disciplinary optimizations. To assess potential uncertainties of the fidelity of aerodynamic analysis tools high-fidelity aerodynamic analysis and optimization framework MACHAero was used for additional verification. Comparison of hydrogen and kerosene blended wing body aircraft showed a potential reduction of equivalent CO2 emission by 15% and 81% for blue and green hydrogen compared to the kerosene blended wing body and by 44% and 88% with respect to a conventional B777-300ER aircraft. Advancements in future technologies also significantly affect the geometric layout of aircraft. Boundary layer ingestion and ultra-high bypass ratio engines demonstrated the highest potential for fuel reduction although both technologies conflict with each other. However operating costs of hydrogen aircraft could establish a significant problem if pessimistic and base hydrogen price scenarios are achieved for blue and green hydrogen respectively. Finally configurational problems featured by classical blended wing body aircraft are magnified for the hydrogen case due to the significant volume requirements to store hydrogen fuel.
Numerical Simulation of Pressure Recovery Phenomenon in Liquid Ammonia Tank
Sep 2023
Publication
A phase transition develops when a pressurised ammonia vessel is vented through a relieve valve or as a result of shell cracking. Significant pressure recovery in the vessel can occur as a consequence of this phase transition following initial depressurisation and may lead to complete vessel failure. It is critical for safety engineering to predict the flash boiling behaviour and pressure dynamics during the depressurization of liquid ammonia tank. This research aims to develop and compare against available experimental data a CFD model that can predict two-phase behaviour of ammonia and resulting pressure dynamics in the storage tank during its venting to the atmosphere. The CFD model is based on the Volume-of-Fluid (VOF) method and Lee evaporation/condensation approach. The numerical simulation demonstrated that liquid ammonia which is initially at equilibrium state begins to boil throughout due to the decrease of its saturation temperature with the pressure drop during tank venting. In order to understand phenomena underlying the pressure recovery this paper analyses dynamics of superheated ammonia formation its swelling vaporisation contribution to gaseous ammonia mass and volume in ullage space and gaseous ammonia venting. Performed in the study quantitative analysis demonstrated that the flash boiling and gaseous ammonia produced by this phase change were the major reasons behind the pressure recovery. The simulation results of flash boiling delay accurately matched the analytical calculation of bubble rise time. The developed CFD model can be used as a contemporary tool for inherently safer design of ammonia tanks and their depressurisation process.
Knock Mitigation and Power Enhancement of Hydrogen Spark-Ignition Engine through Ammonia Blending
Jun 2023
Publication
Hydrogen and ammonia are primary carbon-free fuels that have massive production potential. In regard to their flame properties these two fuels largely represent the two extremes among all fuels. The extremely fast flame speed of hydrogen can lead to an easy deflagration-to-detonation transition and cause detonation-type engine knock that limits the global equivalence ratio and consequently the engine power. The very low flame speed and reactivity of ammonia can lead to a low heat release rate and cause difficulty in ignition and ammonia slip. Adding ammonia into hydrogen can effectively modulate flame speed and hence the heat release rate which in turn mitigates engine knock and retains the zero-carbon nature of the system. However a key issue that remains unclear is the blending ratio of NH3 that provides the desired heat release rate emission level and engine power. In the present work a 3D computational combustion study is conducted to search for the optimal hydrogen/ammonia mixture that is knock-free and meanwhile allows sufficient power in a typical spark-ignition engine configuration. Parametric studies with varying global equivalence ratios and hydrogen/ammonia blends are conducted. The results show that with added ammonia engine knock can be avoided even under stoichiometric operating conditions. Due to the increased global equivalence ratio and added ammonia the energy content of trapped charge as well as work output per cycle is increased. About 90% of the work output of a pure gasoline engine under the same conditions can be reached by hydrogen/ammonia blends. The work shows great potential of blended fuel or hydrogen/ammonia dual fuel in high-speed SI engines.
System-Level Offshore Wind Energy and Hydrogen Generation Availability and Operations and Maintenance Costs
May 2024
Publication
With the current trends of wind energy already playing a major part in the Scottish energy supply the capacity of wind farms is predicted to grow exponentially and reach further depths offshore. However a key challenge that presents itself is the integration of large producing assets into the current UK grid. One potential solution to this is green hydrogen production which is being heavily researched in industry with many concepts being investigated for large-scale purposes. However the operations and maintenance (O&M) costs and availability of green hydrogen systems need to be quantified to ensure economical and technical viability which is sparse in the available literature. The study presented in this paper investigated the availability and O&M costs of coupled wind–hydrogen systems by attempting to quantify the failure rates repair times repair costs and number of technicians required for key green hydrogen components. This study also utilised an O&M model created by the University of Strathclyde which uses Monte Carlo Markov chain simulations to produce the O&M outputs. A number of assumptions were made throughout the study in relation to the O&M model inputs and the baseline availability for the coupled wind–hydrogen system was 85.24%. Whilst the wind turbine still contributed a major part to the downtime seen in the simulations the combined hydrogen system also contributed a significant amount a total of 37% which could have been due to the technology readiness levels of some the components included in the hydrogen system.
The Role of Hydrogen in a Decarbonised Future Transport Sector: A Case Study of Mexico
Sep 2023
Publication
In recent years several approaches and pathways have been discussed to decarbonise the transport sector; however any effort to reduce emissions might be complex due to specific socio-economic and technical characteristics of different regions. In Mexico the transport sector is the highest energy consumer representing 38.9% of the national final energy demand with gasoline and diesel representing 90% of the sector´s total fuel consumption. Energy systems models are powerful tools to obtain insights into decarbonisation pathways to understand costs emissions and rate of deployment that could serve for energy policy development. This paper focuses on the modelling of the current Mexican transport system using the MUSE-MX multi-regional model with the aim to project a decarbonisation pathway through two different scenarios. The first approach being business as usual (BAU) which aims to analyse current policies implementation and the second being a goal of net zero carbon emissions by 2050. Under the considered net zero scenario results show potential deployment of hydrogen-based transport technologies especially for subsectors such as lorries (100% H2 by 2050) and freight train (25% H2 by 2050) while cars and buses tend to full electrification by 2050.
Synergistic Integration of Hydrogen Energy Economy with UK’s Sustainable Development Goals: A Holistic Approach to Enhancing Safety and Risk Mitigation
Oct 2023
Publication
Hydrogen is gaining prominence as a sustainable energy source in the UK aligning with the country’s commitment to advancing sustainable development across diverse sectors. However a rigorous examination of the interplay between the hydrogen economy and the Sustainable Development Goals (SDGs) is imperative. This study addresses this imperative by comprehensively assessing the risks associated with hydrogen production storage transportation and utilization. The overarching aim is to establish a robust framework that ensures the secure deployment and operation of hydrogen-based technologies within the UK’s sustainable development trajectory. Considering the unique characteristics of the UK’s energy landscape infrastructure and policy framework this paper presents practical and viable recommendations to facilitate the safe and effective integration of hydrogen energy into the UK’s SDGs. To facilitate sophisticated decision making it proposes using an advanced Decision-Making Trial and Evaluation Laboratory (DEMATEL) tool incorporating regret theory and a 2-tuple spherical linguistic environment. This tool enables a nuanced decision-making process yielding actionable insights. The analysis reveals that Incident Reporting and Learning Robust Regulatory Framework Safety Standards and Codes are pivotal safety factors. At the same time Clean Energy Access Climate Action and Industry Innovation and Infrastructure are identified as the most influential SDGs. This information provides valuable guidance for policymakers industry stakeholders and regulators. It empowers them to make well-informed strategic decisions and prioritize actions that bolster safety and sustainable development as the UK transitions towards a hydrogen-based energy system. Moreover the findings underscore the varying degrees of prominence among different SDGs. Notably SDG 13 (Climate Action) exhibits relatively lower overall distinction at 0.0066 and a Relation value of 0.0512 albeit with a substantial impact. In contrast SDG 7 (Clean Energy Access) and SDG 9 (Industry Innovation and Infrastructure) demonstrate moderate prominence levels (0.0559 and 0.0498 respectively) each with its unique influence emphasizing their critical roles in the UK’s pursuit of a sustainable hydrogen-based energy future.
Building Efficiency- Reducing Energy Demand in the Commercial Sector
Dec 2013
Publication
The report was formally launched on 2nd December in Parliament at a panel debate chaired by Lord Whitty and Oliver Colvile and featured representatives from Government and Industry. The report outlines the case for investment by businesses in the energy efficiency of their buildings and operations and highlights how this could help neutralise the threat to profitability posed by increasing energy bills energy price volatility and an increasing reliance on electricity in the commercial sector. The report highlights that business in the UK have the opportunity to not only reduce energy bills but increase their competitiveness and improve worker productivity through better designed buildings.
Future Heat Series Part 1 - Pathways for Heat
Nov 2014
Publication
Together the pathways examined in the report paint a picture of the nationwide transformation getting underway in how we heat our homes and buildings. The report identifies that by 2050 gas used to heat buildings could fall by 75-95% electricity increase from a 10% share today to 30-80% and district heat increase from less than 2% to up to a 40% share. At the same time energy efficiency could help to lower bills and offset the expected growth in our heating needs from an expanding population and building stock. Across most pathways examined in the report mass deployment of low carbon heat solutions ramps up in the lead-in to 2030. Carbon Connect’s overarching recommendation is that the next decade should be spent preparing by developing a robust strategy for decarbonising heat in buildings whilst testing and scaling up delivery models. The report calls for the next Government to prioritise these preparations in the same way that preparing for power sector decarbonisation has been the overriding focus of energy policy in the past decade. The Future Heat Series brings together politicians policy and academic experts and industry leaders. Together this coalition of key figures is taking stock of evidence progressing the policy debate in an open and constructive forum and building consensus for prioritising and transforming heat. Pathways for Heat is the first part of the Future Heat Series and presents six recommendations and over twenty findings.
A Review of Factors Affecting SCC Initiation and Propagation in Pipeline Carbon Steels
Aug 2022
Publication
Pipelines have been installed and operated around the globe to transport oil and gas for decades. They are considered to be an effective economic and safe means of transportation. The major concern in their operation is corrosion. Among the different forms of corrosion stress corrosion cracking (SCC) which is caused by stresses induced by internal fluid flow or other external forces during the pipeline’s operation in combined action with the presence of a corrosive medium can lead to pipeline failure. In this paper an extensive review of different factors affecting SCC of pipeline steels in various environmental conditions is carried out to understand their impact. Several factors such as temperature presence of oxidizers (O2 CO2 H2S etc.) composition and concentration of medium pH applied stress and microstructure of the metal/alloy have been established to affect the SCC of pipeline steels. SCC susceptibility of a steel at a particular temperature strongly depends on the type and composition of the corrosive medium and microstructure. It was observed that pipeline steels with water quenched and quenched and tempered heat treatments such as those that consist of acicular ferrite or bainitic ferrite grains are more susceptible to SCC irrespective of solution type and composition. Applied stress stress concentration and fluctuating stress facilitates SCC initiation and propagation. In general the mechanisms for crack initiation and propagation in near-neutral solutions are anodic dissolution and hydrogen embrittlement.
Techno-economic Assessment of a Hybrid Off-grid DC System for Combined Heat and Power Generation in Remote Islands
Mar 2019
Publication
Hybrid renewable energy systems that combine heat and electricity generation is an achievable option for remote areas where grid is uneconomical to extend. In this study a renewable-based system was designed to satisfy the electrical and thermal demands of a remote household in an off-grid Greek island. A hybrid DC system consisted of a combination of photovoltaic modules wind turbine electrolyzer-hydrogen tank fuel cell and batteries were analysed using HOMER Pro software. Based on the optimal obtained system it is found that such a system can satisfy both electrical and thermal load demand throughout the year in a reliable manner.
No more items...