United Kingdom
The Bio Steel Cycle: 7 Steps to Net-Zero CO2 Emissions Steel Production
Nov 2022
Publication
CO2 emissions have been identified as the main driver for climate change with devastating consequences for the global natural environment. The steel industry is responsible for ~7–11% of global CO2 emissions due to high fossil-fuel and energy consumption. The onus is therefore on industry to remedy the environmental damage caused and to decarbonise production. This desk research report explores the Bio Steel Cycle (BiSC) and proposes a seven-step-strategy to overcome the emission challenges within the iron and steel industry. The true levels of combined CO2 emissions from the blast-furnace and basic-oxygen-furnace operation at 4.61 t of CO2 emissions/t of steel produced are calculated in detail. The BiSC includes CO2 capture implementing renewable energy sources (solar wind green H2 ) and plantation for CO2 absorption and provision of biomass. The 7-step-implementation-strategy starts with replacing energy sources develops over process improvement and installation of flue gas carbon capture and concludes with utilising biogas-derived hydrogen as a product from anaerobic digestion of the grown agrifood in the cycle. In the past CO2 emissions have been seemingly underreported and underestimated in the heavy industries and implementing the BiSC using the provided seven-steps-strategy will potentially result in achieving net-zero CO2 emissions in steel manufacturing by 2030.
Future Energy Scenarios 2018
Jul 2018
Publication
Welcome to our Future Energy Scenarios. These scenarios which stimulate debate and help inform the decisions that will shape our energy future have never been more important – especially when you consider the extent to which the energy landscape is being transformed.
Hydrogen Storage for a Net-zero Carbon Future
Apr 2023
Publication
If a hydrogen economy is to become a reality along with efficient and decarbonized production and adequate transportation infrastructure deployment of suitable hydrogen storage facilities will be crucial. This is because due to various technical and economic reasons there is a serious possibility of an imbalance between hydrogen supply and demand. Hydrogen storage could also be pivotal in promoting renewable energy sources and facilitating the decarbonization process by providing long duration storage options which other forms of energy storage such as batteries with capacity limitations or pumped hydro with geographical limitations cannot meet. However hydrogen is not the easiest substance to store and handle. Under ambient conditions the extremely low volumetric energy density of hydrogen does not allow for its efficient and economic storage which means it needs to be compressed liquefied or converted into other substances that are easier to handle and store. Currently there are different hydrogen storage solutions at varying levels of technology market and commercial readiness with different applications depending on the circumstances. This paper evaluates the relative merits and techno-economic features of major types of hydrogen storage options: (i) pure hydrogen storage (ii) synthetic hydrocarbons (iii) chemical hydrides (iv) liquid organic hydrogen carriers (v) metal hydrides and (vi) porous materials. The paper also discusses the main barriers to investment in hydrogen storage and highlights key features of a viable business model in particular the policy and regulatory framework needed to address the primary risks to which potential hydrogen storage investors are exposed.
Decarbonisation of Heat and the Role of ‘Green Gas’ in the United Kingdom
May 2018
Publication
This paper looks at the possible role of ‘green gas’ in the decarbonisation of heat in the United Kingdom. The option is under active discussion at the moment because of the UK’s rigorous carbon reduction targets and the growing realisation that there are problems with the ‘default’ option of electrifying heat. Green gas appears to be technically and economically feasible. However as the paper discusses there are major practical and policy obstacles which make it unlikely that the government will commit itself to developing ‘green gas’ in the foreseeable future.
Revolutionising Energy Storage: The Latest Breakthrough in Liquid Organic Hydrogen Carriers
Mar 2024
Publication
Liquid organic hydrogen carriers (LOHC) can be used as a lossless form of hydrogen storage at ambient conditions. The storage cycle consists of the exothermic hydrogenation of a hydrogen-lean molecule at the start of the transport usually the hydrogen production site becoming a hydrogen-rich molecule. This loaded molecule can be transported long distances or be used as long-term storage due to its ability to not lose hydrogen over long periods of time. At the site or time of required hydrogen production the hydrogen can be released through an endothermic dehydrogenation reaction. LOHCs show similar properties to crude oils such as petroleum and diesel allowing easy handling and possibilities of integration with current infrastructure. Using this background this paper reviews a variety of aspects of the LOHC life cycle with a focus on currently studied materials. Important factors such as the hydrogenation and dehydrogenation requirements for each material are analysed to determine their ability to be used in current scenarios. Toluene and dibenzyltoluene are attractive options with promising storage attributes however their dehydrogenation enthalpies remain a problem. The economic feasibility of LOHCs being used as a delivery device were briefly analysed. LOHCs have been shown to be the cheapest option for long distance transport (>200 km) and are cheaper than most at shorter distances in terms of specifically transport costs. The major capital cost of an LOHC delivery chain remains the initial investment for the raw materials and the cost of equipment for performing hydrogenation and dehydrogenation. Finally some studies in developing the LOHC field were discussed such as microwave enhancing parts of the process and mixing LOHCs to acquire more advantageous properties.
Advances in Hydrogen Storage Materials: Harnessing Innovative Technology, from Machine Learning to Computational Chemistry, for Energy Storage Solutions
Mar 2024
Publication
The demand for clean and sustainable energy solutions is escalating as the global population grows and economies develop. Fossil fuels which currently dominate the energy sector contribute to greenhouse gas emissions and environmental degradation. In response to these challenges hydrogen storage technologies have emerged as a promising avenue for achieving energy sustainability. This review provides an overview of recent advancements in hydrogen storage materials and technologies emphasizing the importance of efficient storage for maximizing hydrogen’s potential. The review highlights physical storage methods such as compressed hydrogen (reaching pressures of up to 70 MPa) and material-based approaches utilizing metal hydrides and carboncontaining substances. It also explores design considerations computational chemistry high-throughput screening and machine-learning techniques employed in developing efficient hydrogen storage materials. This comprehensive analysis showcases the potential of hydrogen storage in addressing energy demands reducing greenhouse gas emissions and driving clean energy innovation.
Coordinated Control of a Wind-Methanol-Fuel Cell System with Hydrogen Storage
Dec 2017
Publication
This paper presents a wind-methanol-fuel cell system with hydrogen storage. It can manage various energy flow to provide stable wind power supply produce constant methanol and reduce CO2 emissions. Firstly this study establishes the theoretical basis and formulation algorithms. And then computational experiments are developed with MATLAB/Simulink (R2016a MathWorks Natick MA USA). Real data are used to fit the developed models in the study. From the test results the developed system can generate maximum electricity whilst maintaining a stable production of methanol with the aid of a hybrid energy storage system (HESS). A sophisticated control scheme is also developed to coordinate these actions to achieve satisfactory system performance.
OIES Podcast - China and Hydrogen: A Tale of Three Cities
Apr 2023
Publication
China is by far the world’s largest producer and consumer of hydrogen mostly from coal and other fossil fuels and the country has an ambitious hydrogen strategy. In this podcast we dive into the provincial strategies on hydrogen in China and specifically discuss a recent paper published by the Institute entitled China’s hydrogen development: A tale of three cities. The paper looks at the experiences and plans of the pilot hydrogen clusters located in Datong Shanxi province Chengdu in Sichuan province and Zhangjiakou in the northern part of Hebei province which surrounds Beijing. In this podcast we are speaking with the paper’s author Arabella Miller-Wang recently an Aramco fellow at the Institute and also a Research Assistant at the Smith School of Enterprise and the Environment of The University of Oxford as well as with Michal Meidan director of the China Energy Programme at OIES and with Martin Lambert who heads hydrogen research at the OIES.
The podcast can be found on their website.
The podcast can be found on their website.
China's Hydrogen Development: A Tale of Three Cities
Mar 2023
Publication
China is the world’s largest producer and consumer of hydrogen. The country has adopted a domestic strategy that targets significant growth in hydrogen consumption and production. Given the importance of hydrogen in the low-carbon energy transition it is critical to understand China’s hydrogen policies and their implementation as well as the extent to which these contribute to the country’s low-carbon goals.<br/>Existing research has focused on understanding policies and regulations in China and their implications for the country’s hydrogen prospects. This study aims to improve our understanding of central-government initiatives and look at how China’s hydrogen policies are implemented at the local level. The paper examines the three cities of Zhangjiakou (in China’s renewable-rich Hebei province) Datong (in the country’s coal-heartland of Shanxi province) and Chengdu which is rich in hydropower and natural gas. To be sure the three cities analysed in this paper do not cover all regional plans and initiatives but they offer a useful window into local hydrogen policy implementation. They also illustrate the major challenges facing green hydrogen as it moves beyond the narrow highly subsidized field of fuel cell vehicles (FCVs). Indeed costs as well as water land availability and technology continue to be constraints.<br/>The hydrogen policies and road maps reviewed in this paper offer numerous targets—often setting quantitative goals for FCVs hydrogen refuelling stations hydrogen supply chain revenue and new hydrogen technology companies—aligning with the view that hydrogen development is currently more of an industrial policy than a decarbonisation strategy. Indeed hydrogen’s potential to decarbonise sectors such as manufacturing and chemicals is of secondary importance if mentioned at all. But as the cities analysed here view hydrogen as part of their industrial programmes economic development and climate strategies support is likely to remain significant even as the specific incentive schemes will likely evolve.<br/>Given this local hydrogen development model rising demand for hydrogen in China could ultimately increase rather than decrease CO₂ emissions from fossil fuels in the short run. At the same time even though the central government’s hydrogen targets (as laid out in its 2022 policy documents) seem relatively conservative Chinese cities’ appetite for new sources of growth and the ability to fund various business models are worth watching.
Future Energy Scenarios 2019
Jul 2019
Publication
Decarbonising energy is fundamental in the transition towards a sustainable future. Our Future Energy Scenarios aim to stimulate debate to inform the decisions that will help move us towards achieving carbon reduction targets and ultimately shape the energy system of the future.
PEMFC Poly-Generation Systems: Developments, Merits, and Challenges
Oct 2021
Publication
Significant research efforts are directed towards finding new ways to reduce the cost increase efficiency and decrease the environmental impact of power-generation systems. The poly-generation concept is a promising strategy that enables the development of a sustainable power system. Over the past few years the Proton Exchange Membrane Fuel Cell-based Poly-Generation Systems (PEMFC-PGSs) have received accelerated developments due to the low-temperature operation high efficiency and low environmental impact. This paper provides a comprehensive review of the main PEMFC-PGSs including Combined Heat and Power (CHP) co-generation systems Combined Cooling and Power (CCP) co-generation systems Combined Cooling Heat and Power (CCHP) tri-generation systems and Combined Water and Power (CWP) co-generation systems. First the main technologies used in PEMFC-PGSs such as those related to hydrogen production energy storage and Waste Heat Recovery (WHR) etc. are detailed. Then the research progresses on the economic energy and environmental performance of the different PEMFC-PGSs are presented. Also the recent commercialization activities on these systems are highlighted focusing on the leading countries in this field. Furthermore the remaining economic and technical obstacles of these systems along with the future research directions to mitigate them are discussed. The review reveals the potential of the PEMFC-PGS in securing a sustainable future of the power systems. However many economic and technical issues particularly those related to high cost and degradation rate still need to be addressed before unlocking the full benefits of such systems.
Review and Survey of Methods for Analysis of Impurities in Hydrogen for Fuel Cell Vehicles According to ISO 14687:2019
Feb 2021
Publication
Gaseous hydrogen for fuel cell electric vehicles must meet quality standards such as ISO 14687:2019 which contains maximal control thresholds for several impurities which could damage the fuel cells or the infrastructure. A review of analytical techniques for impurities analysis has already been carried out by Murugan et al. in 2014. Similarly this document intends to review the sampling of hydrogen and the available analytical methods together with a survey of laboratories performing the analysis of hydrogen about the techniques being used. Most impurities are addressed however some of them are challenging especially the halogenated compounds since only some halogenated compounds are covered not all of them. The analysis of impurities following ISO 14687:2019 remains expensive and complex enhancing the need for further research in this area. Novel and promising analyzers have been developed which need to be validated according to ISO 21087:2019 requirements.
Analysing Long-term Opportunities for Offshore Energy System Integration in the Danish North Sea
Aug 2021
Publication
This study analyzes future synergies between the Oil and Gas (O&G) and renewables sectors in a Danish context and explores how exploiting these synergies could lead to economic and environmental benefits. We review and highlight relevant technologies and related projects and synthesize the state of the art in offshore energy system integration. All of these preliminary results serve as input data for a holistic energy system analysis in the Balmorel modeling framework. With a timeframe out to 2050 and model scope including all North Sea neighbouring countries this analysis explores a total of nine future scenarios for the North Sea energy system. The main results include an immediate electrification of all operational Danish platforms by linking them to the shore and/or a planned Danish energy island. These measures result in cost and CO2 emissions savings compared to a BAU scenario of 72% and 85% respectively. When these platforms cease production this is followed by the repurposing of the platforms into hydrogen generators with up to 3.6 GW of electrolysers and the development of up to 5.8 GW of floating wind. The generated hydrogen is assumed to power the future transport sector and is delivered to shore in existing and/or new purpose-built pipelines. The contribution of the O&G sector to this hydrogen production amounts to around 19 TWh which represents about 2% of total European hydrogen demand for transport in 2050. The levelized costs (LCOE) of producing this hydrogen in 2050 are around 4 €2020/kg H2 which is around twice those expected in similar studies. But this does not account for energy policies that may incentivize green hydrogen production in the future which would serve to reduce this LCOE to a level that is more competitive with other sources.
Developments in Hydrogen Fuel Cells
Mar 2023
Publication
The rapid growth in fossil fuels has resulted in climate change that needs to be controlled in the near future. Several methods have been proposed to control climate change including the development of efficient energy conversion devices. Fuel cells are environmentally friendly energy conversion devices that can be fuelled by green hydrogen with only water as a by-product or by using different biofuels such as biomass in wastewater urea in wastewater biogas from municipal and agricultural wastes syngas from agriculture wastes and waste carbon. This editorial discusses the fundamentals of the operation of the fuel cell and their application in various sectors such as residential transportation and power generation.
OIES Podcast – PolyGrid 2050: Integrating Hydrogen into the European Energy Transfer Infrastructure Landscape
Feb 2023
Publication
In this podcast David Ledesma talks with Rahmat Poudineh and Martin Palovic about their paper on integrating hydrogen into the European energy transfer infrastructure landscape. As hydrogen is expected to play an important role in European plans towards climate neutrality adequate hydrogen transport (and storage) infrastructure needs to be established. However hydrogen transport infrastructures are costly and have a long lead time. Furthermore hydrogen can be transported via a variety of means: it can be transported as a gas via pipelines or liquid via road rail and sea or even converted to derivatives such as ammonia or methanol for long distance transportation. It is also possible to transfer electrical energy instead of hydrogen and produce hydrogen in a decentralized way. From a system perspective all these infrastructures represent elements of a grand hydrogen ‘polygrid’ that will be the backbone of the future decarbonized energy system. This raises the fundamental question of how to prevent inefficiency and infrastructure redundancy across different modes of hydrogen transport. The task is made more challenging by technological uncertainty the unpredictability of future supply and demand for hydrogen network externality effects and investment irreversibility of grid-based infrastructures. In this podcast we discuss three possible coordination approaches to optimise future cross-sectoral investment into hydrogen transport infrastructure and highlight their strengths and shortcomings.
The podcast can be found on their website.
The podcast can be found on their website.
Future Energy Scenarios 2020
Jul 2020
Publication
Our Future Energy Scenarios (FES) outline four different credible pathways for the future of energy over the next 30 years. Based on input from over 600 experts the report looks at the energy needed in Britain across electricity and gas - examining where it could come from how it needs to change and what this means for consumers society and the energy system itself.
Delivering a Reliable Decarbonised Power System
Mar 2023
Publication
This report illustrates what a reliable resilient decarbonised electricity supply system could look like in 2035 and the steps required to achieve it. It provides new insights and new advice on how such a system can be achieved by 2035 using real weather data and hourly analysis of Great Britain’s power system (Northern Ireland is part of the all-Ireland system). It also looks at the implications for hydrogen.
Hydrogen Champion Report: Recommendations to Government and Industry to Accelerate the Development of the UK Hydrogen Economy
Mar 2023
Publication
The UK Hydrogen Champion engaged with stakeholders across the hydrogen value chain between July and December 2022.<br/>This report summarises their findings and makes recommendations for government and industry to accelerate the growth of the hydrogen sector.
Feasibility Study of Vacuum Pressure Swing Adsorption for CO2 Capture From an SMR Hydrogen Plant: Comparison Between Synthesis Gas Capture and Tail Gas Capture
Dec 2021
Publication
In this paper a feasibility study was carried out to evaluate cyclic adsorption processes for capturing CO2 from either shifted synthesis gas or H2 PSA tail gas of an industrial-scale SMR-based hydrogen plant. It is expected that hydrogen is to be widely used in place of natural gas in various industrial sectors where electrification would be rather challenging. A SMR-based hydrogen plant is currently dominant in the market as it can produce hydrogen at scale in the most economical way. Its CO2 emission must be curtailed significantly by its integration with CCUS. Two Vacuum Pressure Swing Adsorption (VPSA) systems including a rinse step were designed to capture CO2 from an industrial-scale SMR-based hydrogen plant: one for the shifted synthesis gas and the other for the H2 PSA tail gas. Given the shapes of adsorption isotherms zeolite 13X and activated carbon were selected for tail gas and syngas capture options respectively. A simple Equilibrium Theory model developed for the limiting case of complete regeneration was taken to analyse the VPSA systems in this feasibility study. The process performances were compared to each other with respect to product recovery bed productivity and power consumption. It was found that CO2 could be captured more cost-effectively from the syngas than the tail gas unless the desorption pressure was too low. The energy consumption of the VPSA was comparable to those of the conventional MDEA processes.
Technology Roadmap for Hydrogen-fuelled Transportation in the UK
Apr 2023
Publication
Transportation is the sector responsible for the largest greenhouse gas emission in the UK. To mitigate its impact on the environment and move towards net-zero emissions by 2050 hydrogen-fuelled transportation has been explored through research and development as well as trials. This article presents an overview of relevant technologies and issues that challenge the supply use and marketability of hydrogen for transportation application in the UK covering on-road aviation maritime and rail transportation modes. The current development statutes of the different transportation modes were reviewed and compared highlighting similarities and differences in fuel cells internal combustion engines storage technologies supply chains and refuelling characteristics. In addition common and specific future research needs in the short to long term for the different transportation modes were suggested. The findings showed the potential of using hydrogen in all transportation modes although each sector faces different challenges and requires future improvements in performance and cost development of innovative designs refuelling stations standards and codes regulations and policies to support the advancement of the use of hydrogen.
OIES Podcast - The EU Hydrogen and Gas Decarbonisation Package
Mar 2023
Publication
David Ledesma discusses with Alex Barnes the European Commission’s decision to make hydrogen a key part of its decarbonisation strategy. The 2022 REPowerEU Strategy set a target of 20MT consumption of renewable hydrogen by 2030. The Commission is keen to promote a single European market in hydrogen similar to the current one for natural gas. To this end it has published proposals on the regulation of future European hydrogen infrastructure (pipelines storage facilities and import terminals). The EU Council (representing Member States) and the EU Parliament are finalising their amendments to the Commission proposals prior to ‘trilogue’ negotiations and final agreement later this year. The OIES’s paper ‘The EU Hydrogen and Gas Decarbonisation Package: help or hindrance for the development of a European hydrogen market?’ published in March 2023 examines the EU Commission proposals and their suitability for a developing hydrogen market.
The podcast can be found on their website.
The podcast can be found on their website.
Assessing the Performance of Fuel Cell Electric Vehicles Using Synthetic Hydrogen Fuel
Mar 2024
Publication
The deployment of hydrogen fuel cell electric vehicles (FCEVs) is critical to achieve zero emissions. A key parameter influencing FCEV performance and durability is hydrogen fuel quality. The real impact of contaminants on FCEV performance is not well understood and requires reliable measurements from real-life events (e.g. hydrogen fuel in poor-performing FCEVs) and controlled studies on the impact of synthetic hydrogen fuel on FCEV performance. This paper presents a novel methodology to flow traceable hydrogen synthetic fuel directly into the FCEV tank. Four different synthetic fuels containing N2 (90–200 µmol/mol) CO (0.14–5 µmol/mol) and H2S (4–11 nmol/mol) were supplied to an FCEV and subsequently sampled and analyzed. The synthetic fuels containing known contaminants powered the FCEV and provided real-life performance testing of the fuel cell system. The results showed for the first time that synthetic hydrogen fuel can be used in FCEVs without the requirement of a large infrastructure. In addition this study carried out a traceable H2 contamination impact study with an FCEV. The impact of CO and H2S at ISO 14687:2019 threshold levels on FCEV performance showed that small exceedances of the threshold levels had a significant impact even for short exposures. The methodology proposed can be deployed to evaluate the composition of any hydrogen fuel.
Future Pathways for Energy Networks: A Review of International Experiences in High Income Countries
Oct 2022
Publication
Energy networks are the systems of pipes and wires by which different energy vectors are transported from where they are produced to where they are needed. As such these networks are central to facilitating countries’ moves away from a reliance on fossil fuels to a system based around the efficient use of renewable and other low carbon forms of energy. In this review we highlight the challenges facing energy networks from this transition in a sample of key high income countries. We identify the technical and other innovations being implemented to meet these challenges and describe some of the new policy and regulatory developments that are incentivising the required changes. We then review evidence from the literature about the benefits of moving to a more integrated approach based on the concept of a Multi-Vector Energy Network (MVEN). Under this approach the different networks are planned and operated together to achieve greater functionality and performance than simply the sum of the individual networks. We find that most studies identify a range of benefits from an MVEN approach but that these findings are based on model simulations. Further work is therefore needed to verify whether the benefits can be realised in practice and to identify how any risks can be mitigated.
Hydrogenerally - Episode 8: Hydrogen for Combustion
Jan 2023
Publication
In this episode Steffan Eldred Hydrogen Knowledge Transfer Manager and Debra Jones Chemistry Knowledge Transfer Manager from Innovate UK KTN talk about hydrogen combustion with special guest Duncan Engeham European Research and Development Director at Cummins Inc.
The podcast can be found on their website.
The podcast can be found on their website.
Assessing the Sustainability of Liquid Hydrogen for Future Hypersonic Aerospace Flight
Dec 2022
Publication
This study explored the applications of liquid hydrogen (LH2 ) in aerospace projects followed by an investigation into the efficiency of ramjets scramjets and turbojets for hypersonic flight and the impact of grey blue and green hydrogen as an alternative to JP-7 and JP-8 (kerosene fuel). The advantage of LH2 as a propellant in the space sector has emerged from the relatively high energy density of hydrogen per unit volume enabling it to store more energy compared to conventional fuels. Hydrogen also has the potential to decarbonise space flight as combustion of LH2 fuel produces zero carbon emissions. However hydrogen is commonly found in hydrocarbons and water and thus it needs to be extracted from these molecular compounds before use. Only by considering the entire lifecycle of LH2 including the production phase can its sustainability be understood. The results of this study compared the predicted Life Cycle Assessment (LCA) emissions of the production of LH2 using grey blue and green hydrogen for 2030 with conventional fuel (JP-7 and JP-8) and revealed that the total carbon emissions over the lifecycle of LH2 were greater than kerosene-derived fuels.
A Techno-economic Analysis of Ammonia-fuelled Powertrain Systems for Rail Freight
Apr 2023
Publication
All diesel-only trains in the UK will be removed from services by 2040. High volumetric density rapid refuelling ability and sophisticated experience in infrastructure and logistics make ammonia a perfect hydrogen carrying fuel for rail freight which urgently requires an economically viable solution. This study conducted a novel techno-economic study of ammonia-fuelled fuel cell powertrains to be compared with current diesel engine-based system and emerging direct hydrogen-fuelled fuel cell system. The results demonstrate that hydrogen-fuelled Proton Exchange Membrane Fuel Cells (PEMFCs) and ammonia-fuelled PEMFCs (using an ammonia cracker) are more cost-effective in terms of Levelized Cost of Electricity. The ammonia fuel storage requires 61.5-75 % less space compared to the hydrogen storage. Although the ammonia-fuelled Solid Oxide Fuel Cells (SOFCs) powertrain has the highest electricity generation efficiency (56%) the overall cost requires a major reduction by 70% before it could be considered as an economically viable solution.
The Impact of the Energy Crisis on the UK's Net Zero Transition
Mar 2023
Publication
Recent drastic increases in natural gas prices have brought into sharp focus the inherent tensions between net zero transitions energy security and affordability. We investigate the impact of different fuel prices on the energy system transition explicitly accounting for the increasingly coupled power and heating sectors and also incorporate the emerging hydrogen sector. The aim is to identify low-regret decisions and optimal energy system transitions for different fuel prices. We observe that the evolution of the heating sector is highly sensitive to the gas price whereas the composition of the power sector is not qualitatively impacted by gas prices. We also observe that bioenergy plays an important role in the energy system transition and the balance between gas price and biomass prices determines the optimal technology portfolios. The future evolution of the prices of these two resources is highly uncertain and future energy systems must be resilient to these uncertainties.
CCS Industrial Clusters: Building a Social License to Operate
Jun 2022
Publication
This paper explores the opportunities for and progress in establishing a social licence to operate (SLO) for CCS in industrial clusters in the UK focusing on the perspectives of key stakeholders. The evolution of narratives and networks relating to geographical clusters as niches for CCS in industrial decarbonisation is evaluated in relation to seven pillars supporting SLO. Evidence is drawn from a combination of cluster mapping documentary analysis and stakeholder interviews to identify the wider contexts underpinning industrial decarbonisation stakeholder networks interaction and communication critical narratives the conditions for establishing trust and confidence different scales of social licence and maintaining a SLO. The delivery of a sustainable industrial decarbonisation strategy will depend on multiple layers of social licence involving discourses at different scales and potentially for different systems (heat transport different industrial processes). Despite setbacks as a result of funding cancellations and changes to government policy the UK is positioned to be at the forefront of CCS deployment. While there is a high ambition and a strong narrative from government of the urgency to accelerate projects involving CCS clear coordinated strategy and funding frameworks are necessary to build confidence that UK policy is both compatible with net zero and economically viable.
The EU Hydrogen and Gas Decarbonisation Package: Help or Hindrance for the Development of a European Hydrogen Market?
Mar 2023
Publication
The European Commission has identified hydrogen as a key part of its decarbonisation strategy. The 2022 REPowerEU Strategy set a target of 20MT consumption of renewable hydrogen by 2030. The Commission is keen to promote a single European market in hydrogen similar to the current one for natural gas. To this end it has published proposals on the regulation of future European hydrogen infrastructure (pipelines storage facilities and import terminals). The European Council (representing Member States) and the European Parliament are finalising their amendments to the Commission proposals prior to ’trilogue’ negotiations and final agreement later this year. The paper ‘The EU Hydrogen and Gas Decarbonisation Package: help or hindrance for the development of a European hydrogen market?’ examines the European Commission proposals and their suitability for a developing hydrogen market.
An Inter-laboratory Comparison between 13 International Laboratories for Eight Components Relevant for Hydrogen Fuel Quality Assessment
Mar 2024
Publication
The quality of the hydrogen delivered by refuelling stations is critical for end-users and society. The purity of the hydrogen dispensed at hydrogen refuelling points should comply with the technical specifications included in the ISO 14687:2019 and EN 17124:2022 standards. Once laboratories have set up methods they need to verify their performances for example through participation in interlaboratory comparisons. Due to the challenge associated with the production of stable reference materials and transport of these which are produced in hydrogen at high pressure (>10 bar) interlaboratory comparisons have been organized in different steps with increasing extent. This study describes an inter-laboratory comparison exercise for hydrogen fuel involving a large number of participants (13 laboratories) completed in less than a year and included eight key contaminants of hydrogen fuel at level close to the ISO14687 threshold. These compounds were selected based on their high probability of occurrence or because they have been found in hydrogen fuel samples. For the results of the intercomparison it appeared that fully complying with ISO 21087:2019 is still challenging for many participants and highlighted the importance of organising these types of exercises. Many laboratories performed corrective actions based on their results which in turn significantly improved their performances.
A Multi-period Sustainable Hydrogen Supply Chain Model Considering Pipeline Routing and Carbon Emissions: The Case Study of Oman
Nov 2022
Publication
This paper presents a mathematical model for a multi-period hydrogen supply chain design problem considering several design features not addressed in other studies. The model is formulated as a mixed-integer program allowing the production and storage facilities to be extended over time. Pipeline and tube trailer transport modes are considered for carrying hydrogen. The model also allows finding the optimal pipeline routes and the number of transport units. The objective is to obtain an efficient supply chain design within a given time frame in a way that the demand and carbon dioxide emissions constraints are satisfied and the total cost is minimized. A computer program is developed to ease the problem-solving process. The computer program extracts the geographical information from Google Maps and solves the problem using an optimization solver. Finally the applicability of the proposed model is demonstrated in a case study from Oman.
Heating Economics Evaluated Against Emissions: An Analysis of Low-carbon Heating Systems with Spatiotemporal and Dwelling Variations
Oct 2022
Publication
An understanding of heating technologies from the consumers’ perspective is critical to ensure low-carbon technologies are adopted for reducing their current associated emissions. Existing studies from the consumers’ perspective do not compare and optimise the full range and combinations of potential heating systems. There is also little consideration of how spatiotemporal and dwelling variations combined alter the economic and environmental effectiveness of technologies. The novelty of this paper is the creation and use of a new comprehensive framework to capture the range of heating technologies and their viability for any specific dwelling’s traits and climate from customers’ perspective which is missing from current studies. The model optimises combinations of prime heaters energy sources ancillary solar technologies and sizes thermal energy storage sizes and tariffs with hourly heating simulation across a year and compares their operation capital and lifetime costs alongside emissions to realise the true preferential heating systems for customers which could be used by various stakeholders. Using the UK as a case study the results show electrified heating is generally the optimum lifetime cost solution mainly from air source heat pumps coupled with photovoltaics. However direct electrical heating becomes more economically viable as dwelling demands reduce from smaller dwellings or warmer climates as shorter durations of the ownership are considered or with capital cost constraints from lower income households. Understanding this is of high importance as without correctly targeted incentives a larger uptake of direct electrical heating may occur which will burden the electrical network and generation to a greater extent than more efficient heat pumps.
Hydrogen Trapping and Embrittlement in Metals - A Review
Apr 2024
Publication
Hydrogen embrittlement in metals (HE) is a serious challenge for the use of high strength materials in engineering practice and a major barrier to the use of hydrogen for global decarbonization. Here we describe the factors and variables that determine HE susceptibility and provide an overview of the latest understanding of HE mechanisms. We discuss hydrogen uptake and how it can be managed. We summarize hydrogen trapping and the techniques used for its characterization. We also review literature that argues that hydrogen trapping can be used to decrease HE susceptibility. We discuss the future research that is required to advance the understanding of HE and hydrogen trapping and to develop HE-resistant alloys.
Future Energy Scenarios 2022
Jul 2022
Publication
Future Energy Scenarios (FES) represent a range of different credible ways to decarbonise our energy system as we strive towards the 2050 target.<br/>We’re less than 30 years away from the Net Zero deadline which isn’t long when you consider investment cycles for gas networks electricity transmission lines and domestic heating systems.<br/>FES has an important role to play in stimulating debate and helping to shape the energy system of the future.
The Socio-technical Dynamics of Net-zero Industrial Megaprojects: Outside-in and Inside-out Analyses of the Humber Industrial Cluster
Feb 2023
Publication
Although energy-intensive industries are often seen as ‘hard-to-decarbonise’ net-zero megaprojects for industrial clusters promise to improve the technical and economic feasibility of hydrogen fuel switching and carbon capture and storage (CCS). Mobilising insights from the megaproject literature this paper analyses the dynamics of an ambitious first-of-kind net-zero megaproject in the Humber industrial cluster in the United Kingdom which includes CCS and hydrogen infrastructure systems industrial fuel switching CO2 capture green and blue hydrogen production and hydrogen storage. To analyse the dynamics of this emerging megaproject the article uses a socio-technical system lens to focus on developments in technology actors and institutions. Synthesising multiple megaproject literature insights the paper develops a comprehensive framework that addresses both aggregate (‘outside-in’) developments and the endogenous (‘inside-out’) experiences and activities regarding three specific challenges: technical system integration actor coordination and institutional alignment. Drawing on an original dataset involving expert interviews (N = 46) site visits (N = 7) and document analysis the ‘outside-in’ analysis finds that the Humber megaproject has progressed rapidly from outline visions to specific technical designs enacted by new coalitions and driven by strengthening policy targets and financial support schemes. The complementary ‘inside-out’ analysis however also finds 12 alignment challenges that can delay or derail materialisation of the plans. While policies are essential aggregate drivers institutional misalignments presently also prevent project-actors from finalising design and investment decisions. Our analysis also finds important tensions between the project's high-pace delivery focus (to meet government targets) and allowing sufficient time for pilot projects learning-by-doing and design iterations.
Hydrogen Net Zero Investment Roadmap: Leading the Way to Net Zero
Apr 2023
Publication
This net zero investment roadmap summarises government’s hydrogen policies and available investment opportunities.
Socio-economic Aspects of Hydrogen Energy: An Integrative Review
Apr 2023
Publication
Hydrogen can be recognized as the most plausible fuel for promoting a green environment. Worldwide developed and developing countries have established their hydrogen research investment and policy frameworks. This analysis of 610 peer-reviewed journal articles from the last 50 years provides quantitative and impartial insight into the hydrogen economy. By 2030 academics and business professionals believe that hydrogen will complement other renewable energy (RE) sources in the energy revolution. This study conducts an integrative review by employing software such as Bibliometrix R-tool and VOSviewer on socio-economic consequences of hydrogen energy literature derived from the Scopus database. We observed that most research focuses on multidisciplinary concerns such as generation storage transportation application feasibility and policy development. We also present the conceptual framework derived from in-depth literature analysis as well as the interlinkage of concepts themes and aggregate dimensions to highlight research hotspots and emerging patterns. In the future factors such as green hydrogen generation hydrogen permeation and leakage management efficient storage risk assessment studies blending and techno-economic feasibility shall play a critical role in the socio-economic aspects of hydrogen energy research.
The Role of Hydrogen for Deep Decarbonization of Energy Systems: A Chilean Case Study
Mar 2023
Publication
In this paper we implement a long-term multi-sectoral energy planning model to evaluate the role of green hydrogen in the energy mix of Chile a country with a high renewable potential under stringent emission reduction objectives in 2050. Our results show that green hydrogen is a cost-effective and environmentally friendly route especially for hard-to-abate sectors such as interprovincial and freight transport. They also suggest a strong synergy of hydrogen with electricity generation from renewable sources. Our numerical simulations show that Chile should (i) start immediately to develop hydrogen production through electrolyzers all along the country (ii) keep investing in wind and solar generation capacities ensuring a low cost hydrogen production and reinforce the power transmission grid to allow nodal hydrogen production (iii) foster the use of electric mobility for cars and local buses and of hydrogen for long-haul trucks and interprovincial buses and (iv) develop seasonal hydrogen storage and hydrogen cells to be exploited for electricity supply especially for the most stringent emission reduction objectives.
Hydrogenerally - Episode 6: Waste to Hydrogen
Nov 2022
Publication
In this sixth episode Steffan Eldred Hydrogen Innovation Network Knowledge Transfer Manager and Debra Jones Chemistry Knowledge Transfer Manager from Innovate UK KTN discuss why converting waste to hydrogen is so important and explore the hydrogen transition opportunities and challenges in this sector alongside their special guest Rob Dent Senior Research Engineer - Energy Linde and Application Sales Engineer at BOC UK & Ireland.
The podcast can be found on their website.
The podcast can be found on their website.
Techno-economic Assessment of Offshore Wind-to-hydrogen Scenarios: A UK Case Study
Jan 2023
Publication
The installed capacity electricity generation from wind and the curtailment of wind power in the UK between 2011 and 2021 showed that penetration levels of wind energy and the amount of energy that is curtailed in future would continue to rise whereas the curtailed energy could be utilised to produce green hydrogen. In this study data were collected technologies were chosen systems were designed and simulation models were developed to determine technical requirements and levelised costs of hydrogen produced and transported through different pathways. The analysis of capital and operating costs of the main components used for onshore and offshore green hydrogen production using offshore wind including alternative strategies for hydrogen storage and transport and hydrogen carriers showed that a significant reduction in cost could be achieved by 2030 enabling the production of green hydrogen from offshore wind at a competitive cost compared to grey and blue hydrogen. Among all scenarios investigated in this study compressed hydrogen produced offshore is the most cost-effective scenario for projects starting in 2025 although the economic feasibility of this scenario is strongly affected by the storage period and the distance to the shore of the offshore wind farm. Alternative scenarios for hydrogen storage and transport such as liquefied hydrogen and methylcyclohexane could become more cost-effective for projects starting in 2050 when the levelised cost of hydrogen could reach values of about £2 per kilogram of hydrogen or lower.
How Hydrogen (H2) Can Support Food Security: From Farm to Fork
Mar 2024
Publication
Molecular hydrogen (H2 ) is a low-molecular-weight non-polar and electrochemically neutral substance that acts as an effective antioxidant and cytoprotective agent with research into the effects of H2 incorporation into the food chain at various stages rapidly gaining momentum. H2 can be delivered throughout the food growth production delivery and storage systems in numerous ways including as a gas as hydrogen-rich water (HRW) or with hydrogen-donating food supplements such as calcium (Ca) or magnesium (Mg). In plants H2 can be exploited as a seedpriming agent during seed germination and planting during the latter stages of plant development and reproduction as a post-harvest treatment and as a food additive. Adding H2 during plant growth and developmental stages is noted to improve the yield and quality of plant produce through modulating antioxidant pathways and stimulating tolerance to such environmental stress factors as drought stress enhanced tolerance to herbicides (paraquat) and increased salinity and metal toxicity. The benefits of pre- and post-harvest application of H2 include reductions in natural senescence and microbial spoilage which contribute to extending the shelf-life of animal products fruits grains and vegetables. This review collates empirical findings pertaining to the use of H2 in the agri-food industry and evaluates the potential impact of this emerging technology.
Hydrogenerally - Episode 10: Green Hydrogen Production
Feb 2023
Publication
Debra Jones Chemistry Knowledge Transfer Manager and Simon Buckley Zero Emission Mobility Knowledge Transfer Manager from Innovate UK KTN talk about green hydrogen production with their special guest Chris Jackson CEO & Founder at Protium.
This podcast discussion centres around methods of producing clean hydrogen from renewable energy sources the innovative projects Protium is working on and how much green hydrogen will the UK produce by 2030 and beyond.
The podcast can be found on their website.
This podcast discussion centres around methods of producing clean hydrogen from renewable energy sources the innovative projects Protium is working on and how much green hydrogen will the UK produce by 2030 and beyond.
The podcast can be found on their website.
Challenges of Industrial-Scale Testing Infrastructure for Green Hydrogen Technologies
Apr 2023
Publication
Green hydrogen is set to become the energy carrier of the future provided that production technologies such as electrolysis and solar water splitting can be scaled to global dimensions. Testing these hydrogen technologies on the MW scale requires the development of dedicated new test facilities for which there is no precedent. This perspective highlights the challenges to be met on the path to implementing a test facility for large-scale water electrolysis photoelectrochemical and photocatalytic water splitting and aims to serve as a much-needed blueprint for future test facilities based on the authors’ own experience in establishing the Hydrogen Lab Leuna. Key aspects to be considered are the electricity and utility requirements of the devices under testing the analysis of the produced H2 and O2 and the safety regulations for handling large quantities of H2 . Choosing the right location is crucial not only for meeting these device requirements but also for improving financial viability through supplying affordable electricity and providing a remunerated H2 sink to offset the testing costs. Due to their lower TRL and requirement for a light source large-scale photocatalysis and photoelectrochemistry testing are less developed and the requirements are currently less predictable.
Hydrogen from Offshore Wind: Investor Perspective on the Profitability of a Hybrid System Including for Curtailment
Mar 2020
Publication
Accommodating renewables on the electricity grid may hinder development opportunities for offshore wind farms (OWFs) as they begin to experience significant curtailment or constraint. However there is potential to combine investment in OWFs with Power-to-Gas (PtG) converting electricity to hydrogen via electrolysis for an alternative/complementary revenue. Using historic wind speed and simulated system marginal costs data this work models the electricity generated and potential revenues of a 504 MW OWF. Three configurations are analysed; (1) all electricity is sold to the grid (2) all electricity is converted to hydrogen and sold and (3) a hybrid system where power is converted to hydrogen when curtailment occurs and/or when the system marginal cost is low with the effect of curtailment analysed in each scenario. These represent the status quo a potential future configuration and an innovative business model respectively. The willingness of an investor to build PtG are determined by changes to the net present value (NPV) of a project. Results suggest that configuration (1) is most profitable and that curtailment mitigation alone is not sufficient to secure investment in PtG. By acting as an artificial floor in the electricity price a hybrid configuration (3) is promising and increases NPV for all hydrogen values greater than €4.2/kgH2. Hybrid system attractiveness increases with curtailment only if the hydrogen value is significantly above the levelised cost of €3.77/kgH2. In order for an investor to choose to pursue configuration (2) the offshore wind farm would have to anticipate 8.5% curtailment and be able to receive €4.5/kgH2 or 25% curtailment and receive €4/kgH2. The capital costs and discount rates are the most sensitive parameters and ambitious combinations of technology improvements could produce a levelised cost of €3/kgH2.
Cost and Thermodynamic Analysis of Wind-Hydrogen Production via Multi-energy Systems
Mar 2024
Publication
With rising temperatures extreme weather events and environmental challenges there is a strong push towards decarbonization and an emphasis on renewable energy with wind energy emerging as a key player. The concept of multi-energy systems offers an innovative approach to decarbonization with the potential to produce hydrogen as one of the output streams creating another avenue for clean energy production. Hydrogen has significant potential for decarbonizing multiple sectors across buildings transport and industries. This paper explores the integration of wind energy and hydrogen production particularly in areas where clean energy solutions are crucial such as impoverished villages in Africa. It models three systems: distinct configurations of micro-multi-energy systems that generate electricity space cooling hot water and hydrogen using the thermodynamics and cost approach. System 1 combines a wind turbine a hydrogen-producing electrolyzer and a heat pump for cooling and hot water. System 2 integrates this with a biomass-fired reheat-regenerative power cycle to balance out the intermittency of wind power. System 3 incorporates hydrogen production a solid oxide fuel cell for continuous electricity production an absorption cooling system for refrigeration and a heat exchanger for hot water production. These systems are modeled with Engineering Equation Solver and analyzed based on energy and exergy efficiencies and on economic metrics like levelized cost of electricity (LCOE) cooling (LCOC) refrigeration (LCOR) and hydrogen (LCOH) under steady-state conditions. A sensitivity analysis of various parameters is presented to assess the change in performance. Systems were optimized using a multiobjective method with maximizing exergy efficiency and minimizing total product unit cost used as objective functions. The results show that System 1 achieves 79.78 % energy efficiency and 53.94 % exergy efficiency. System 2 achieves efficiencies of 55.26 % and 27.05 % respectively while System 3 attains 78.73 % and 58.51 % respectively. The levelized costs for micro-multi-energy System 1 are LCOE = 0.04993 $/kWh LCOC = 0.004722 $/kWh and LCOH = 0.03328 $/kWh. For System 2 these values are 0.03653 $/kWh 0.003743 $/kWh and 0.03328 $/kWh. In the case of System 3 they are 0.03736 $/kWh 0.004726 $/kWh and 0.03335 $/kWh and LCOR = 0.03309 $/kWh. The results show that the systems modeled here have competitive performance with existing multi-energy systems powered by other renewables. Integrating these systems will further the sustainable and net zero energy system transition especially in rural communities.
Decarbonisation of Heavy-duty Diesel Engines Using Hydrogen Fuel: A Review of the Potential Impact NOx Emissions
Jul 2022
Publication
As countries seek ways to meet climate change commitments hydrogen fuel offers a low-carbon alternative for sectors where battery electrification may not be viable. Blending hydrogen with fossil fuels requires only modest technological adaptation however since combustion is retained nitrogen oxides (NOx) emissions remain a potential disbenefit. We review the potential air quality impacts arising from the use of hydrogen–diesel blends in heavy-duty diesel engines a powertrain which lends itself to hydrogen co-fuelling. Engine load is identified as a key factor influencing NOx emissions from hydrogen–diesel combustion in heavy-duty engines although variation in other experimental parameters across studies complicates this relationship. Combining results from peer-reviewed literature allows an estimation to be made of plausible NOx emissions from hydrogen–diesel combustion relative to pure-diesel combustion. At 0–30% engine load which encompasses the average load for mobile engine applications NOx emissions changes were in the range 59 to +24% for a fuel blend with 40 e% hydrogen. However at 50–100% load which approximately corresponds to stationary engine applications NOx emissions changes were in the range 28 to +107%. Exhaust gas recirculation may be able to reduce NOx emissions at very high and very low loads when hydrogen is blended with diesel and existing exhaust aftertreatment technologies are also likely to be effective. Recent commercial reporting on the development of hydrogen and hydrogen–diesel dual fuel combustion in large diesel engines are also summarised. There is currently some disconnection between manufacturer reported impacts of hydrogen-fuelling on NOx emissions (always lower emissions) and the conclusions drawn from the peer reviewed literature (frequently higher emissions).
Performance of Three Typical Domestic Gas Stoves Operated with Methane-hydrogen Mixture
Dec 2022
Publication
Hydrogen blending into natural gas has attracted significant attention in domestic applications. The paper studied the effects of natural gas mixed with hydrogen at 0% (vol) 5% 10% 15% 20% and 25% on the performance of typical round-port gas stove (TRPGS) swirling strip-port gas stove (SSPGS) and radiant porous media gas stove (RPMGS). The experimental results show that flame length shortens with the increase of hydrogen proportion and the combustion remains stable when the hydrogen proportion is equal to or less than 25%. With increasing hydrogen proportion the measured heat inputs of the three types of domestic gas stoves decrease gradually and the average thermal efficiency of TRPGS and SSPGS increase by 0.82% and 1.18% respectively. In addition the average efficiency of the RPMGS first increases by 1.35% under a hydrogen proportion of 15% and then decreases by 1.36% under a hydrogen proportion of 25%. In terms of flue gas emission CO emission reduces significantly with increasing hydrogen proportion while NOX emissions remain almost unchanged.
Techno-economic Analysis of Large-scale Green Hydrogen Production and Storage
Jun 2023
Publication
Producing clean energy and minimising energy waste are essential to achieve the United Nations sustainable development goals such as Sustainable Development Goal 7 and 13. This research analyses the techno-economic potential of waste heat recovery from multi-MW scale green hydrogen production. A 10 MW proton exchange membrane electrolysis process is modelled with a heat recovery system coupled with an organic Rankine cycle (ORC) to drive the mechanical compression of hydrogen. The technical results demonstrate that when implementing waste heat recovery coupled with an ORC the first-law efficiency of electrolyser increases from 71.4% to 98%. The ORC can generate sufficient power to drive the hydrogen's compression from the outlet pressure at the electrolyser 30 bar up to 200 bar. An economic analysis is conducted to calculate the levelised cost of hydrogen (LCOH) of system and assess the feasibility of implementing waste heat recovery coupled with ORC. The results reveal that electricity prices dominate the LCOH. When electricity prices are low (e.g. dedicated offshore wind electricity) the LCOH is higher when implementing heat recovery. The additional capital expenditure and operating expenditure associated with the ORC increases the LCOH and these additional costs outweigh the savings generated by not purchasing electricity for compression. On the other hand heat recovery and ORC become attractive and feasible when grid electricity prices are higher.
Life Cycle Cost Analysis of an Autonomous Underwater Vehicle that Employs Hydrogen Fuel Cell
Feb 2024
Publication
The use of autonomous vehicles for marine and submarine work has risen considerably in the last decade. Developing new monitoring systems navigation and communications technologies allows a wide range of operational possibilities. Autonomous Underwater Vehicles (AUVs) are being used in offshore missions and applications with some innovative purposes by using sustainable and green energy sources. This paper considers an AUV that uses a hydrogen fuel cell achieving zero emissions. This paper analyses the life cycle cost of the UAV and compares it with a UAV powered by conventional energy. The EN 60300-3-3 guidelines have been employed to develop the cost models. The output results show estimations for the net present value under different scenarios and financial strategies. The study has been completed with the discount rate sensibility analysis in terms of financial viability.
The UK Hydrogen Innovation Opportunity
Apr 2024
Publication
The report considers the full end-to-end nature of the hydrogen economy to ensure there is a common understanding of the economic opportunity it could represent by 2050. Insights from across industry have brought clarity to both market and technology requirements identifying four focus areas that represent the greatest potential benefit for the UK. It highlights the steps needed to build the UK industrial capability and capacity to position the UK as a market leader. The UK Hydrogen Innovation Opportunity has been developed with and for industry with the first phase of industrial engagement involving over 250 businesses and 12 sector bodies. A second phase of industrial engagement will expand to a broader set of consulted stakeholder groups concluding with a report entitled Hydrogen Innovation: The Case for Action in summer 2024. This will seek to validate the proposed focus areas provide more detailed scope definition the size of the opportunity and outline the steps required to secure them for the UK.
No more items...