United Kingdom
Reducing Emissions in Scotland – 2018 Progress Report
Sep 2019
Publication
This is the Committee’s seventh report on Scotland’s progress towards meetings emissions targets as requested by Scottish Ministers under the Climate Change (Scotland) Act 2009.
Overall Scotland continues to outperform the rest of the UK in reducing its greenhouse gas emissions but successful strategies for energy and waste mask a lack of progress in other parts of the Scottish economy.
The report shows that Scotland’s total emissions fell by 10% in 2016 compared to 2015. The lion’s share of this latest drop in emissions came from electricity generation.
The key findings are:
Overall Scotland continues to outperform the rest of the UK in reducing its greenhouse gas emissions but successful strategies for energy and waste mask a lack of progress in other parts of the Scottish economy.
The report shows that Scotland’s total emissions fell by 10% in 2016 compared to 2015. The lion’s share of this latest drop in emissions came from electricity generation.
The key findings are:
- Overall Scotland met its annual emissions targets in 2016.
- Scotland’s progress in reducing emissions from the power sector masks a lack of action in other areas particularly transport agriculture forestry and land use.
- Low-carbon heat transport agriculture and forestry sector policies need to improve in order to hit 2032 emissions targets.
- The Scottish Government’s Climate Change Plan – published in February 2018 – now has sensible expectations across each sector to reduce emissions.
Experimental Releases of Liquid Hydrogen
Sep 2011
Publication
If the hydrogen economy is to progress more hydrogen refuelling stations are required. In the short term in the absence of a hydrogen distribution network the most likely means of supplying the refuelling stations will be by liquid hydrogen road tanker. This development will clearly increase the number of tanker offloading operations significantly and these may need to be performed in more challenging environments with close proximity to the general public. The work described in this paper was commissioned in order to determine the hazards associated with liquid hydrogen spills onto the ground at rates typical for a tanker hose failure during offloading.
Experiments have been performed to investigate spills of liquid hydrogen at a rate of 60 litres per minute. Measurements were made on both unignited and ignited releases.
These include:
Experiments have been performed to investigate spills of liquid hydrogen at a rate of 60 litres per minute. Measurements were made on both unignited and ignited releases.
These include:
- Concentration of hydrogen in air thermal gradient in the concrete substrate liquid pool formation and temperatures within the pool
- Flame velocity within the cloud thermal radiation IR and visible spectrum video records.
- Sound pressure measurements
- An estimation of the extent of the flammable cloud was made from visual observation video IR camera footage and use of a variable position ignition source.
Modelling of Lean Uniform and Non-Uniform Hydrogen-Air Mixture Explosions in a Closed Vessel
Sep 2009
Publication
Simulation of hydrogen-air mixture explosions in a closed large-scale vessel with uniform and nonuniform mixture compositions was performed by the group of partners within the EC funded project “Hydrogen Safety as an Energy Carrier” (HySafe). Several experiments were conducted previously by Whitehouse et al. in a 10.7 m3 vertically oriented (5.7-m high) cylindrical facility with different hydrogen-air mixture compositions. Two particular experiments were selected for simulation and comparison as a Standard Benchmark Exercise (SBEP) problem: combustion of uniform 12.8% (vol.) hydrogen-air mixture and combustion of non-uniform hydrogen-air mixture with average 12.6% (vol.) hydrogen concentration across the vessel (vertical stratification 27% vol. hydrogen at the top of the vessel 2.5% vol. hydrogen at the bottom of the vessel); both mixtures were ignited at the top of the vessel. The paper presents modelling approaches used by the partners comparison of simulation results against the experiment data and conclusions regarding the non-uniform mixture combustion modelling in real-life applications.
Heat Networks 2020
Dec 2020
Publication
This publication by the Department for Business Energy and Industrial Strategy (BEIS) brings together heat networks investment opportunities in England and Wales. The opportunities present a wide range of projects supported through the development stages by the Heat Networks Delivery Unit (HNDU) and projects seeking capital support from the Heat Networks Investment Project (HNIP).
The publication includes a list of one-page summaries for each of the heat network projects supported by BEIS which set out details of HNDU and HNIP projects where projects have provided enough detail in time for publication.
For HNIP this represents projects which have submitted at least a pre-application to the Delivery Partner Triple Point Heat Networks Investment Management since the scheme opened in February 2019. As a number of the projects are at different stages of development some of the costs aren’t currently available or will be subject to project consent and change as they progress through the project lifecycle.
Related Document: Heat Network Detailed Project Development Resource: Guidance on Strategic and Commercial Case
The publication includes a list of one-page summaries for each of the heat network projects supported by BEIS which set out details of HNDU and HNIP projects where projects have provided enough detail in time for publication.
For HNIP this represents projects which have submitted at least a pre-application to the Delivery Partner Triple Point Heat Networks Investment Management since the scheme opened in February 2019. As a number of the projects are at different stages of development some of the costs aren’t currently available or will be subject to project consent and change as they progress through the project lifecycle.
Related Document: Heat Network Detailed Project Development Resource: Guidance on Strategic and Commercial Case
Predicting the Probability of Failure of Gas Pipelines Including Inspection and Repair Procedures
Sep 2007
Publication
This paper is concerned with predicting the impact on the probability of failure of adding hydrogen to the natural gas distribution network. Hydrogen has been demonstrated to change the behaviour of crack like defects which may affect the safety of pipeline or make it more expensive to operate. A tool has been developed based on a stochastic approach to assess the failure probability of the gas pipeline due to the existence of crack-lie defects including the operational aspects of the pipeline such as inspection and repair procedures. With various parameters such as crack sizes material properties internal pressure modelled as uncertainties a reliability analysis based on failure assessment diagram is performed through direct Monte Carlo simulation. Inspection and repair procedures are included in the simulation to enable realistic pipeline maintenance scenarios to be simulated. In the data preparation process the accuracy of the probabilistic definition of the uncertainties is crucial as the results are very sensitive to certain variables such as the crack depth length and crack growth rate. The failure probabilities of each defect and the whole pipeline system can be obtained during simulation. Different inspection and repair criteria are available in the Monte Carlo simulation whereby an optimal maintenance strategy can be obtained by comparing different combinations of inspection and repair procedures. The simulation provides not only data on the probability of failure but also the predicted number of repairs required over the pipeline life thus providing data suitable for economic models of the pipeline management. This tool can be also used to satisfy certain target reliability requirement. An example is presented comparing a natural gas pipeline with a pipeline containing hydrogen.
Hydrogen Impact on Gas Engine CHP - Cadent Ltd
Feb 2019
Publication
The key project objectives include:
The output from this project will also inform the HyDeploy NIC project in relation to potential hydrogen content limits. The project will be presented at the IGEM Gas Quality Working Group (IGEM GQWG).
This report and any attachment is freely available on the ENA Smarter Networks Portal here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
- Understand the range size type mode of operation and control system of installed gas engines in the UK. This will include equipment for CHP and for stand-by power operation.
- Produce data sets on the impact of hydrogen on gas engine operational performance.
- Develop knowledge on the impact of hydrogen content on the operation of the gas engine including overall efficiency changes to emissions profiles overall system operability.
- Providing outline guidance on a potential hydrogen limit that should be considered regarding use of natural gas/hydrogen mixed fuels in gas engines.
- Outlining a high-level view on the reliability and impact on maintenance and replacement regimes if gas engines operate on natural gas/hydrogen mixed fuels for extended time periods.
- Highlight any existing barriers to use of natural gas and hydrogen blends in gas engine and through contact with OEMs develop an understanding of future technology developments that may be needed to enable the use of “high” hydrogen blends.
The output from this project will also inform the HyDeploy NIC project in relation to potential hydrogen content limits. The project will be presented at the IGEM Gas Quality Working Group (IGEM GQWG).
This report and any attachment is freely available on the ENA Smarter Networks Portal here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
World Energy Issues Monitor 2019 Managing the Grand Energy Transition
Oct 2019
Publication
This is the tenth consecutive year of the World Energy Council’s (the Council) annual survey of key challenges and opportunities facing energy leaders in managing and shaping Energy Transitions. This year’s Issues Monitor report provides seven global maps six regional maps and fifty national maps.
These maps have been developed by analysing the responses of nearly 2300 energy leaders drawn from across the Council’s diverse and truly global energy community.
The Council’s Issues Monitor identifies the strategic energy landscape of specific countries and regions in the world through an analysis of 42 energy issues and 4 digitalisation-specific issues affecting the energy system. It provides a unique reality check and horizon scanning of persistent and emerging concerns involved in whole energy systems transition. This year’s report welcomes a significant increase in both the participation of global leaders (up over 75% from 1300 to nearly 2300) as well as the participation of 86 countries.
Each Issue Map provides a visual snapshot of the uncertainties and action priorities that energy policymakers CEOs and leading experts strive to address to shape and manage successful Energy
Transitions. Maps can be used in the following ways:
These maps have been developed by analysing the responses of nearly 2300 energy leaders drawn from across the Council’s diverse and truly global energy community.
The Council’s Issues Monitor identifies the strategic energy landscape of specific countries and regions in the world through an analysis of 42 energy issues and 4 digitalisation-specific issues affecting the energy system. It provides a unique reality check and horizon scanning of persistent and emerging concerns involved in whole energy systems transition. This year’s report welcomes a significant increase in both the participation of global leaders (up over 75% from 1300 to nearly 2300) as well as the participation of 86 countries.
Each Issue Map provides a visual snapshot of the uncertainties and action priorities that energy policymakers CEOs and leading experts strive to address to shape and manage successful Energy
Transitions. Maps can be used in the following ways:
- To promote a shared understanding of successful Energy Transitions
- To appreciate and contrast regional variations to better understand differing priorities and areas of concern
- To follow the evolution of specific technology trends related to the energy sector
Initial Assessment of the Impact of Jet Flame Hazard from Hydrogen Cars in Road Tunnels and the Implication on Hydrogen Car Design
Sep 2007
Publication
Underground or partial underground tunnels form a very important part of modern road transportation systems. As the development of hydrogen cars advancing into the markets it is unavoidable in the near future that hydrogen cars would become the users of ordinary road tunnels. This paper discusses potential fire scenarios and fire hazards of hydrogen cars in road tunnels and implications on the fire safety measures and ventilation systems in existing tunnels. The information needed for carry out risk assessment of hydrogen cars in road tunnels are discussed. hydrogen has a low ignition energy and wide flammable range suggesting that leaks have a high probability of ignition and result hydrogen flame. CFD simulations of hydrogen fires in a full scale 5m by 5m square cross-section tunnel were carried out. The effect of the ventilation on controlling the back-layering and the downstream flame are discussed.
Allowable Hydrogen Permeation Rate From Road Vehicle Compressed Gaseous Storage Systems In Garages- Part 1- Introduction, Scenarios, and Estimation of an Allowable Permeation Rate
Sep 2009
Publication
The paper presents an overview of the main results of the EC NOE HySafe activity to estimate an allowable hydrogen permeation rate for automotive legal requirements and standards. The work was undertaken as part of the HySafe internal project InsHyde.<br/>A slow long term hydrogen release such as that due to permeation from a vehicle into an inadequately ventilated enclosed structure is a potential risk associated with the use of hydrogen in automotive applications. Due to its small molecular size hydrogen permeates through the containment materials found in compressed gaseous hydrogen storage systems and is an issue that requires consideration for containers with non-metallic (polymer) liners. Permeation from compressed gaseous hydrogen storage systems is a current hydrogen safety topic relevant to regulatory and standardisation activities at both global and regional levels.<br/>Various rates have been proposed in different draft legal requirements and standards based on different scenarios and the assumption that hydrogen dispenses homogeneously. This paper focuses on the development of a methodology by HySafe Partners (CEA NCSRD. University of Ulster and Volvo Technology) to estimate an allowable upper limit for hydrogen permeation in automotive applications by investigating the behaviour of hydrogen when released at small rates with a focus on European scenario. The background to the activity is explained. reasonable scenarios are identified a methodology proposed and a maximum hydrogen permeation rate from road vehicles into enclosed structures is estimated The work is based on conclusions from the experimental and numerical investigations described by CEA NCSRD and the University of Ulster in related papers.
SGN Aberdeen Vision Project: Final Report
May 2020
Publication
The Aberdeen Vision Project could deliver CO2 savings of 1.5MtCO2/y compared with natural gas. A dedicated pipeline from St Fergus to Aberdeen would enable the phased transfer of the Aberdeen regional gas distribution system to 20% then 100% hydrogen.
The study has demonstrated that 2% hydrogen can be injected into the National Transmission System (NTS) at St Fergus and its distribution through the system into the gas distribution network. Due to unique regional attributes the Aberdeen region could lead the UK in the conversion to largescale clean hydrogen. A 200MW hydrogen generation plant is planned to suit 2% blend into the NTS followed by a build out to supply the Aberdeen gas networks and to enable low cost hydrogen transport applications.
This report and any attachment is freely available on the ENA Smarter Networks Portal here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
The study has demonstrated that 2% hydrogen can be injected into the National Transmission System (NTS) at St Fergus and its distribution through the system into the gas distribution network. Due to unique regional attributes the Aberdeen region could lead the UK in the conversion to largescale clean hydrogen. A 200MW hydrogen generation plant is planned to suit 2% blend into the NTS followed by a build out to supply the Aberdeen gas networks and to enable low cost hydrogen transport applications.
This report and any attachment is freely available on the ENA Smarter Networks Portal here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
Hytunnel Project to Investigate the Use of Hydrogen Vehicles in Road Tunnels
Sep 2009
Publication
Hydrogen vehicles may emerge as a leading contender to replace today’s internal combustion engine powered vehicles. A Phenomena Identification and Ranking Table exercise conducted as part of the European Network of Excellence on Hydrogen Safety (HySafe) identified the use of hydrogen vehicles in road tunnels as a topic of important concern. An internal project called HyTunnel was duly established within HySafe to review identify and analyse the issues involved and to contribute to the wider activity to establish the true nature of the hazards posed by hydrogen vehicles in the confined space of a tunnel and their relative severity compared to those posed by vehicles powered by conventional fuels including compressed natural gas (CNG). In addition to reviewing current hydrogen vehicle designs tunnel design practice and previous research a programme of experiments and CFD modelling activities was performed for selected scenarios to examine the dispersion and explosion hazards potentially posed by hydrogen vehicles. Releases from compressed gaseous hydrogen (CGH2) and liquid hydrogen (LH2) powered vehicles have been studied under various tunnel geometries and ventilation regimes. The findings drawn from the limited work done so far indicate that under normal circumstances hydrogen powered vehicles do not pose a significantly higher risk than those powered by petrol diesel or CNG but this needs to be confirmed by further research. In particular obstructions at tunnel ceiling level have been identified as a potential hazard in respect to fast deflagration or even detonation in some circumstances which warrants further investigation. The shape of the tunnel tunnel ventilation and vehicle pressure relief device (PRD) operation are potentially important parameters in determining explosion risks and the appropriate mitigation measures.
The Interaction of Hydrogen Jet Releases With Walls and Barriers
Sep 2009
Publication
It has been suggested that separation or safety distances for pressurised hydrogen storage can be reduced by the inclusion of walls or barriers between the hydrogen storage and vulnerable plant or other items. Various NFPA codes (1) suggest the use of 60° inclined fire barriers for protection against jet flames in preference to vertical ones.<br/>This paper describes a series of experiments performed in order to compare the performance of 60° barriers with that of 90° barriers. Their relative efficiency at protecting from thermal radiation and blast overpressure was measured together with the propensity for the thermal radiation and blast overpressure to be reflected back to the source of the leak. The work was primarily focused on compressed H2 storage for stationary fuel cell systems which may be physically separated from a fuel cell system or could be on board such a system. Different orifice sizes were used to simulate different size leaks and all releases were made were from storage at 200 bar.<br/>Overall conclusions on barrier performance were made based on the recorded measurements.
Advanced Steam Reforming of Bio-Oil with Carbon Capture: A Techno-Economic and CO2 Emissions Analysis
Apr 2022
Publication
A techno-economic analysis has been used to evaluate three processes for hydrogen production from advanced steam reforming (SR) of bio-oil as an alternative route to hydrogen with BECCS: conventional steam reforming (C-SR) C-SR with CO2 capture (C-SR-CCS) and sorption-enhanced chemical looping (SE-CLSR). The impacts of feed molar steam to carbon ratio (S/C) temperature pressure the use of hydrodesulphurisation pretreatment and plant production capacity were examined in an economic evaluation and direct CO2 emissions analysis. Bio-oil C-SR-CC or SE-CLSR may be feasible routes to hydrogen production with potential to provide negative emissions. SE-CLSR can improve process thermal efficiency compared to C-SR-CCS. At the feed molar steam to carbon ratio (S/C) of 2 the levelised cost of hydrogen (USD 3.8 to 4.6 per kg) and cost of carbon avoided are less than those of a C-SR process with amine-based CCS. However at higher S/C ratios SE-CLSR does not have a strong economic advantage and there is a need to better understand the viability of operating SE-CLSR of bio-oil at high temperatures (>850 ◦C) with a low S/C ratio (e.g. 2) and whether the SE-CLSR cycle can sustain low carbon deposition levels over a long operating period.
Vented Confined Explosions Involving Methane/Hydrogen Mixtures
Sep 2009
Publication
The EC funded Naturalhy project is assessing the potential for using the existing gas infrastructure for conveying hydrogen as a mixture with natural gas (methane). The hydrogen could then be removed at a point of use or the natural gas/hydrogen mixture could be burned in gas-fired appliances thereby providing reduced carbon emissions compared to natural gas. As part of the project the impact on the safety of the gas system resulting from the addition of hydrogen is being assessed. A release of a natural gas/hydrogen mixture within a vented enclosure (such as an industrial housing of plant and equipment) could result in a flammable mixture being formed and ignited. Due to the different properties of hydrogen the resulting explosion may be more severe for natural gas/hydrogen mixtures compared to natural gas. Therefore a series of large scale explosion experiments involving methane/hydrogen mixtures has been conducted in a 69.3 m3 enclosure in order to assess the effect of different hydrogen concentrations on the resulting explosion overpressures. The results showed that adding up to 20% by volume of hydrogen to the methane resulted in a small increase in explosion flame speeds and overpressures. However a significant increase was observed when 50% hydrogen was added. For the vented confined explosions studied it was also observed that the addition of obstacles within the enclosure representing congestion caused by equipment and pipework etc. increased flame speeds and overpressures above the levels measured in an empty enclosure. Predictions of the explosion overpressure and flame speed were also made using a modified version of the Shell Global Solutions model SCOPE. The modifications included changes to the burning velocity and other physical properties of methane/hydrogen mixtures. Comparisons with the experimental data showed generally good agreement.
Health & Safety Laboratory - Gas Detection for Hydrogen Enriched Gas Distribution Networks
Jul 2019
Publication
The UK has committed to significantly reduce greenhouse gas emissions by 2050 to help address climate change. Decarbonising heating is a key part of this and using hydrogen (H2) as a replacement to natural gas (NG) can help in achieving this. The objective of current research including HyDeploy is to demonstrate that NG containing levels of H2 beyond those currently allowed of 0.1 vol% (1000 ppm) [1] can be distributed and utilised safely and efficiently. Initial projects such as HyDeploy are studying the effects of introducing up to 20 vol% H2 in NG but later projects are considering using up to 100 vol% H2.
A key element in the safe operation of a modern gas distribution system is gas detection. However the addition of hydrogen to NG will alter the characteristics of the gas and the impact on gas detection must be considered. It is important that sensors remain sufficiently sensitive to the presence of hydrogen natural gas carbon monoxide (CO) and oxygen (O2) deficiency and that they don’t lead to false positive or false negative readings. The aim of this document is to provide a summary of the requirements for gas detection of hydrogen enriched natural gas for the gas distribution industry and other potentially interested parties. As such it is based on gas detectors presently used by the industry with the only major differences being the effects of hydrogen on the sensitivity of flammable gas sensors and the cross sensitivity of carbon monoxide gas sensors to hydrogen.
There is further information of gas detector concepts and technologies in the appendices.
This report and any attachment is freely available on the ENA Smarter Networks Portal here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
A key element in the safe operation of a modern gas distribution system is gas detection. However the addition of hydrogen to NG will alter the characteristics of the gas and the impact on gas detection must be considered. It is important that sensors remain sufficiently sensitive to the presence of hydrogen natural gas carbon monoxide (CO) and oxygen (O2) deficiency and that they don’t lead to false positive or false negative readings. The aim of this document is to provide a summary of the requirements for gas detection of hydrogen enriched natural gas for the gas distribution industry and other potentially interested parties. As such it is based on gas detectors presently used by the industry with the only major differences being the effects of hydrogen on the sensitivity of flammable gas sensors and the cross sensitivity of carbon monoxide gas sensors to hydrogen.
There is further information of gas detector concepts and technologies in the appendices.
This report and any attachment is freely available on the ENA Smarter Networks Portal here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
A Comparison of Alternative Fuels for Shipping in Terms of Lifecycle Energy and Cost
Dec 2021
Publication
Decarbonization of the shipping sector is inevitable and can be made by transitioning into low‐ or zero‐carbon marine fuels. This paper reviews 22 potential pathways including conventional Heavy Fuel Oil (HFO) marine fuel as a reference case “blue” alternative fuel produced from natural gas and “green” fuels produced from biomass and solar energy. Carbon capture technology (CCS) is installed for fossil fuels (HFO and liquefied natural gas (LNG)). The pathways are compared in terms of quantifiable parameters including (i) fuel mass (ii) fuel volume (iii) life cycle (Well‐To‐ Wake—WTW) energy intensity (iv) WTW cost (v) WTW greenhouse gas (GHG) emission and (vi) non‐GHG emissions estimated from the literature and ASPEN HYSYS modelling. From an energy perspective renewable electricity with battery technology is the most efficient route albeit still impractical for long‐distance shipping due to the low energy density of today’s batteries. The next best is fossil fuels with CCS (assuming 90% removal efficiency) which also happens to be the lowest cost solution although the long‐term storage and utilization of CO2 are still unresolved. Biofuels offer a good compromise in terms of cost availability and technology readiness level (TRL); however the non‐GHG emissions are not eliminated. Hydrogen and ammonia are among the worst in terms of overall energy and cost needed and may also need NOx clean‐up measures. Methanol from LNG needs CCS for decarbonization while methanol from biomass does not and also seems to be a good candidate in terms of energy financial cost and TRL. The present analysis consistently compares the various options and is useful for stakeholders involved in shipping decarbonization.
Pressure Limit of Hydrogen Spontaneous Ignition in a T-shaped Channel
Sep 2011
Publication
This paper describes a large eddy simulation model of hydrogen spontaneous ignition in a T-shaped channel filled with air following an inertial flat burst disk rupture. This is the first time when 3D simulations of the phenomenon are performed and reproduced experimental results by Golub et al. (2010). The eddy dissipation concept with a full hydrogen oxidation in air scheme is applied as a sub-grid scale combustion model to enable use of a comparatively coarse grid to undertake 3D simulations. The renormalization group theory is used for sub-grid scale turbulence modelling. Simulation results are compared against test data on hydrogen release into a T-shaped channel at pressure 1.2–2.9 MPa and helped to explain experimental observations. Transitional phenomena of hydrogen ignition and self-extinction at the lower pressure limit are simulated for a range of storage pressure. It is shown that there is no ignition at storage pressure of 1.35 MPa. Sudden release at pressure 1.65 MPa and 2.43 MPa has a localised spot ignition of a hydrogen-air mixture that quickly self-extinguishes. There is an ignition and development of combustion in a flammable mixture cocoon outside the T-shaped channel only at the highest simulated pressure of 2.9 MPa. Both simulated phenomena i.e. the initiation of chemical reactions followed by the extinction and the progressive development of combustion in the T-shape channel and outside have provided an insight into interpretation of the experimental data. The model can be used as a tool for hydrogen safety engineering in particular for development of innovative pressure relief devices with controlled ignition.
Plasmonic Nickel Nanoparticles Decorated on to LaFeO3 Photocathode for Enhanced Solar Hydrogen Generation
Nov 2018
Publication
Plasmonic Ni nanoparticles were incorporated into LaFeO3 photocathode (LFO-Ni) to excite the surface plasmon resonances (SPR) for enhanced light harvesting for enhancing the photoelectrochemical (PEC) hydrogen evolution reaction. The nanostructured LFO photocathode was prepared by spray pyrolysis method and Ni nanoparticles were incorporated on to the photocathode by spin coating technique. The LFO-Ni photocathode demonstrated strong optical absorption and higher current density where the untreated LFO film exhibited a maximum photocurrent of 0.036 mA/cm2 at 0.6 V vs RHE and when incorporating 2.84 mmol Ni nanoparticles the photocurrent density reached a maximum of 0.066 mA/cm2 at 0.6 V vs RHE due to the SPR effect. This subsequently led to enhanced hydrogen production where more than double (2.64 times) the amount of hydrogen was generated compared to the untreated LFO photocathode. Ni nanoparticles were modelled using Finite Difference Time Domain (FDTD) analysis and the results showed optimal particle size in the range of 70–100 nm for Surface Plasmon Resonance (SPR) enhancement.
H21- Science and Research Centre - HSE Buxton Launch Video
Aug 2019
Publication
The site at the Health and Safety Executive’s Science and Research Centre in Buxton will carry out controlled tests to establish the critical safety evidence proving that a 100% hydrogen gas network is equally as safe as the natural gas grid heating our homes and businesses today. The results will be critical in determining if it is safe to convert millions of homes across the country from natural gas to hydrogen. H21 which is led by Northern Gas Networks (NGN) the gas distributor for the North of England in partnership with Cadent SGN and Wales & West Utilities HSE Science and Research Centre and DNV-GL is part of a number of gas industry projects designed to support conversion of the UK gas networks to carry 100% hydrogen. Currently about 30% of UK carbon emissions are from the heating of homes businesses and industry. H21 states that a large-scale conversion of the gas grid from natural gas to hydrogen is vital to meeting the Government’s Net Zero targets.
A New Sustainable Hydrogen Clean Energy Paradigm
Feb 2018
Publication
We analyze the feasibility of a novel hydrogen fuel cell electric generator to provide power with zero noise and emissions for myriad ground based applications. The hydrogen fuel cell electric generator utilizes a novel scalable apparatus that safely generates hydrogen (H2) on demand according to a novel method using a controlled chemical reaction between water (H2O) and sodium (Na) metal that yields hydrogen gas of sufficient purity for direct use in fuel cells without risk of contaminating sensitive catalysts. The sodium hydroxide (NaOH) byproduct of the hydrogen producing reaction is collected within the apparatus for later reprocessing by electrolysis to recover the Na reactant. The detailed analysis shows that the novel hydrogen fuel cell electric generator will be capable of meeting the clean power requirements for residential and commercial buildings including single family homes and light commercial establishments under a wide range of geographic and climatic conditions.
Innovation Insights Brief 2019: New Hydrogen Economy - Hope or Hype?
Jun 2019
Publication
Hydrogen and fuel cell technologies have experienced cycles of high expectations followed by impractical realities. This time around however falling renewable energy and fuel cell prices stringent climate change requirements and the discrete involvement of China are step changes. The combination of these factors is leading to realistic potential for hydrogen’s role in the Grand Transition.<br/>Having conducted exploratory interviews with leaders from all around the globe the World Energy Council is featuring eight use cases which illustrate hydrogen’s potential. These range from decarbonising hard-to-abate sectors such as heat industry and transport to supporting the integration of renewables and providing an energy storage solution.<br/>Dr Angela Wilkinson Secretary General and former Senior Director Scenarios and Business Insights: “Green and blue hydrogen can refresh those parts of the energy system transition that electrification cannot reach.”<br/>This Innovation Insights Brief is part of a series of publications by the World Energy Council focused on Innovation. In a fast-paced era of disruptive changes this brief aims at facilitating strategic sharing of knowledge between the Council’s members and the other energy stakeholders and policy shapers.
Cost-competitive Green Hydrogen: How to Lower the Cost of Electrolysers?
Jan 2022
Publication
The higher cost of green hydrogen in comparison to its competitors is the most important barrier to its increased use. Although the cost of renewable electricity is considered to be the key obstacle challenges associated with electrolysers are another major issue that have important implications for the cost reduction of green hydrogen. This paper analyses the electrolysis process from technological economic and policy perspectives. It first provides a comparative analysis of the main existing electrolyser technologies and identifies key trade-offs in terms of cost scarcity of materials used technology readiness and the ability to operate in a flexible mode (which enables them to be coupled with variable renewables generation). The paper then identifies the main cost drivers for each of the most promising technologies and analyses the opportunities for cost reduction. It also draws upon the experience of solar and wind power generation technologies with respect to gradual cost reduction and evaluates development paths that each of the main electrolyser technology types could take in the future. Finally the paper elaborates on the policy mechanisms that could additionally foster cost reduction and the overall business development of electrolyser technologies.
The research paper can be found on their website
The research paper can be found on their website
H2FC SUPERGEN- Opportunities for Hydrogen and Fuel Cell Technologies to Contribute to Clean Growth in the UK
May 2020
Publication
Hydrogen is expected to have an important role in decarbonising several parts of the UK energy system. This white paper examines the opportunities for hydrogen and fuel cell technologies (H2FC) to contribute to clean growth in the UK.
We assess the strength of the sector by surveying 196 companies working in the area and using other key metrics (for example publication citations and patents). There is already a nascent fuel cell industry working at the cutting edge of global innovation. The UK has an opportunity to grow this industry and to develop an export-focused hydrogen industry over the next few decades. However this will require public nurturing and support. We make a series of recommendations that include:
We assess the strength of the sector by surveying 196 companies working in the area and using other key metrics (for example publication citations and patents). There is already a nascent fuel cell industry working at the cutting edge of global innovation. The UK has an opportunity to grow this industry and to develop an export-focused hydrogen industry over the next few decades. However this will require public nurturing and support. We make a series of recommendations that include:
- Creating separate national fuel cell and hydrogen strategies. These should take UK energy needs capabilities and export opportunities into account. There is a need to coordinate public R&D support and to manage the consequences if European funding and collaboration opportunities become unavailable due to Brexit.
- Creating a public–private “Hydrogen Partnership” to accelerate a shift to hydrogen energy systems in the UK and to stimulate opportunities for businesses.
- Putting in place infrastructure to underpin nascent fuel cell and hydrogen markets including a national refuelling station network and a green hydrogen standard scheme.
- Study what would constitute critical mass in the hydrogen and fuel cell sectors in terms of industry and academic capacity and the skills and knowledge base and consider how critical mass could be achieved most efficiently.
- Consider creating a “Hydrogen Institute” and an “Electrochemical Centre” to coordinate and underpin national innovation over the next decade.
Hazards of Liquid Hydrogen: Position paper
Jan 2010
Publication
In the long term the key to the development of a hydrogen economy is a full infrastructure to support it which include means for the delivery and storage of hydrogen at the point of use eg at hydrogen refuelling stations for vehicles. As an interim measure to allow the development of refuelling stations and rapid implementation of hydrogen distribution to them liquid hydrogen is considered the most efficient and cost effective means for transport and storage.
The Health and Safety Executive have commissioned the Health and Safety Laboratory to identify and address issues relating to bulk liquid hydrogen transport and storage and update/develop guidance for such facilities. This position paper the first part of the project assesses the features of the transport and storage aspects of the refuelling stations that are now being constructed in the UK compares them to existing guidance highlights gaps in the regulatory regime and identifies outstanding safety issues. The findings together with the results of experiments to improve our understanding of the behaviour of liquid hydrogen will inform the development of the guidance for refuelling facilities
link to Report
The Health and Safety Executive have commissioned the Health and Safety Laboratory to identify and address issues relating to bulk liquid hydrogen transport and storage and update/develop guidance for such facilities. This position paper the first part of the project assesses the features of the transport and storage aspects of the refuelling stations that are now being constructed in the UK compares them to existing guidance highlights gaps in the regulatory regime and identifies outstanding safety issues. The findings together with the results of experiments to improve our understanding of the behaviour of liquid hydrogen will inform the development of the guidance for refuelling facilities
link to Report
H2FC Supergen- The Role of Hydrogen and Fuel Cells in Future Energy Systems
Mar 2017
Publication
This White Paper has been commissioned by the UK Hydrogen and Fuel Cell (H2FC) SUPERGEN Hub to examine the roles and potential benefits of hydrogen and fuel cell technologies in delivering energy security for the UK. The H2FC SUPERGEN Hub is an inclusive network encompassing the entire UK hydrogen and fuel cells research community with around 100 UK-based academics supported by key stakeholders from industry and government. It is funded by the UK EPSRC research council as part of the RCUK Energy Programme. This paper is the second of four that were published over the lifetime of the Hub with the others examining: (i) low-carbon heat; (iii) future energy systems; and (iv) economic impact.
- Fuel cells can contribute to UK energy system security both now and in the future.
- Hydrogen can be produced using a broad range of feedstocks and production processes including renewable electricity.
- Adopting hydrogen as an end-use fuel in the long term increases UK energy diversity.
Opportunity and Cost of Green Hydrogen in Kuwait: A Preliminary Assessment
Apr 2021
Publication
On April 7 2021 OIES with and the Kuwait Foundation for the Advancement of Sciences (KFAS) held the annual OIES-KFAS Workshop on Energy Transition Post-Pandemic in the Gulf. During the hydrogen session a paper titled “Opportunity and Cost of Green Hydrogen in Kuwait: A Preliminary Assessment” co-authored by Dr. Manal Shehabi was presented.
Like others states in the GCC Kuwait is seeking to explore hydrogen as part of its energy transition projects. The presentation highlights key technological opportunities for green hydrogen in Kuwait followed by a techno-economic assessments of producing it. Results of utilized hydrogen production model show that for production in 2032 average levelized cost of hydrogen (LCOH) is $3.23/kg using PEM technology & $4.41/kg using SOEC technology. Results indicate that green hydrogen in Kuwait is more competitive than in other regions but currently not competitive (>$1.5/kg) with oil coal and gas in absence of carbon taxes.
The research paper can be found on their website
Like others states in the GCC Kuwait is seeking to explore hydrogen as part of its energy transition projects. The presentation highlights key technological opportunities for green hydrogen in Kuwait followed by a techno-economic assessments of producing it. Results of utilized hydrogen production model show that for production in 2032 average levelized cost of hydrogen (LCOH) is $3.23/kg using PEM technology & $4.41/kg using SOEC technology. Results indicate that green hydrogen in Kuwait is more competitive than in other regions but currently not competitive (>$1.5/kg) with oil coal and gas in absence of carbon taxes.
The research paper can be found on their website
H2FC SUPERGEN- The Role of Hydrogen and Fuel Cells in Delivering Energy Security for the UK
Mar 2017
Publication
This White Paper has been commissioned by the UK Hydrogen and Fuel Cell (H2FC) SUPERGEN Hub to examine the roles and potential benefits of hydrogen and fuel cell technologies within each sector of future energy systems and the transition infrastructure that is required to achieve these roles. The H2FC SUPERGEN Hub is an inclusive network encompassing the entire UK hydrogen and fuel cells research community with around 100 UK-based academics supported by key stakeholders from industry and government. It is funded by the UK EPSRC research council as part of the RCUK Energy Programme. This paper is the third of four that were published over the lifetime of the Hub with the others examining: (i) low-carbon heat; (ii) energy security; and (iv) economic impacts.
- Hydrogen and fuel cells are now being deployed commercially for mainstream applications.
- Hydrogen can play a major role alongside electricity in the low-carbon economy.
- Hydrogen technologies can support low-carbon electricity systems dominated by intermittent renewables and/or electric heating demand.
- The hydrogen economy is not necessary for hydrogen and fuel cells to flourish.
New Insights into the Electrochemical Behaviour of Porous Carbon Electrodes for Supercapacitors
Aug 2018
Publication
Activated carbons with different surface chemistry and porous textures were used to study the mechanism of electrochemical hydrogen and oxygen evolution in supercapacitor devices. Cellulose precursor materials were activated with different potassium hydroxide (KOH) ratios and the electrochemical behaviour was studied in 6 M KOH electrolyte. In situ Raman spectra were collected to obtain the structural changes of the activated carbons under severe electrochemical oxidation and reduction conditions and the obtained data were correlated to the cyclic voltammograms obtained at high anodic and cathodic potentials. Carbon-hydrogen bonds were detected for the materials activated at high KOH ratios which form reversibly under cathodic conditions. The influence of the specific surface area narrow microporosity and functional groups in the carbon electrodes on their chemical stability and hydrogen capture mechanism in supercapacitor applications has been revealed.
High Pressure Hydrogen Tank Rupture: Blast Wave and Fireball
Oct 2015
Publication
In the present study the phenomena of blast wave and fireball generated by high pressure (35 MPa) hydrogen tank (72 l) rupture have been investigated numerically. The realizable k-ε turbulence model was applied. The simulation of the combustion process is based on the eddy dissipation model coupled with the one step chemical reaction mechanism. Simulation results are compared with experimental data from a stand-alone hydrogen fuel tank rapture following a bonfire test. The model allows the study of the interaction between combustion process and blast wave propagation. Simulation results (blast wave overpressure fireball shape and size) follow the trends observed in the experiment.
Development of a Model Evaluation Protocol for CFD Analysis of Hydrogen Safety Issues – The SUSANA Project
Oct 2015
Publication
The “SUpport to SAfety aNAlysis of Hydrogen and Fuel Cell Technologies (SUSANA)” project aims to support stakeholders using Computational Fluid Dynamics (CFD) for safety engineering design and assessment of FCH systems and infrastructure through the development of a model evaluation protocol. The protocol covers all aspects of safety assessment modelling using CFD from release through dispersion to combustion (self-ignition fires deflagrations detonations and Deflagration to Detonation Transition - DDT) and not only aims to enable users to evaluate models but to inform them of the state of the art and best practices in numerical modelling. The paper gives an overview of the SUSANA project including the main stages of the model evaluation protocol and some results from the on-going benchmarking activities.
Modelling Liquid Hydrogen Release and Spread on Water
Sep 2017
Publication
Consequence modelling of high potential risks of usage and transportation of cryogenic liquids yet requires substantial improvements. Among the cryogenics liquid hydrogen (LH2) needs especial treatments and a comprehensive understanding of spill and spread of liquid and dispersion of vapor. Even though many of recent works have shed lights on various incidents such as spread dispersion and explosion of the liquid over land less focus was given on spill and spread of LH2 onto water. The growing trend in ship transportation has enhanced risks such as ships’ accidental releases and terrorist attacks which may ultimately lead to the release of the cryogenic liquid onto water. The main goal of the current study is to present a computational fluid dynamic (CFD) approach using OpenFOAM to model release and spread of LH2 over water substrate and discuss previous approaches. It also includes empirical heat transfer equations due to boiling and computation of evaporation rate through an energy balance. The results of the proposed model will be potentially used within another coupled model that predicts gas dispersion]. This work presents a good practice approach to treat pool dynamics and appropriate correlations to identify heat flux from different sources. Furthermore some of the previous numerical approaches to redistribute or in some extend manipulate the LH2 pool dynamic are brought up for discussion and their pros and cons are explained. In the end the proposed model is validated by modelling LH2 spill experiment carried out in 1994 at the Research Centre Juelich in Germany.
Vented Hydrogen-air Deflagrations in Low Strength Equipment and Buildings
Sep 2013
Publication
This paper aims to improve prediction capability of the vent sizing correlation presented in the form of functional dependence of the dimensionless deflagration overpressure on the turbulent Bradley number similar to our previous studies. The correlation is essentially upgraded based on recent advancements in understanding and modelling of combustion phenomena relevant to hydrogen-air vented deflagrations and unique large-scale tests carried out by different research groups. The focus is on hydrogen-air deflagrations in low-strength equipment and buildings when the reduced pressure is accepted to be below 0.1 MPa. The combustion phenomena accounted for by the correlation include: turbulence generated by the flame front itself; leading point mechanism stemming from the preferential diffusion of hydrogen in air in stretched flames; growth of the fractal area of the turbulent flame surface; initial turbulence in the flammable mixture; as well as effects of enclosure aspect ratio and presence of obstacles. The correlation is validated against the widest range of experimental conditions available to date (76 experimental points). The validation covers a wide range of test conditions: different shape enclosures of volume up to 120 m3; initially quiescent and turbulent hydrogen-air mixtures; hydrogen concentration in air from 6% to 30% by volume; ignition source location at enclosure centre near and far from a vent; empty enclosures and enclosures with obstacles.
Hydrogen - A Pipeline to the Future
Sep 2020
Publication
Scotland’s Achievements and Ambitions for Clean Hydrogen - a joint webinar between the Scottish Hydrogen and Fuel Cell Association and the Pipeline Industries Guild (Scottish branch).
Nigel Holmes. CEO Scottish Hydrogen & Fuel Cell Association provides an update on Scotland’s ambitions backed up by progress in key areas. This will show the potential for hydrogen at scale to support the delivery of policy targets highlighting areas of key strengths for Scotland.
You will also hear about the need to build up scale for hydrogen production and supply in tandem with hydrogen pipeline and distribution networks in order to meet demand for low carbon energy and achieve key milestones on the pathway to Net Zero by 2045.
Nigel Holmes. CEO Scottish Hydrogen & Fuel Cell Association provides an update on Scotland’s ambitions backed up by progress in key areas. This will show the potential for hydrogen at scale to support the delivery of policy targets highlighting areas of key strengths for Scotland.
You will also hear about the need to build up scale for hydrogen production and supply in tandem with hydrogen pipeline and distribution networks in order to meet demand for low carbon energy and achieve key milestones on the pathway to Net Zero by 2045.
Effect of Rotation on Ignition Thresholds of Stoichiometric Hydrogen Mixtures
Sep 2017
Publication
Successful transition to a hydrogen economy calls for a deep understanding of the risks associated with its widespread use. Accidental ignition of hydrogen by hot surfaces is one of such risks. In the present study we investigated the effect that rotation has on the reported ignition thresholds by numerically determining the minimum surface temperature required to ignite stoichiometric hydrogen-air using a hot horizontal cylinder rotating at various angular velocities ω. Numerical experiments showed a weak but interesting dependence of the ignition thresholds on rotation: the ignition thresholds increased by 8 K from 931 K to 939 K with increasing angular velocity (0 ≤ ω ≤ 240 rad/s). A further increase to ω = 480 rad/s resulted in a decrease in ignition surface temperature to 935 K. Detailed analysis of the flow patterns inside the vessel and in close proximity to the hot surface brought about by the combined effect of buoyancy and rotation as well as of the distribution of the wall heat flux along the circumference of the cylinder support our previous findings in which regions where temperature gradients are small were found to be prone to ignition.
Non-adiabatic Blowdown Model: A Complimentary Tool for the Safety Design of Tank-TPRD System
Sep 2017
Publication
Previous studies have demonstrated that while blowdown pressure is reproduced well by both adiabatic and isothermal analytical models the dynamics of temperature cannot be predicted well by either model. The reason for the last is heat transfer to cooling during expansion gas from the vessel wall. Moreover when exposed to an external fire the temperature inside the vessel increases i.e. when a thermally activated pressure relief device (TPRD) is still closed with subsequent pressure increase that may lead to a catastrophic rupture of the vessel. The choice of a TPRD exit orifice size and design strategy are challenges: to provide sufficient internal pressure drop in a fire when the orifice size is too small; to avoid flame blow off expected with the decrease of pressure during the blowdown; to decrease flame length of subsequent jet fire as much as possible by the decrease of the orifice size under condition of sufficient fire resistance provisions to avoid pressure peaking phenomenon etc. The adiabatic model of blowdown [1] was developed using the Abel-Nobel equation of state and the original theory of underexpanded jet [2]. According to experimental observations e.g. [3] heat transfer plays a significant role during the blowdown. Thus this study aims to modify the adiabatic blowdown model to include the heat transfer to non-ideal gas. The model accounts for a change of gas temperature inside the vessel due to two “competing” processes: the decrease of temperature due to gas expansion and the increase of temperature due to heat transfer from the surroundings e.g. ambience or fire through the vessel wall. This is taken into account in the system of equations of adiabatic blowdown model through the change of energy conservation equation that accounts for heat from outside. There is a need to know the convective heat transfer coefficient between the vessel wall and the surroundings and wall size and properties to define heat flux to the gas inside the vessel. The non-adiabatic model is validated against available experimental data. The model can be applied as a new engineering tool for the inherently safer design of hydrogen tank-TPRD system.
Monte-Carlo-analysis of Minimum Load Cycle Requirements for Composite Cylinders for Hydrogen
Sep 2017
Publication
Existing regulations and standards for the approval of composite cylinders in hydrogen service are currently based on deterministic criteria (ISO 11119-3 UN GTR No. 13). This paper provides a systematic analysis of the load cycle properties resulting from these regulations and standards. Their characteristics are compared with the probabilistic approach of the BAM. Based on Monte-Carlo simulations the available design range of all concepts is compared. In addition the probability of acceptance for potentially unsafe design types is determined.
European Hydrogen Safety Training Platform for First Responders- Hyresponse Project
Sep 2013
Publication
The paper presents HyResponse project i.e. a European Hydrogen Safety Training Platform that targets to train First responders to acquire professional knowledge and skills to contribute to FCH permitting process as approving authority. The threefold training program is described: educational training operational-level training on mock-up real scale transport and hydrogen stationary installations and innovative virtual training exercises reproducing entire accident scenarios. The paper highlights how the three pilot sessions for European First Responders in a face to face mode will be organized to get a feedback on the training program. The expected outputs are also presented i.e. the Emergency Response Guide and a public website including teaching material and online interactive virtual training.
High CO2 Absorption Capacity of Metal-Based Ionic Liquids: A Molecular Dynamics Study
Apr 2020
Publication
The absorption of CO2 is of importance in carbon capture utilization and storage technology for greenhouse gas control. In the present work we clarified the mechanism of how metal-based ionic liquids (MBILs) Bmim[XCln]m (X is the metal atom) enhance the CO2 absorption capacity of ILs via performing molecular dynamics simulations. The sparse hydrogen bond interaction network constructed by CO2 and MBILs was identified through the radial distribution function and interaction energy of CO2-ion pairs which increase the absorption capacity of CO2 in MBILs. Then the dynamical properties including residence time and self-diffusion coefficient confirmed that MBILs could also promote the diffusion process of CO2 in ILs. That's to say the MBILs can enhance the CO2 absorption capacity and the diffusive ability simultaneously. Based on the analysis of structural energetic and dynamical properties the CO2 absorption capacity of MBILs increases in the order Cl− → [ZnCl4]2-→ [CuCl4]2-→ [CrCl4]- → [FeCl4]- revealing the fact that the short metal–Cl bond length and small anion volume could facilitate the performance of CO2 absorbing process. These findings show that the metal–Cl bond length and effective volume of the anion can be the effective factors to regulate the CO2 absorption process which can also shed light on the rational molecular design of MBILs for CO2 capture and other key chemical engineering processes such as IL-based gas sensors nano-electrical devices and so on.
International Association for Hydrogen Safety ‘Research Priorities Workshop’, September 2018, Buxton, UK
Sep 2018
Publication
Hydrogen has the potential to be used by many countries as part of decarbonising the future energy system. Hydrogen can be used as a fuel ‘vector’ to store and transport energy produced in low-carbon ways. This could be particularly important in applications such as heating and transport where other solutions for low and zero carbon emission are difficult. To enable the safe uptake of hydrogen technologies it is important to develop the international scientific evidence base on the potential risks to safety and how to control them effectively. The International Association for Hydrogen Safety (known as IA HySAFE) is leading global efforts to ensure this. HSE hosted the 2018 IA HySAFE Biennial Research Priorities Workshop. A panel of international experts presented during nine key topic sessions: (1) Industrial and National Programmes; (2) Applications; (3) Storage; (4) Accident Physics – Gas Phase; (5) Accident Physics – Liquid/ Cryogenic Behaviour; (6) Materials; (7) Mitigation Sensors Hazard Prevention and Risk Reduction; (8) Integrated Tools for Hazard and Risk Assessment; (9) General Aspects of Safety.<br/>This report gives an overview of each topic made by the session chairperson. It also gives further analysis of the totality of the evidence presented. The workshop outputs are shaping international activities on hydrogen safety. They are helping key stakeholders to identify gaps in knowledge and expertise and to understand and plan for potential safety challenges associated with the global expansion of hydrogen in the energy system.
Energy Innovation Needs Assessment: Carbon Capture Usage & Storage
Nov 2019
Publication
The Energy Innovation Needs Assessment (EINA) aims to identify the key innovation needs across the UK’s energy system to inform the prioritisation of public sector investment in low-carbon innovation. Using an analytical methodology developed by the Department for Business Energy & Industrial Strategy (BEIS) the EINA takes a system level approach and values innovations in a technology in terms of the system-level benefits a technology innovation provides. This whole system modelling in line with BEIS’s EINA methodology was delivered by the Energy Systems Catapult (ESC) using the Energy System Modelling Environment (ESMETM) as the primary modelling tool.
To support the overall prioritisation of innovation activity the EINA process analyses key technologies in more detail. These technologies are grouped together into sub-themes according to the primary role they fulfil in the energy system. For key technologies within a sub-theme innovations and business opportunities are identified. The main findings at the technology level are summarised in sub-theme reports. An overview report will combine the findings from each sub-theme to provide a broad system-level perspective and prioritisation.
This EINA analysis is based on a combination of desk research by a consortium of economic and engineering consultants and stakeholder engagement. The prioritisation of innovation and business opportunities presented is informed by a workshop organised for each sub-theme assembling key stakeholders from the academic community industry and government.
This report was commissioned prior to advice being received from the CCC on meeting a net zero target and reflects priorities to meet the previous 80% target in 2050. The newly legislated net zero target is not expected to change the set of innovation priorities rather it will make them all more valuable overall. Further work is required to assess detailed implications.
To support the overall prioritisation of innovation activity the EINA process analyses key technologies in more detail. These technologies are grouped together into sub-themes according to the primary role they fulfil in the energy system. For key technologies within a sub-theme innovations and business opportunities are identified. The main findings at the technology level are summarised in sub-theme reports. An overview report will combine the findings from each sub-theme to provide a broad system-level perspective and prioritisation.
This EINA analysis is based on a combination of desk research by a consortium of economic and engineering consultants and stakeholder engagement. The prioritisation of innovation and business opportunities presented is informed by a workshop organised for each sub-theme assembling key stakeholders from the academic community industry and government.
This report was commissioned prior to advice being received from the CCC on meeting a net zero target and reflects priorities to meet the previous 80% target in 2050. The newly legislated net zero target is not expected to change the set of innovation priorities rather it will make them all more valuable overall. Further work is required to assess detailed implications.
The Road to Zero: Next Steps Towards Cleaner Road Transport and Delivering our Industrial Strategy
Jul 2018
Publication
Our mission is to put the UK at the forefront of the design and manufacturing of zero emission vehicles and for all new cars and vans to be effectively zero emission by 2040. As set out in the NO2 plan we will end the sale of new conventional petrol and diesel cars and vans by 2040. By then we expect the majority of new cars and vans sold to be 100% zero emission and all new cars and vans to have significant zero emission capability. By 2050 we want almost every car and van to be zero emission. We want to see at least 50% and as many as 70% of new car sales and up to 40% of new van sales being ultra low emission by 2030.<br/>We expect this transition to be industry and consumer led supported in the coming years by the measures set out in this strategy. We will review progress towards our ambitions by 2025. Against a rapidly evolving international context we will seek to maintain the UK’s leadership position and meet our ambitions and will consider what interventions are required if not enough progress is being made.
H21- Hydrogen Boilers Installed in Demonstration Houses
Nov 2020
Publication
Hydrogen boilers have been developed by Worcester Bosch and Baxi and are being trialled in demonstration houses. They look and feel just like the boilers we use today. Hydrogen produces no carbon when used and a hydrogen gas network could provide the least disruptive route to a net zero carbon future.
Decarbonising the UK’s Gas Network - Realising the Green Power-to-hydrogen Opportunity in the East Network
Aug 2020
Publication
Although the UK has done a great job of decarbonising electricity generation to get to net zero we need to tackle harder-to-decarbonise sectors like heat transport and industry. Decarbonised gas – biogases hydrogen and the deployment of carbon capture usage and storage (CCUS) – can make our manufacturing more sustainable minimise disruption to families and deliver negative emissions.
Developing the capability to produce hydrogen at scale is one of the key challenges in the race to meet the UK’s ambitious net zero targets. Using the East Neuk of Fife - with its abundant on- and offshore renewables resource and well-developed electricity and gas networks – as a test bed we investigated the use of surplus electricity generated by renewables to produce green hydrogen which could then be used to heat homes and businesses carbon-free.
Aims
The study focused on answering a number of important questions around bringing power-to-hydrogen to Fife including:
How much low-cost low-carbon electricity would be available to a power-to-hydrogen operator in Fife and how much hydrogen could be produced today and in 2040? How much hydrogen storage would be required to meet demand under three end-use cases: injection into the natural gas grid; use in a dedicated hydrogen grid for heating; and use as transport fuel for a small fleet of vehicles? What if any network upgrades could be avoided by implementing power-to-hydrogen? Which hydrogen end-use markets would be most attractive for a power-to-hydrogen operator? What are the regulatory legislative or market barriers to be overcome to realise large-scale deployment of power-to-hydrogen?
The study
Our expert researchers used a high-level model of the European electricity system and established wholesale prices generation volumes by generation type and constrained generation in Fife. Considering both the present day and a 2040 picture based on National Grid’s Two Degrees Future Energy Scenarios our team explored a number of configurations of power generation and hydrogen end-use to assess the value associated with producing hydrogen.
Alongside this modelling our team conducted a comprehensive review of power-to-hydrogen legislation and regulation and reports and academic papers to identify the current characteristics and direction of the sector observe where most progress had been made and identify lessons learned.
This report and any attachment is freely available on the ENA Smarter Networks Portal here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
Developing the capability to produce hydrogen at scale is one of the key challenges in the race to meet the UK’s ambitious net zero targets. Using the East Neuk of Fife - with its abundant on- and offshore renewables resource and well-developed electricity and gas networks – as a test bed we investigated the use of surplus electricity generated by renewables to produce green hydrogen which could then be used to heat homes and businesses carbon-free.
Aims
The study focused on answering a number of important questions around bringing power-to-hydrogen to Fife including:
How much low-cost low-carbon electricity would be available to a power-to-hydrogen operator in Fife and how much hydrogen could be produced today and in 2040? How much hydrogen storage would be required to meet demand under three end-use cases: injection into the natural gas grid; use in a dedicated hydrogen grid for heating; and use as transport fuel for a small fleet of vehicles? What if any network upgrades could be avoided by implementing power-to-hydrogen? Which hydrogen end-use markets would be most attractive for a power-to-hydrogen operator? What are the regulatory legislative or market barriers to be overcome to realise large-scale deployment of power-to-hydrogen?
The study
Our expert researchers used a high-level model of the European electricity system and established wholesale prices generation volumes by generation type and constrained generation in Fife. Considering both the present day and a 2040 picture based on National Grid’s Two Degrees Future Energy Scenarios our team explored a number of configurations of power generation and hydrogen end-use to assess the value associated with producing hydrogen.
Alongside this modelling our team conducted a comprehensive review of power-to-hydrogen legislation and regulation and reports and academic papers to identify the current characteristics and direction of the sector observe where most progress had been made and identify lessons learned.
This report and any attachment is freely available on the ENA Smarter Networks Portal here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
Blind-prediction: Estimating the Consequences of Vented Hydrogen Deflagrations for Homogeneous Mixtures in a 20-foot ISO Container
Sep 2017
Publication
Trygve Skjold,
Helene Hisken,
Sunil Lakshmipathy,
Gordon Atanga,
Marco Carcassi,
Martino Schiavetti,
James R. Stewart,
A. Newton,
James R. Hoyes,
Ilias C. Tolias,
Alexandros G. Venetsanos,
Olav Roald Hansen,
J. Geng,
Asmund Huser,
Sjur Helland,
Romain Jambut,
Ke Ren,
Alexei Kotchourko,
Thomas Jordan,
Jérome Daubech,
Guillaume Lecocq,
Arve Grønsund Hanssen,
Chenthil Kumar,
Laurent Krumenacker,
Simon Jallais,
D. Miller and
Carl Regis Bauwens
This paper summarises the results from a blind-prediction study for models developed for estimating the consequences of vented hydrogen deflagrations. The work is part of the project Improving hydrogen safety for energy applications through pre-normative research on vented deflagrations (HySEA). The scenarios selected for the blind-prediction entailed vented explosions with homogeneous hydrogen-air mixtures in a 20-foot ISO container. The test program included two configurations and six experiments i.e. three repeated tests for each scenario. The comparison between experimental results and model predictions reveals reasonable agreement for some of the models and significant discrepancies for others. It is foreseen that the first blind-prediction study in the HySEA project will motivate developers to improve their models and to update guidelines for users of the models.
Hydrogen Production by Steam Reforming of DME in a Large Scale CFB Reactor. Part I: Computational Model and Predictions
Oct 2015
Publication
This study presents a computational fluid dynamic (CFD) study of Dimethyl Ether steam reforming (DME-SR) in a large scale Circulating Fluidized Bed (CFB) reactor. The CFD model is based on Eulerian–Eulerian dispersed flow and solved using commercial software (ANSYS FLUENT). The DME-SR reactions scheme and kinetics in the presence of a bifunctional catalyst of CuO/ZnO/Al2O3+ZSM-5 were incorporated in the model using in-house developed user-defined function. The model was validated by comparing the predictions with experimental data from the literature. The results revealed for the first time detailed CFB reactor hydrodynamics gas residence time temperature distribution and product gas composition at a selected operating condition of 300 °C and steam to DME mass ratio of 3 (molar ratio of 7.62). The spatial variation in the gas species concentrations suggests the existence of three distinct reaction zones but limited temperature variations. The DME conversion and hydrogen yield were found to be 87% and 59% respectively resulting in a product gas consisting of 72 mol% hydrogen. In part II of this study the model presented here will be used to optimize the reactor design and study the effect of operating conditions on the reactor performance and products.
What Role for Hydrogen in Turkey’s Energy Future?
Nov 2021
Publication
Since early 2020 Turkey has been considering the role of hydrogen in its energy future with a view to producing a hydrogen strategy in the next few months. Unlike many other countries considering the role of hydrogen Turkey has only recently (October 2021) ratified the Paris Agreement addressing climate change and its interest is driven more by geopolitical strategic and energy security concerns. Specifically with concerns about the high share of imported energy particularly gas from Russia it sees hydrogen as part of a policy to increase indigenous energy production. Turkey already has a relatively high share of renewable power generation particularly hydro and recent solar auctions have resulted in low prices leading to a focus on potential green hydrogen production. However it still generates over half of its electricity from fossil fuel including over 25% from coal and lignite. Against that background it provides an interesting case study on some of the key aspects that a country needs to consider when looking to incorporate low-carbon hydrogen into the development of their energy economy.
The research paper can be found on their website
The research paper can be found on their website
Flow of Hydrogen from Buried Leaks
Sep 2019
Publication
The substitution of hydrogen for natural gas within a gas network has implications for the potential rate of leakage from pipes and the distribution of gas flow driven by such leaks. This paper presents theoretical analyses of low-pressure flow through porous ground in a range of circumstances and practical experimental work at a realistic scale using natural gas hydrogen or nitrogen for selected cases. This study considers flow and distribution of 100% hydrogen. A series of eight generic flow regimes have been analysed theoretically e.g. (i) a crack in uncovered ground (ii) a crack under a semi-permeable cover in a high porosity channel (along a service line or road). In all cases the analyses yield both the change in flow rate when hydrogen leaks and the change in distance to which hydrogen gas can travel at a dangerous rate compared to natural gas. In some scenarios a change to hydrogen gas from natural gas makes minimal difference to the range (i.e. distance from the leak) at which significant gas flows will occur. However in cases where the leak is covered by an impermeable membrane a change to hydrogen from natural gas may extend the range of significant gas flow by tens or even hundreds of metres above that of natural gas. Experimental work has been undertaken in specific cases to investigate the following: (i) Flow rate vs pressure curves for leaks into media with different permeability (ii) Effects of the water content of the ground on gas flow (iii) Distribution of surface gas flux near a buried leak
Towards Fire Test Protocol for Hydrogen Storage Tanks
Sep 2019
Publication
The reproducibility of fire test protocol in the UN Global Technical Regulation on Hydrogen and Fuel Cell Vehicles (GTR#13) is not satisfactory. Results differ from laboratory to laboratory and even at the same laboratory when fires of different heat release (HRR) rate are applied. This is of special importance for fire test of tank without thermally activated pressure relief devise (TPRD) the test requested by firemen. Previously the authors demonstrated a strong dependence of tank fire resistance rating (FRR) i.e. time from fire test initiation to moment of tank rupture on the HRR in a fire. The HRR for complete combustion at the open is a product of heat of combustion and flow rate of a fuel i.e. easy to control in test parameter. It correlates with heat flux to the tank from a fire – the higher HRR the higher heat flux. The control of only temperature underneath a tank in fire test as per the current fire test protocol of UN GTR#13 without controlling HRR of fire source is a reason of poor fire test reproducibility. Indeed a candle flame can easily provide a required by the protocol temperature in points of control but such test arrangements could never lead to tank rupture due to fast heat dissipation from such tiny fire source i.e. insufficient and very localised heat flux to the tank. Fire science requires knowledge of heat flux along with the temperature to characterise fire dynamics. In our study published in 2018 the HRR is suggested as an easy to control parameter to ensure the fire test reproducibility. This study demonstrates that the use of specific heat release rate HRR/A i.e. HRR in a fire source divided by the area of the burner projection A enables testing laboratories to change freely a burner size depending on a tank size without affecting fire test reproducibility. The invariance of FRR at its minimum level with increase of HRR/A above 1 MW/m2 has been discovered first numerically and then confirmed by experiments with different burners and fuels. The validation of computational fluid dynamics (CFD) model against the fire test data is presented. The numerical experiments with localised fires under a vehicle with different HRR/A are performed to understand the necessity of the localised fire test protocol. The understanding of fire test underlying physics will underpin the development of protocol providing test reproducibility.
Shielded Hydrogen Passivation – A Novel Method for Introducing Hydrogen into Silicon
Sep 2017
Publication
This paper reports a new approach for exposing materials including solar cell structures to atomic hydrogen. This method is dubbed Shielded Hydrogen Passivation (SHP) and has a number of unique features offering high levels of atomic hydrogen at low temperature whilst inducing no damage. SHP uses a thin metallic layer in this work palladium between a hydrogen generating plasma and the sample which shields the silicon sample from damaging UV and energetic ions while releasing low energy neutral atomic hydrogen onto the sample. In this paper the importance of the preparation of the metallic shield either to remove a native oxide or to contaminate intentionally the surface are shown to be potential methods for increasing the amount of atomic hydrogen released. Excellent damage free surface passivation of thin oxides is observed by combining SHP and corona discharge obtaining minority carrier lifetimes of 2.2 ms and J0 values below 5.47 fA/cm2. This opens up a number of exciting opportunities for the passivation of advanced cell architectures such as passivated contacts and heterojunctions.
Annual Science Review 2020
Mar 2020
Publication
HSE maintains a national network of doctors appointed doctors and approved medical examiners of divers who are appointed to deliver certain vital functions under our regulatory framework.1 Over the last year or so we have been reaching out to them and offering training and networking opportunities so that we can learn from each other. Their intelligence from real workplaces helps ensure that our medical approach is grounded by what actually happens and this helped us ensure that our health and work strategy took account of their views. I think that it is increasingly important to share our approaches and our research outcomes on the global stage in an attempt to learn from other researchers around the world. A good example is the work described in this report on the artificial stone issue. I have been lucky enough to work with the Australian research group who identified an epidemic of silicosis from this exposure in their country and helped to facilitate some cross-comparison of materials with our hygienists and measurement scientists. The dialogue continues and I hope that by doing so we can help to prevent such an epidemic from occurring in the UK.<br/>All HSE research findings are published as soon as we are able to do this and this demonstrates both my and Andrew Curran’s commitment to ensure that we publish the evidence we generate to make workplaces healthier for all.
No more items...