United Kingdom
Gas Goes Green: Britain's Hydrogen Network Plan Report
Jan 2021
Publication
Britain stands on the cusp of a world-leading hydrogen revolution and one which we are almost uniquely positioned to take advantage of. With an extensive world-leading gas grid huge amounts of offshore wind resource and liquid energy markets there are few other places as well positioned as the UK to lead the international race to build a hydrogen economy. Published as part of Energy Networks Association’s Gas Goes Green programme Britain’s Hydrogen Network Plan will play a vital role in delivering the UK’s ambitions for hydrogen as set out in the Prime Minister’s Ten Point Plan For A Green Industrial Revolution.<br/>This Plan sets out how Britain’s gas network companies will enable 100% hydrogen to be transported for use in different sectors of the UK economy. It also identifies the wider actions needed to provide hydrogen production and storage showing how transitioning the gas networks to hydrogen will allow hydrogen to play a full role in achieving net zero in the hard to decarbonise sectors such as industry heavy transport and domestic heating saving an estimated 40 million tonnes of CO2 emissions every year. All five of Britain’s gas network companies responsible for owning and operating £24bn of critical national energy infrastructure are committing through this Plan to delivering this work. It forms a key part of their ambition to building the world’s first zero carbon gas grid here in the UK.<br/>Britain’s Hydrogen Network Plan is founded on four tenets that will underpin the role of Britain’s gas network infrastructure in a hydrogen economy. These tenets reflect the breadth and scale of the impact that the transformation of our gas networks will have. They will guide how gas network companies ensure people’s safety in a fast moving and changing energy system. They reflect how the companies will maintain security of supply to our homes and businesses as we move away from the natural gas that has been the bedrock of our energy system for half a century. They will support the public’s ability to choose the right technology so households and businesses can choose the low carbon technologies that are best suited to their needs. And they will deliver jobs and investment so the transition of our gas networks has a lasting and enduring economic impact in communities across the country.<br/>As we look to the future the exciting role that hydrogen has to play in delivering a net zero economy is becoming increasingly clear. We look forward to working closely with the customers we serve the Government and the wider energy industry to turn that ambition into reality.
Hydrogen Bubble Dispersion and Surface Bursting Behaviour
Sep 2013
Publication
In many processes where hydrogen may be released from below a liquid surface there has been concern regarding how such releases might ultimately disperse in an ullage space. Knowledge of the extent and persistence of any flammable volume formed is needed for hazardous area classification as well as for validation of explosion modelling or experiments. Following an initial release of hydrogen the overall process can be subdivided into three stages (i) rise and possible break-up of a bubble in the liquid (ii) formation and bursting of a thin gas-liquid-gas interface at the liquid surface and (iii) dispersion of the released gas. An apparatus based on a large glass sided water tank has been constructed which employs two synchronised high-speed imaging systems to record the behaviour of hydrogen bubble release and dispersion. A high-speed digital video system records the rising of the bubbles and the formation and bursting of the gas-liquid-gas interface at the liquid surface. An additional schlieren system is used to visualise the hydrogen release as bubbles burst at the liquid surface. The bubble burst mechanism can clearly be described from the results obtained. Following the nucleation of a hole surface tension causes the liquid film to peel back rapidly forming a ring/torus of liquid around the enlarging hole. This process lasts only a few milliseconds. Although some hydrogen can be seen to be expelled from the bubble much seems to remain in place as the film peels away. To assess the extent of the flammable plume following a bubble burst the apparatus was modified to include an electric-arc igniter. In order to identify plumes coincident in space with the igniter a schlieren system was built capable of recording simultaneously in two orthogonal directions. This confirmed that clouds undetected by the schlerien imaging could not be ignited with the electric arc igniter.
Innovation Insights Brief: Energy Scenarios Comparison Review
Apr 2019
Publication
Energy transition is a part of a much wider Grand Transition which is not all about energy. Energy transition cannot be achieved all at once or by any one actor. Relying only on better energy modelling and forecasting to guide successful transition will be fatal even in a data-rich era.<br/>It is timely for energy leaders to ask:<br/>Are global energy scenarios achieving their potential in opening up action on new energy futures?<br/>How do the Council’s World Energy Scenarios compare with global energy outlooks scenarios and normative visions used by others and what can we learn by contrasting the increasing richness of energy futures thinking?<br/>In anticipation of the 24th World Energy Congress the Council is refreshing its global energy foresight and updating its global scenarios narratives. The focus is on an ‘innovation twist to 2040’ and the use of scenarios to explore and navigate new exponential growth opportunities for accelerating successful energy transition in an era of epic and disruptive innovation.<br/>As a part of the refresh the Council has conducted a comparison study of global energy scenarios in order to test the continued plausibility relevance and challenge of its own existing scenario set the World Energy Scenarios 2016 launched at the 23rd World Energy Congress in Istanbul in 2016.<br/>By comparing the methods narratives and assumptions associated with a benchmarkable set of global energy futures initiatives and studies the Council seeks to provide our members with clearer understanding and new insights on energy transition while preparing them to better engage with leadership dialogues which pivot on visions of a new energy future.<br/>The review also provides an opportunity to reflect on the challenges and obstacles for utilising global energy scenarios to drive impact and the challenges in bridging agile and flexible qualitative storytelling with long term quantitative energy modelling."
Technologies and Infrastructures Underpinning Future CO2 Value Chains: A Comprehensive Review and Comparative Analysis
Feb 2018
Publication
In addition to carbon capture and storage efforts are also being focussed on using captured CO2 both directly as a working fluid and in chemical conversion processes as a key strategy for mitigating climate change and achieving resource efficiency. These processes require large amounts of energy which should come from sustainable and ideally renewable sources. A strong value chain is required to support the production of valuable products from CO2 . A value chain is a network of technologies and infrastructures (such as conversion transportation storage) along with its associated activities (such as sourcing raw materials processing logistics inventory management waste management) required to convert low-value resources to high-value products and energy services and deliver them to customers. A CO2 value chain involves production of CO2 (involving capture and purification) technologies that convert CO2 and other materials into valuable products sourcing of low-carbon energy to drive all of the transformation processes required to convert CO2 to products (including production of hydrogen syngas methane etc.) transport of energy and materials to where they are needed managing inventory levels of resources and delivering the products to customers all in order to create value (economic environmental social etc.).
Technologies underpinning future CO2 value chains were examined. CO2 conversion technologies such as urea production Sabatier synthesis Fischer-Tropsch synthesis hydrogenation to methanol dry reforming hydrogenation to formic acid and electrochemical reduction were assessed and compared based on key performance indicators such as: CAPEX OPEX electricity consumption TRL product price net CO2 consumption etc. Technologies for transport and storage of key resources are also discussed. This work lays the foundation for a comprehensive whole-system value chain analysis modelling and optimisation.
Technologies underpinning future CO2 value chains were examined. CO2 conversion technologies such as urea production Sabatier synthesis Fischer-Tropsch synthesis hydrogenation to methanol dry reforming hydrogenation to formic acid and electrochemical reduction were assessed and compared based on key performance indicators such as: CAPEX OPEX electricity consumption TRL product price net CO2 consumption etc. Technologies for transport and storage of key resources are also discussed. This work lays the foundation for a comprehensive whole-system value chain analysis modelling and optimisation.
Reversible Ammonia-based and Liquid Organic Hydrogen Carriers for High-density Hydrogen Storage: Recent Progress
Feb 2019
Publication
Liquid hydrogen carriers are considered to be attractive hydrogen storage options because of their ease of integration into existing chemical transportation infrastructures when compared with liquid or compressed hydrogen. The development of such carriers forms part of the work of the International Energy Agency Task 32: Hydrogen-Based Energy Storage. Here we report the state-of-the-art for ammonia-based and liquid organic hydrogen carriers with a particular focus on the challenge of ensuring easily regenerable high-density hydrogen storage.
Performance Evaluation of Empirical Models for Vented Lean Hydrogen Explosions
Sep 2017
Publication
Explosion venting is a method commonly used to prevent or minimize damage to an enclosure caused by an accidental explosion. An estimate of the maximum overpressure generated though explosion is an important parameter in the design of the vents. Various engineering models (Bauwens et al. 2012 Molkov and Bragin 2015) and European (EN 14994 ) and USA standards (NFPA 68) are available to predict such overpressure. In this study their performance is evaluated using a number of published experiments. Comparison of pressure predictions from various models have also been carried out for the recent experiments conducted by GexCon using a 20 feet ISO container. The results show that the model of Bauwens et al. (2012) predicts well for hydrogen concentration between 16% and 21% and in the presence of obstacles. The model of Molkov et al. (2015) is found to work well for hydrogen concentrations between 10% and 30% without obstacles. In the presence of obstacles as no guidelines are given to set the coefficient for obstacles in the model it was necessary to tune the coefficient to match the experimental data. The predictions of the formulas in NFPA 68 show a large scatter across different tests. The current version of both EN 14994 and NFPA 68 are found to have very limited range of applicability and can hardly be used for vent sizing of hydrogen-air deflagrations. Overall the accuracy of all the engineering models was found to be limited. Some recommendations concerning their applicability will be given for vented lean-hydrogen explosion concentrations of interest to practical applications.
OIES Podcast – Hydrogen: Current Challenges in Creating Viable Business Cases
Apr 2022
Publication
In this podcast David Ledesma talks to Martin Lambert Head of OIES Hydrogen Research about the key messages from the recent European Hydrogen Conference and how they fit with the ongoing research in OIES. In particular they cover the heightened energy security concerns following the Russian invasion of Ukraine and hydrogen ambitions in the REPowerEU document published by the European Commission in early March 2002. They then go on to talk about the growing realism about where hydrogen is more likely to play a role and some of the key challenges to be overcome. Addressing the challenges of creating business cases for use of hydrogen in specific sectors and for transporting it to customers the conversation also addresses the importance of hydrogen storage and the recognition that this area needs more focus both technically and commercially. Finally they talk about the geopolitics of hydrogen and how energy security concerns may influence future development pathways.
The podcast can be found on their website
The podcast can be found on their website
Oxford Energy Podcast – The Role of Ammonia and Hydrogen in Meeting International Maritime Organisation Targets for Decarbonising Shipping
Jul 2021
Publication
The world’s shipping fleet is responsible for approximately 0.9 Gt of CO2 emissions annually around 2.9 per cent of the world’s man-made emissions. Under an IEA ‘business as usual’ scenario this is forecast to rise to almost 1.7 Gt per year by 2050. The industry’s principal regulatory body the International Maritime Organization (IMO) aims to reduce world shipping’s greenhouse gas emissions in line with the 2015 Paris Agreement targeting a 50 per cent reduction compared with 2008 levels by 2050. The cost of achieving these emission targets however is about $1 trillion and will require focus from regulators operators and end consumers who in the end will have to pay. In this podcast David Ledesma talks to Bruce Moore Howe Robinson Partners to discuss these issues and ask in such a fragmented industry what the immediate priorities for the marine sector must be and how can it bring about a mix of commercial incentives and regulatory change that result in tangible emissions reductions.
The podcast can be found on their website
The podcast can be found on their website
H2FC SUPERGEN- The Role of Hydrogen and Fuel Cells in Providing Affordable, Secure Low-carbon Heat
May 2014
Publication
This White Paper has been commissioned by the UK Hydrogen and Fuel Cell (H2FC) SUPERGEN Hub to examine the roles and potential benefits of hydrogen and fuel cell technologies for heat provision in future low-carbon energy systems. The H2FC SUPERGEN Hub is an inclusive network encompassing the entire UK hydrogen and fuel cells research community with around 100 UK-based academics supported by key stakeholders from industry and government. It is funded by the UK EPSRC research council as part of the RCUK Energy Programme. This paper is the first of four that will be published over the lifetime of the Hub with the others examining: (i) low-carbon energy systems (including balancing renewable intermittency); (ii) low-carbon transport systems; and (iii) the provision of secure and affordable energy supplies for the future
- Hydrogen and fuel cells are part of the cost-optimal heating technology portfolio in long-term UK energy system scenarios.
- Fuel cell CHP is already being deployed commercially around the world.
- Hydrogen can be a zero-carbon alternative to natural gas. Most technologies that use natural gas can be adapted to use hydrogen and still provide the same level of service.
- Hydrogen and fuel cell technologies avoid some of the disadvantages of other low-carbon heating technologies.
Thermal Radiation from Cryogenic Hydrogen Jet Fires
Sep 2017
Publication
The thermal hazards from ignited under-expanded cryogenic releases are not yet fully understood and reliable predictive tools are missing. This study aims at validation of a CFD model to simulate flame length and radiative heat flux for cryogenic hydrogen jet fires. The simulation results are compared against the experimental data by Sandia National Laboratories on cryogenic hydrogen fires from storage with pressure up to 5 bar abs and temperature in the range 48–82 K. The release source is modelled using the Ulster's notional nozzle theory. The problem is considered as steady-state. Three turbulence models were applied and their performance was compared. The realizable k-ε model showed the best agreement with experimental flame length and radiative heat flux. Therefore it has been employed in the CFD model along with Eddy Dissipation Concept for combustion and Discrete Ordinates (DO) model for radiation. A parametric study has been conducted to assess the effect of selected numerical and physical parameters on the simulations capability to reproduce experimental data. DO model discretisation is shown to strongly affect simulations indicating 10 × 10 as minimum number of angular divisions to provide a convergence. The simulations have shown sensitivity to experimental parameters such as humidity and exhaust system volumetric flow rate highlighting the importance of accurate and extended publication of experimental data to conduct precise numerical studies. The simulations correctly reproduced the radiative heat flux from cryogenic hydrogen jet fire at different locations.
A Simple Model for Calculating Peak Pressure in Vented Explosions of Hydrogen and Hydrocarbons
Apr 2019
Publication
The authors presented a basic mathematical model for estimating peak overpressure attained in vented explosions of hydrogen in a previous study (Sinha et al. [1]). The model focussed on idealized cases of hydrogen and was not applicable for realistic accidental scenarios like presence of obstacles initial turbulent mixture etc. In the present study the underlying framework of the model is reformulated to overcome these limitations. The flame shape computations are simplified. A more accurate and simpler formulation for venting is also introduced. Further by using simplifying assumptions and algebraic manipulations the detailed model consisting of several equations is reduced to a single equation with only four parameters. Two of these parameters depend only on fuel properties and a standard table provided in the Appendix can be used. Therefore to compute the overpressure only the two parameters based on enclosure geometry need to be evaluated. This greatly simplifies the model and calculation effort. Also since the focus of previous investigation was hydrogen properties of hydrocarbon fuels which are much more widely used were not accounted for. The present model also accounts for thermo-physical properties of hydrocarbons and provides table for fuel parameters to be used in the final equation for propane and methane. The model is also improved by addition of different sub-models to account for various realistic accidental scenarios. Moreover no adjustable parameters are used; the same equation is used for all conditions and all gases. Predictions from this simplified model are compared with experimentally measured values of overpressure for hydrogen and hydrocarbons and found to be in good agreement. First the results from experiments focussing on idealized conditions of uniformly mixed fuel in an empty enclosure under quiescent conditions are considered. Further the model applicability is also tested for realistic conditions of accidental explosion consisting of obstacles inside the enclosure non-uniform fuel distribution initial turbulent mixture etc. For all the cases tested the new simple model is found to produce reasonably good predictions.
The Influence of Refractory Metals on the Hydrogen Storage Characteristics of FeTi-based Alloys Prepared by Suspended Droplet Alloying
Jun 2020
Publication
The influence of the addition of refractory metals (molybdenum and tantalum) on the hydrogenation properties of FeTi intermetallic phase-based alloys was investigated. The suspended droplet alloying technique was applied to fabricate FeTiTa-based and FeTiMo-based alloys. The phase composition and hydrogen storage properties of the samples were investigated. The samples modified with the refractory metals exhibited lower plateau pressures and lower hydrogen storage capacities than those of the FeTi reference sample due to solid solution formation. It was observed that the equilibrium pressures decreased with the amount of molybdenum which is in good agreement with the increase in the cell parameters of the TiFe phase. Suspended droplet alloying was found to be a practical method to fabricate alloys with refractory metal additions; however it is appropriate for screening samples with desired chemical and phase compositions rather than for manufacturing purposes.
Hydrogen Transport - Fuelling The Future
Dec 2020
Publication
Through the combustion of fossil fuels the transport sector is responsible for 20-30% of global CO2 emissions. We can support the net-zero one ambition by decarbonising transport modes using green hydrogen fuelled options – hydrogen generated from renewable energy sources such as offshore wind.<br/><br/>We have been working with clients across the hydrogen industry for several years specifically around the generation dispatch and use of hydrogen within energy systems. However interest is swiftly moving to wider hydrogen based solutions including within the fleet rail aviation and maritime sectors.<br/><br/>Our latest ‘Future of Energy’ series explores the opportunity for green fuelled hydrogen transport. We look at each industry in detail the barriers to uptake market conditions and look at how the transport industry could adapt and develop to embrace a net-zero future.
Hydrogen for Heating? Decarbonization Options for Households in the United Kingdom in 2050
Dec 2020
Publication
The heating sector makes up 10% of the United Kingdom’s carbon footprint and residential homes account for a majority of demand. At present central heating from a natural gas-fired boiler is the most common system in the UK but low or zero-carbon hydrogen and renewable electricity are the two primary energy replacement options to reduce the carbon footprint. An important consideration is how using either energy source would affect heating costs. This assessment projects the costs for a typical single-family UK household and climate performance in 2050 using low-GHG or GHG-neutral hydrogen renewable electricity or a combination of both. The cost of using boilers or fuel cells in 2050 with two types of hydrogen are assessed: produced via steam-methane reforming (SMR) combined with carbon capture and storage (CCS) and electrolysis using zero-carbon renewable electricity. The costs of heat pumps the most promising heating technology for the direct use of renewable electricity are also assessed in two scenarios: a heat pump only and a hybrid heat pump with an auxiliary hydrogen boiler.
You can download this document from the International Council On Clean Transportation website linked here
You can download this document from the International Council On Clean Transportation website linked here
H21- Leeds City Gate Project Report
Jul 2016
Publication
The H21 Leeds City Gate project is a study with the aim of determining the feasibility from both a technical and economic viewpoint of converting the existing natural gas network in Leeds one of the largest UK cities to 100% hydrogen. The project has been designed to minimise disruption for existing customers and to deliver heat at the same cost as current natural gas to customers. The project has shown that:
The project has provided costs for the scheme and has modelled these costs in a regulatory finance model. In addition the availability of low-cost bulk hydrogen in a gas network could revolutionise the potential for hydrogen vehicles and via fuel cells support a decentralised model of combined heat and power and localised power generation.
This report and any attachment is freely available on the ENA Smarter Networks Portal here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
- The gas network has the correct capacity for such a conversion
- It can be converted incrementally with minimal disruption to customers
- Minimal new energy infrastructure will be required compared to alternatives
- The existing heat demand for Leeds can be met via steam methane reforming and salt cavern storage using technology in use around the world today
The project has provided costs for the scheme and has modelled these costs in a regulatory finance model. In addition the availability of low-cost bulk hydrogen in a gas network could revolutionise the potential for hydrogen vehicles and via fuel cells support a decentralised model of combined heat and power and localised power generation.
This report and any attachment is freely available on the ENA Smarter Networks Portal here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
Scottish Hydrogen Assessment
Dec 2020
Publication
During 2020 the Scottish Government in partnership with Highlands and Islands Enterprise and Scottish Enterprise commissioned Arup and E4Tech to carry out a hydrogen assessment to deepen our evidence base in order to inform our policies on hydrogen going forward. The assessment aims to investigate how and where hydrogen may fit within the evolving energy system technically geographically and economically. To assist in this consideration a key part of the Hydrogen Assessment is the development of distinct viable scenarios for hydrogen deployment in Scotland and the economic assessment of those scenarios.<br/>From our assessment it is clear that hydrogen is not just an energy and emissions reduction opportunity; it could also have an important role in generating new economic opportunities in Scotland. The assessment forms an important part of the evidence base that informed the development of the Hydrogen Policy Statement.
Progress in Biofuel Production from Gasification
May 2017
Publication
Biofuels from biomass gasification are reviewed here and demonstrated to be an attractive option. Recent progress in gasification techniques and key generation pathways for biofuels production process design and integration and socio-environmental impacts of biofuel generation are discussed with the goal of investigating gasification-to-biofuels’ credentials as a sustainable and eco-friendly technology. The synthesis of important biofuels such as bio-methanol bio-ethanol and higher alcohols bio-dimethyl ether Fischer Tropsch fuels bio-methane bio-hydrogen and algae-based fuels is reviewed together with recent technologies catalysts and reactors. Significant thermodynamic studies for each biofuel are also examined. Syngas cleaning is demonstrated to be a critical issue for biofuel production and innovative pathways such as those employed by Choren Industrietechnik Germany and BioMCN the Netherlands are shown to allow efficient methanol generation. The conversion of syngas to FT transportation fuels such as gasoline and diesel over Co or Fe catalysts is reviewed and demonstrated to be a promising option for the future of biofuels. Bio-methane has emerged as a lucrative alternative for conventional transportation fuel with all the advantages of natural gas including a dense distribution trade and supply network. Routes to produce H2 are discussed though critical issues such as storage expensive production routes with low efficiencies remain. Algae-based fuels are in the research and development stage but are shown to have immense potential to become commercially important because of their capability to fix large amounts of CO2 to rapidly grow in many environments and versatile end uses. However suitable process configurations resulting in optimal plant designs are crucial so detailed process integration is a powerful tool to optimize current and develop new processes. LCA and ethical issues are also discussed in brief. It is clear that the use of food crops as opposed to food wastes represents an area fraught with challenges which must be resolved on a case by case basis.
Energy Innovation Needs Assessment: Overview
Nov 2019
Publication
This project provides evidence to identify the key innovation needs across the UK’s energy system to inform the prioritisation of public sector investment in low-carbon innovation including any future phases of the Department for Business Energy & Industrial Strategy (BEIS) Energy Innovation1 Programme. The BEIS Energy Innovation Programme aims to accelerate the commercialisation of innovative clean energy technologies and processes into the 2020s and 2030s. The current Programme with a budget of £505 million from 2015-2021 consists of six themes and invests in smart systems industry & CCS (Carbon Capture and Storage) the built environment nuclear renewables and support for energy entrepreneurs and green financing.
Vivid Economics was contracted to lead a consortium with technical expertise in each of the Energy Innovation Needs Assessment (EINA) priority areas. The programme relied on evidence from a programme of workshops with over 180 participants energy system modelling and detailed technical advice. Partners include the Carbon Trust E4tech Imperial College London and Fraser-Nash. The Energy Systems Catapult (ESC) provided analytical evidence using their Energy System Modelling Environment (ESME) to support an early pre-screening of technologies.
Innovations have been prioritised where there is a strong case for UK Government investment. The prioritisation in this report is based on evidence of the potential benefits to the UK via a lower cost energy system and larger export markets. We also consider whether there is a need for UK Government intervention in addition to private and international efforts.
A distinctive feature of this project is its focus on innovation that benefits the whole energy system. Internationally there are other efforts attempting to answer the question of where to target resources to maximise benefits from innovation2. In selecting priorities we identify innovations that can unlock value across electricity heat transport sectors and the rest of the economy.
Vivid Economics was contracted to lead a consortium with technical expertise in each of the Energy Innovation Needs Assessment (EINA) priority areas. The programme relied on evidence from a programme of workshops with over 180 participants energy system modelling and detailed technical advice. Partners include the Carbon Trust E4tech Imperial College London and Fraser-Nash. The Energy Systems Catapult (ESC) provided analytical evidence using their Energy System Modelling Environment (ESME) to support an early pre-screening of technologies.
Innovations have been prioritised where there is a strong case for UK Government investment. The prioritisation in this report is based on evidence of the potential benefits to the UK via a lower cost energy system and larger export markets. We also consider whether there is a need for UK Government intervention in addition to private and international efforts.
A distinctive feature of this project is its focus on innovation that benefits the whole energy system. Internationally there are other efforts attempting to answer the question of where to target resources to maximise benefits from innovation2. In selecting priorities we identify innovations that can unlock value across electricity heat transport sectors and the rest of the economy.
Hydrogen for a Net Zero GB An Integrated Energy Market Perspective
Jul 2020
Publication
Our new independent report finds that hydrogen can play an important role in UK’s ambitious decarbonisation plan and boost its global industrial competitiveness.
Key insights from this new analysis include:
Key insights from this new analysis include:
- New independent report from Aurora Energy Research shows that hydrogen can meet up to half of Great Britain’s (GB) final energy demand by 2050 providing an important pathway to reaching UK’s ambitious Net Zero targets.
- The report concludes that both blue hydrogen (produced from natural gas after reforming to remove carbon content) and green hydrogen (produced by using power to electrolyse water) are expected to play an important role providing up to 480TWh of hydrogen or c.45% of GB’s final energy demand by 2050.
- All Net Zero scenarios require substantial growth in low-carbon generation such as renewables and nuclear. Large-scale hydrogen adoption could help to integrate renewables into the power system by reducing the power sector requirement for flexibility during peak winter months and boosting revenues for clean power generators by c. £3bn per year by 2050.
- The rollout of hydrogen could accelerate green growth and enable the development of globally competitive low-carbon industrial clusters while utilising UK’s competitive advantage on carbon capture.
- In facilitating the identification of a cost-effective hydrogen pathway there are some low-regret options for Government to explore including the stimulation of hydrogen demand in key sectors the deployment of CCS in strategic locations and the standardisation of networks. These initiatives could form an important part of the UK Government’s post-COVID stimulus plan.
Hydrogen for Cooking: A Review of Cooking Technologies, Renewable Hydrogen Systems and Techno-Economics
Dec 2022
Publication
About 3 billion people use conventional carbon-based fuels such as wood charcoal and animal dung for their daily cooking needs. Cooking with biomass causes deforestation and habitat loss emissions of greenhouse gases and smoke pollution that affects people’s health and well-being. Hydrogen can play a role in enabling clean and safe cooking by reducing household air pollution and reducing greenhouse gas emissions. This first-of-a-kind review study on cooking with hydrogen assessed existing cooking technologies and hydrogen systems in developing country contexts. Our critical assessment also included the modelling and experimental studies on hydrogen. Renewable hydrogen systems and their adoptability in developing countries were analysed. Finally we presented a scenario for hydrogen production pathways in developing countries. Our findings indicated that hydrogen is attractive and can be safely used as a cooking fuel. However radical and disruptive models are necessary to transform the traditional cooking landscape. There is a need to develop global south-based hydrogen models that emphasize adoptability and capture the challenges in developing countries. In addition the techno-economic assumptions of the models vary significantly leading to a wide-ranging levelized cost of electricity. This finding underscored the necessity to use comprehensive techno-economic assumptions that can accurately predict hydrogen costs.
Technical Feasibility of Low Carbon Heating in Domestic Buildings
Dec 2020
Publication
Scotland’s Climate Change Plan set an ambition for emissions from buildings to be near zero by 2050 and targets 35% of domestic and 70% of non-domestic buildings’ heat to be supplied using low carbon technologies by 2032. The Climate Change (Emissions Reduction Targets) (Scotland) Act 2019 set a new target for emissions to be net zero by 2045 with interim targets of 75% by 2030 and 90% by 2040. The update to the Climate Change Plan will be published at the end of 2020 to reflect these new targets. The Energy Efficient Scotland programme launched in May 2018 sets out a wide range of measures to promote low carbon heating alongside energy efficiency improvements in Scotland’s buildings. Meeting these targets will require almost all households in Scotland to change the way they heat their homes. It is therefore imperative to advance our understanding of the suitability of the available low carbon heating options across Scotland’s building stock.<br/><br/>The aim of this work is to assess the suitability of low carbon heating technologies in residential buildings in Scotland. The outputs generated through this work will form a key part of the evidence base on low carbon heat which the Scottish Government will use to further develop and strengthen Scotland’s low carbon heat policy in line with the increased level of ambition of achieving Net Zero by 2045.
Carbon Capture, Usage and Storage: An Update on Business Models for Carbon Capture, Usage and Storage
Dec 2020
Publication
An update on the proposed commercial frameworks for transport and storage power and industrial carbon capture business models.
Five Minute Guide to Hydrogen
Feb 2016
Publication
Hydrogen is an emerging energy vector many components of which are mature technologies. Current hydrogen technology is already able to provide advantages over other energy vectors and many of its challenges are being actively addressed by research and development.<br/><br/>Hydrogen can be derived stored and converted through various processes each of which represents different levels of carbon intensity efficiency and end use functionality. Our latest five minute guide looks at this energy vector in brief including public perception transportation and storage as well as using hydrogen as a solution.
Hydrogen from Natural Gas – The Key to Deep Decarbonisation
Jul 2019
Publication
This Discussion Paper was commissioned by Zukunft ERDGAS to contribute to the debate concerning the deep decarbonisation of the European energy sector required to meet the Paris Agreement targets. Previous discussion papers have put forward decarbonisation pathways that rely heavily on ‘All-Electric’ solutions. These depend predominantly on renewable electricity to deliver decarbonisation of all sectors. This paper offers an alternative to an ‘All-Electric’ solution by building an alternative pathway that allows the inclusion of gas based technologies alongside the ‘All-Electric’ pathway technologies. The new pathway demonstrates that hydrogen from natural gas can be an essential complement to renewable electricity. The pathway also considers the benefits of utilising methane pyrolysis technology in Europe to produce zero carbon hydrogen.
Read the full report at this link
Read the full report at this link
Scottish Offshore Wind to Green Hydrogen Opportunity Assessment
Dec 2020
Publication
Initial assessment of Scotland’s opportunity to produce green hydrogen from offshore wind
Summary of Key Findings
Summary of Key Findings
- Scotland has an abundant offshore wind resource that has the potential to be a vital component in our net zero transition. If used to produce green hydrogen offshore wind can help abate the emissions of historically challenging sectors such as heating transport and industry.
- The production of green hydrogen from offshore wind can help overcome Scotland’s grid constraints and unlock a massive clean power generation resource creating a clean fuel for Scottish industry and households and a highly valuable commodity to supply rapidly growing UK and European markets.
- The primary export markets for Scottish green hydrogen are expected to be in Northern Europe (Germany Netherlands & Belgium). Strong competition to supply these markets is expected to come from green hydrogen produced from solar energy in Southern Europe and North Africa.
- Falling wind and electrolyser costs will enable green hydrogen production to be cost-competitive in the key transport and heat sectors by 2032. Strategic investment in hydrogen transportation and storage is essential to unlocking the economic opportunity for Scotland.
- Xodus’ analysis supports a long-term outlook of LCoH falling towards £2/kg with an estimated reference cost of £2.3 /kg in 2032 for hydrogen delivered to shore.
- Scotland has extensive port and pipeline infrastructure that can be repurposed for hydrogen export to the rest of UK and to Europe. Pipelines from the ‘90s are optimal for this purpose as they are likely to retain acceptable mechanical integrity and have a metallurgy better suited to hydrogen service. A more detailed assessment of export options should be performed to provide a firm foundation for early commercial green hydrogen projects.
- There is considerable hydrogen supply chain overlap with elements of parallel sectors most notably the oil and gas offshore wind and subsea engineering sectors. Scotland already has a mature hydrocarbon supply chain which is engaged in supporting green hydrogen. However a steady pipeline of early projects supported by a clear financeable route to market will be needed to secure this supply chain capability through to widescale commercial deployment.
- There are gaps in the Scottish supply chain in the areas of design manufacture and maintenance of hydrogen production storage and transportation systems. Support including apprenticeships will be needed to develop indigenous skills and capabilities in these areas.
- The development of green hydrogen from offshore wind has the potential to create high value jobs a significant proportion which are likely to be in remote rural/coastal communities located close to offshore wind resources. These can serve as an avenue for workers to redeploy and develop skills learned from oil and gas in line with Just Transition principles.
Hydrogen Generation by Photocatalytic Reforming of Potential Biofuels: Polyols, Cyclic Alcohols, and Saccharides
Jan 2018
Publication
We have studied hydrogen gas production using photocatalysis from C2-C5 carbon chain polyols cyclic alcohols and mono and di-saccharides using palladium nanoparticles supported on a TiO2 catalyst. For many of the polyols the hydrogen evolution rate is found to be dictated by the number of hydroxyl groups and available a-hydrogens in the structure. However the rule only applies to polyols and cyclic alcohols while the sugar activity is limited by the bulky structure of those molecules. There was also evidence of ring opening in photocatalytic reforming of cyclic alcohols that involved dehydrogenation and decarbonylation of a CC bond.
UK Hydrogen Economy: Debate Pack
Dec 2020
Publication
A Westminster Hall debate on the UK hydrogen economy has been scheduled for Thursday 17 December 2020 at 3.00pm. The debate will be led by Alexander Stafford MP. This House of Commons Library debate pack provides background information and press and parliamentary coverage of the issues.<br/><br/>The Government has legally binding targets under the Climate Change Act 2008 to reach ‘net zero’ carbon emissions by 2050. Background information is available from the Library webpage on Climate Change: an overview.<br/><br/>In order to meet the net zero target the use of fossil fuels (without abatement such as carbon capture usage and storage) across the economy will need to be almost entirely phased out by 2050. Hydrogen gas is regarded as an energy option to help decarbonisation especially in relation to applications that may be more challenging to decarbonise. These applications include heating transport (including heavy goods shipping and aviation) and some industrial processes.<br/><br/>The Government has legally binding targets under the Climate Change Act 2008 to reach ‘net zero’ carbon emissions by 2050. Background information is available from the Library webpage on Climate Change: an overview.<br/><br/>In order to meet the net zero target the use of fossil fuels (without abatement such as carbon capture usage and storage) across the economy will need to be almost entirely phased out by 2050. Hydrogen gas is regarded as an energy option to help decarbonisation especially in relation to applications that may be more challenging to decarbonise. These applications include heating transport (including heavy goods shipping and aviation) and some industrial processes.
Role of batteries and fuel cells in achieving Net Zero: Session 2
Mar 2021
Publication
The House of Lords Science and Technology Committee will hear from leading researchers about anticipated developments in batteries and fuel cells over the next ten years that could contribute to meeting the net-zero target.
The Committee continues its inquiry into the Role of batteries and fuel cells in achieving Net Zero. It will ask a panel of experts about batteries hearing about the current state-of-the-art in technologies that are currently in deployment primarily lithium-ion batteries. It will also explore the potential of next generation technologies currently in development and the challenges in scaling them up to manufacture.
The Committee will then question a second panel about fuel cells hearing about the different types available and their applications. It will explore challenges that need to be overcome in the development of the technology and will consider the UK’s international standing in the sector.
Meeting details
At 10.00am: Oral evidence
Professor Serena Corr Chair in Functional Nanomaterials and Director of Research Department of Chemical and Biological Engineering at University of Sheffield
Professor Paul Shearing Professor in Chemical Engineering at University College London
Dr Jerry Barker Founder and Chief Technology Officer at Faradion Limited
Dr Melanie Loveridge Associate Professor Warwick Manufacturing Group at University of Warwick
At 11.00am: Oral evidence
Professor Andrea Russell Professor of Physical Electrochemistry at University of Southampton
Professor Anthony Kucernak Professor of Physical Chemistry Faculty of Natural Sciences at Imperial College London
Professor John Irvine Professor School of Chemistry at University of St Andrews
Possible questions
Parliament TV video of the meeting
This is part two of a three part enquiry.
Part one can be found here and part three can be found here.
The Committee continues its inquiry into the Role of batteries and fuel cells in achieving Net Zero. It will ask a panel of experts about batteries hearing about the current state-of-the-art in technologies that are currently in deployment primarily lithium-ion batteries. It will also explore the potential of next generation technologies currently in development and the challenges in scaling them up to manufacture.
The Committee will then question a second panel about fuel cells hearing about the different types available and their applications. It will explore challenges that need to be overcome in the development of the technology and will consider the UK’s international standing in the sector.
Meeting details
At 10.00am: Oral evidence
Professor Serena Corr Chair in Functional Nanomaterials and Director of Research Department of Chemical and Biological Engineering at University of Sheffield
Professor Paul Shearing Professor in Chemical Engineering at University College London
Dr Jerry Barker Founder and Chief Technology Officer at Faradion Limited
Dr Melanie Loveridge Associate Professor Warwick Manufacturing Group at University of Warwick
At 11.00am: Oral evidence
Professor Andrea Russell Professor of Physical Electrochemistry at University of Southampton
Professor Anthony Kucernak Professor of Physical Chemistry Faculty of Natural Sciences at Imperial College London
Professor John Irvine Professor School of Chemistry at University of St Andrews
Possible questions
- What contribution are battery and fuel cell technologies currently making towards decarbonization in the UK?
- What advances do we expect to see in battery and fuel cell technologies and over what timeframes?
- How quickly can UK battery and fuel cell manufacture be scaled up to meet electrification demands?
- What are the challenges facing technological innovation and deployment in heavy transport?
- Are there any sectors where battery and fuel cell technologies are not currently used but could contribute to decarbonisation?
- What are the life cycle environmental impacts of batteries and fuel cells?
Parliament TV video of the meeting
This is part two of a three part enquiry.
Part one can be found here and part three can be found here.
Ammonia for Power
Sep 2018
Publication
A potential enabler of a low carbon economy is the energy vector hydrogen. However issues associated with hydrogen storage and distribution are currently a barrier for its implementation. Hence other indirect storage media such as ammonia and methanol are currently being considered. Of these ammonia is a carbon free carrier which offers high energy density; higher than compressed air. Hence it is proposed that ammonia with its established transportation network and high flexibility could provide a practical next generation system for energy transportation storage and use for power generation. Therefore this review highlights previous influential studies and ongoing research to use this chemical as a viable energy vector for power applications emphasizing the challenges that each of the reviewed technologies faces before implementation and commercial deployment is achieved at a larger scale. The review covers technologies such as ammonia in cycles either for power or CO2 removal fuel cells reciprocating engines gas turbines and propulsion technologies with emphasis on the challenges of using the molecule and current understanding of the fundamental combustion patterns of ammonia blends.
Closing the Low-carbon Material Loop Using a Dynamic Whole System Approach
Feb 2017
Publication
The transition to low carbon energy and transport systems requires an unprecedented roll-out of new infrastructure technologies containing significant quantities of critical raw materials. Many of these technologies are based on general purpose technologies such as permanent magnets and electric motors that are common across different infrastructure systems. Circular economy initiatives that aim to institute better resource management practices could exploit these technological commonalities through the reuse and remanufacturing of technology components across infrastructure systems. In this paper we analyze the implementation of such processes in the transition to low carbon electricity generation and transport on the Isle of Wight UK. We model two scenarios relying on different renewable energy technologies with the reuse of Lithium-ion batteries from electric vehicles for grid-attached storage. A whole-system analysis that considers both electricity and transport infrastructure demonstrates that the optimal choice of renewable technology can be dependent on opportunities for component reuse and material recycling between the different infrastructure systems. Hydrogen fuel cell based transport makes use of platinum from obsolete catalytic converters whereas lithium-ion batteries can be reused for grid-attached storage when they are no longer useful in vehicles. Trade-offs exist between the efficiency of technology reuse which eliminates the need for new technologies for grid attached storage completely by 2033 and the higher flexibility afforded by recycling at the material level; reducing primary material demand for Lithium by 51% in 2033 compared to 30% achieved by battery reuse. This analysis demonstrates the value of a methodology that combines detailed representations of technologies and components with a systemic approach that includes multiple interconnected infrastructure systems.
A Dynamic Performance Diagnostic Method Applied to Hydrogen Powered Aero Engines Operating under Transient Conditions
Apr 2022
Publication
At present aero engine fault diagnosis is mainly based on the steady-state condition at the cruise phase and the gas path parameters in the entire flight process are not effectively used. At the same time high quality steady-state monitoring measurements are not always available and as a result the accuracy of diagnosis might be affected. There is a recognized need for real-time performance diagnosis of aero engines operating under transient conditions which can improve their condition-based maintenance. Recent studies have demonstrated the capability of the sequential model-based diagnostic method to predict accurately and efficiently the degradation of industrial gas turbines under steady-state conditions. Nevertheless incorporating real-time data for fault detection of aero engines that operate in dynamic conditions is a more challenging task. The primary objective of this study is to investigate the performance of the sequential diagnostic method when it is applied to aero engines that operate under transient conditions while there is a variation in the bypass ratio and the heat soakage effects are taken into consideration. This study provides a novel approach for quantifying component degradation such as fouling and erosion by using an adapted version of the sequential diagnostic method. The research presented here confirms that the proposed method could be applied to aero engine fault diagnosis under both steady-state and dynamic conditions in real-time. In addition the economic impact of engine degradation on fuel cost and payload revenue is evaluated when the engine under investigation is using hydrogen. The proposed method demonstrated promising diagnostic results where the maximum prediction errors for steady state and transient conditions are less than 0.006% and 0.016% respectively. The comparison of the proposed method to a benchmark diagnostic method revealed a 15% improvement in accuracy which can have great benefit when considering that the cost attributed to degradation can reach up to $702585 for 6000 flight cycles of a hydrogen powered aircraft fleet. This study provides an opportunity to improve our understanding of aero engine fault diagnosis in order to improve engine reliability availability and efficiency by online health monitoring.
Establishing a Hydrogen Economy: The Future of Energy 2035
May 2019
Publication
The next few decades are expected to be among the most transformative the energy sector has ever seen. Arup envisages a world with a much more diverse range of heating sources and with significantly lower emissions and renewable energy powering transport.<br/>As part of this the establishment of a strong hydrogen economy is a very real opportunity and is within reaching distance. Our report uses the UK as a case study example and explores the challenges and opportunities for hydrogen in the context of the whole energy system.<br/>Read about the progress already being made in using hydrogen for transport and heat. And the need to progress policy and collaboration between government the private sector and other stakeholders to shape future demand change consumer perception and create the strong supply chains needed to allow the hydrogen economy to thrive.
HyNet North West: Delivering Clean Growth
Jan 2018
Publication
HyNet North West is a significant clean growth opportunity for the UK. It is a low cost deliverable project which meets the major challenges of reducing carbon emissions from industry domestic heat and transport.<br/>HyNet North West is based on the production of hydrogen from natural gas. It includes the development of a new hydrogen pipeline; and the creation of the UK’s first carbon capture and storage (CCS) infrastructure. CCS is a vital technology to achieve the widespread emissions savings needed to meet the 2050 carbon reduction targets.<br/>Accelerating the development and deployment of hydrogen technologies and CCS through HyNet North West positions the UK strongly for skills export in a global low carbon economy.<br/>The North West is ideally placed to lead HyNet. The region has a history of bold innovation and today clean energy initiatives are thriving. On a practical level the concentration of industry existing technical skill base and unique geology means the region offers an unparalleled opportunity for a project of this kind.<br/>The new infrastructure built by HyNet is readily extendable beyond the initial project and provides a replicable model for similar programmes across the UK<br/>Contains Vision statement 2 leaflets a presentation and a summary report which are all stored as supplements.
Power Generation Analysis of Terrestrial Ultraviolet-Assisted Solid Oxide Electrolyzer Cell
Jan 2022
Publication
This paper presents a novel system design that considerably improves the entrapment of terrestrial ultraviolet (UV) irradiance in a customized honeycomb structure to produce hydrogen at a standard rate of 7.57 slpm for places with a UV index > 11. Thermolysis of high salinity water is done by employing a solid oxide electrolyzer cell (SOEC) which comprises three customized novel active optical subsystems to filter track and concentrate terrestrial UV solar irradiance by Fresnel lenses. The output of systems is fed to a desalinator a photovoltaic system to produce electrical energy and a steam generator with modified surface morphology to generate the required superheated steam for the SOEC. A simulation in COMSOL Multiphysics ver. 5.6 has shown that a customized honeycomb structure when incorporated on the copper–nickel surface of a steam generator improves its absorptance coefficient up to 93.43% (48.98%—flat case). This results in generating the required superheated steam of 650 ◦C with a designed active optical system comprising nine Fresnel lenses (7 m2 ) that offer the concentration of 36 suns on the honeycomb structure of the steam generator as input. The required 1.27 kW of electrical power is obtained by concentrating the photovoltaic system using In0.33Ga0.67N/Si/InN solar cells. This production of hydrogen is sustainable and cost effective as the estimated cost over 5 years by the proposed system is 0.51 USD/kg compared to the commercially available system which costs 3.18 USD/kg.
Establishing a Regional Hydrogen Economy: Accelerating the Carbon Transition in South Yorkshire, UK
May 2019
Publication
The establishment of a strong hydrogen economy nationally and locally is a very real opportunity and one that is rapidly becoming within reach.<br/>This report presents a vision for the role that hydrogen could play specifically in South Yorkshire (UK) to help meet carbon reduction targets and contribute to the health and economic prosperity of the region.<br/>It also highlights five themes as levers of growth and explores potential actions and collaborations as well as a list of ambitions for future hydrogen projects. Hydrogen can be used in transport industry and heating. Synergies need exploring for example the by-product of oxygen from hydrogen production can be used by industry. Aggregating opportunities is important in developing a hydrogen economy.<br/>The report concludes with a call to action to build momentum for the South Yorkshire hydrogen economy and accelerate the drive to net zero emissions particularly in the most challenging sectors.<br/>This South Yorkshire specific report supports our global thought piece Establishing a Hydrogen Economy: The future of energy 2035
Hydrogen or Batteries for Grid Storage? A Net Energy Analysis
Apr 2015
Publication
Energy storage is a promising approach to address the challenge of intermittent generation from renewables on the electric grid. In this work we evaluate energy storage with a regenerative hydrogen fuel cell (RHFC) using net energy analysis. We examine the most widely installed RHFC configuration containing an alkaline water electrolyzer and a PEM fuel cell. To compare RHFC's to other storage technologies we use two energy return ratios: the electrical energy stored on invested (ESOIe) ratio (the ratio of electrical energy returned by the device over its lifetime to the electrical-equivalent energy required to build the device) and the overall energy efficiency (the ratio of electrical energy returned by the device over its lifetime to total lifetime electrical-equivalent energy input into the system). In our reference scenario the RHFC system has an ESOIeratio of 59 more favorable than the best battery technology available today (Li-ion ESOIe= 35). (In the reference scenario RHFC the alkaline electrolyzer is 70% efficient and has a stack lifetime of 100 000 h; the PEM fuel cell is 47% efficient and has a stack lifetime of 10 000 h; and the round-trip efficiency is 30%.) The ESOIe ratio of storage in hydrogen exceeds that of batteries because of the low energy cost of the materials required to store compressed hydrogen and the high energy cost of the materials required to store electric charge in a battery. However the low round-trip efficiency of a RHFC energy storage system results in very high energy costs during operation and a much lower overall energy efficiency than lithium ion batteries (0.30 for RHFC vs. 0.83 for lithium ion batteries). RHFC's represent an attractive investment of manufacturing energy to provide storage. On the other hand their round-trip efficiency must improve dramatically before they can offer the same overall energy efficiency as batteries which have round-trip efficiencies of 75–90%. One application of energy storage that illustrates the trade-off between these different aspects of energy performance is capturing overgeneration (spilled power) for later use during times of peak output from renewables. We quantify the relative energetic benefit of adding different types of energy storage to a renewable generating facility using [EROI]grid. Even with 30% round-trip efficiency RHFC storage achieves the same [EROI]grid as batteries when storing overgeneration from wind turbines because its high ESOIeratio and the high EROI of wind generation offset the low round-trip efficiency.
Methane Emissions from Natural Gas and LNG Imports: An Increasingly Urgent Issue for the Future of Gas in Europe
Nov 2020
Publication
Pressure is mounting on the natural gas and LNG community to reduce methane emissions and this is most urgent in EU countries following the adoption of much tougher greenhouse gas reduction targets of 2030 and the publication of the European Commission’s Methane Strategy. With rapidly declining indigenous EU production and therefore rising import dependence there are increasing calls for emissions from imported pipeline gas and LNG to be quantified and based on actual measurements as opposed to standard emission factors. The Methane Strategy promises to be a significant milestone in that process. Companies which are supplying (or intending to supply) natural gas to the EU – the largest global import market for pipeline gas and a very significant market for LNG – would be well advised to pay close attention to how the regulation of methane emissions is unfolding and to make an immediate and positive response. Failure to do so could accelerate the demise of natural gas in European energy balances faster than would otherwise have been the case and shorten the time available for transition to decarbonised gases – specifically hydrogen – using existing natural gas infrastructure.<br/>This EU initiative will (and arguably already has) attracted attention from non-EU governments and companies involved in global gas and LNG trade. We have already seen deliveries of `carbon neutral’ LNG cargos to Asia as well as a long-term LNG contract in which the greenhouse gas content of cargos will be measured reported and verified (MRV) according to an agreed methodology. Natural gas and LNG exports if based on these standards or those set out in the EU Methane Strategy may be able to command premium prices from buyers eager to demonstrate their own GHG reduction credentials to governments customers and civil society.
Offshore Wind and Hydrogen: Solving the Integration Challenge
Sep 2020
Publication
The combination of offshore wind and green hydrogen provides major opportunities for job creation economic growth and regional regeneration as well as attracting inward investment alongside delivering the emission reductions needed to achieve climate neutrality. In order to get to Net Zero emissions in 2050 the UK is likely to need a minimum of 75GW of offshore wind (OSW) and modelling of the energy system indicates that hydrogen will play a major role in integrating the high levels of OSW on the electricity grid.<br/><br/>Some of the key findings from report are listed below:<br/><br/>The UK has vast resources of offshore wind with the potential for over 600GW in UK waters and potentially up to 1000GW. This is well above the he figure of 75-100GW likely to be needed for UK electricity generation by 2050.<br/>The universities in the UK provide the underpinning science and engineering for electrolysers fuel cells and hydrogen and are home to world-leading capability in these areas.<br/>In order to achieve cost reduction and growing a significant manufacturing and export industry it will be crucial to develop green hydrogen in the next 5 years<br/>By 2050 green hydrogen can be cheaper than blue hydrogen. With accelerated deployment green hydrogen costs can be competitive with blue hydrogen by the eary 2030s.<br/>The combination of additional OSW deployment and electrolyser manufacture alone could generate over 120000 new jobs. These are are expected to be based mainly in manufacturing OSW-related activity shipping and mobility<br/>By 2050 it is estimated that the cumulative gross value added (GVA) from supply of electrolysers and additional OSW farm could be up to £320bn where the majority will come from exports of electrolysers to overseas markets.<br/>The report also calls for immediate government intervention and a new national strategy to support the creation of supply and demand in the new industry.<br/><br/>This study was jointly supported by the Offshore Wind Industry Council (OWIC) and ORE Catapult.
Green Hydrogen in the UK: Progress and Prospects
Apr 2022
Publication
Green hydrogen has been known in the UK since Robert Boyle described flammable air in 1671. This paper describes how green hydrogen has become a new priority for the UK in 2021 beginning to replace fossil hydrogen production exceeding 1 Mte in 2021 when the British Government started to inject significant funding into green hydrogen sources though much less than the USA Germany Japan and China. Recent progress in the UK was initiated in 2008 when the first UK green hydrogen station opened in Birmingham University refuelling 5 hydrogen fuel cell battery electric vehicles (HFCBEVs) for the 50 PhD chemical engineering students that arrived in 2009. Only 10 kg/day were required in contrast to the first large green ITM power station delivering almost 600 kg/day of green hydrogen that opened in the UK in Tyseley in July 2021. The first question asked in this paper is: ‘What do you mean Green?’. Then the Clean Air Zone (CAZ) in Birmingham is described with the key innovations defined. Progress in UK green hydrogen and fuel cell introduction is then recounted. The remarks of Elon Musk about this ‘Fool Cell; Mind bogglingly stupid’ technology are analysed to show that he is incorrect. The immediate deployment of green hydrogen stations around the UK has been planned. Another century may be needed to make green hydrogen dominant across the country yet we will be on the correct path once a profitable supply chain is established in 2022.
Wax: A Benign Hydrogen-storage Material that Rapidly Releases H2-rich Gases Through Microwave-assisted Catalytic Decomposition
Oct 2016
Publication
Hydrogen is often described as the fuel of the future especially for application in hydrogen powered fuel-cell vehicles (HFCV’s). However its widespread implementation in this role has been thwarted by the lack of a lightweight safe on-board hydrogen storage material. Here we show that benign readily available hydrocarbon wax is capable of rapidly releasing large amounts of hydrogen through microwave-assisted catalytic decomposition. This discovery offers a new material and system for safe and efficient hydrogen storage and could facilitate its application in a HFCV. Importantly hydrogen storage materials made of wax can be manufactured through completely sustainable processes utilizing biomass or other renewable feedstocks.
Optimal Operation of a Hydrogen Storage and Fuel Cell Coupled Integrated Energy System
Mar 2021
Publication
Integrated energy systems have become an area of interest as with growing energy demand globally means of producing sustainable energy from flexible sources is key to meet future energy demands while keeping carbon emissions low. Hydrogen is a potential solution for providing flexibility in the future energy mix as it does not emit harmful gases when used as an energy source. In this paper an integrated energy system including hydrogen as an energy vector and hydrogen storage is studied. The system is used to assess the behaviour of a hydrogen production and storage system under different renewable energy generation profiles. Two case studies are considered: a high renewable energy generation scenario and a low renewable energy generation scenario. These provide an understanding of how different levels of renewable penetration may affect the operation of an electrolyser and a fuel cell against an electricity import/export pricing regime. The mathematical model of the system under study is represented using the energy hub approach with system optimisation through linear programming conducted via MATLAB to minimise the total operational cost. The work undertaken showcases the unique interactions the fuel cell has with the hydrogen storage system in terms of minimising grid electricity import and exporting stored hydrogen as electricity back to the grid when export prices are competitive.
Carbon Capture and Storage (CCS): The Way Forward
Mar 2018
Publication
Mai Bui,
Claire S. Adjiman,
André Bardow,
Edward J. Anthony,
Andy Boston,
Solomon Brown,
Paul Fennell,
Sabine Fuss,
Amparo Galindo,
Leigh A. Hackett,
Jason P. Hallett,
Howard J. Herzog,
George Jackson,
Jasmin Kemper,
Samuel Krevor,
Geoffrey C. Maitland,
Michael Matuszewski,
Ian Metcalfe,
Camille Petit,
Graeme Puxty,
Jeffrey Reimer,
David M. Reiner,
Edward S. Rubin,
Stuart A. Scott,
Nilay Shah,
Berend Smit,
J. P. Martin Trusler,
Paul Webley,
Jennifer Wilcox and
Niall Mac Dowell
Carbon capture and storage (CCS) is broadly recognised as having the potential to play a key role in meeting climate change targets delivering low carbon heat and power decarbonising industry and more recently its ability to facilitate the net removal of CO2 from the atmosphere. However despite this broad consensus and its technical maturity CCS has not yet been deployed on a scale commensurate with the ambitions articulated a decade ago. Thus in this paper we review the current state-of-the-art of CO2 capture transport utilisation and storage from a multi-scale perspective moving from the global to molecular scales. In light of the COP21 commitments to limit warming to less than 2 °C we extend the remit of this study to include the key negative emissions technologies (NETs) of bioenergy with CCS (BECCS) and direct air capture (DAC). Cognisant of the non-technical barriers to deploying CCS we reflect on recent experience from the UK's CCS commercialisation programme and consider the commercial and political barriers to the large-scale deployment of CCS. In all areas we focus on identifying and clearly articulating the key research challenges that could usefully be addressed in the coming decade.
Flame Characteristics of Ignited under-expanded Cryogenic Hydrogen Jets
Sep 2021
Publication
The anticipated upscaling of hydrogen energy applications will involve the storage and transport of hydrogen in a cryogenic state. Understanding the potential hazard arising from small leaks in pressurized storage and transport systems is needed to assist safety analysis and development of mitigation measures. The current knowledge of the ignited pressurized cryogenic hydrogen jet flame is limited. Large eddy simulation (LES) with detailed hydrogen chemistry is applied for the reacting flow. The effects of ignition locations are considered and the initial development of the transient flame kernel from the ignition hot spots is analysed. The flame structures namely side flames and envelop flames are observed in the study which are due to the complex interactions between turbulence fuel-air mixing at cryogenic temperature and chemical reactions.
Role of batteries and fuel cells in achieving Net Zero- Session 3
Mar 2021
Publication
The House of Lords Science and Technology Committee will hear from officials research funders and leading research consortia about the UK’s strategy for research and development of batteries and fuel cells to help meet the net-zero target.
The Committee will question officials from government departments and research councils about the UK’s increased support for battery development and how the initiatives and funding will evolve. The Committee will compare the support given to fuel cell research and ask how this technology will be developed for applications such as heavy transport. For both technologies it will ask how training will be delivered to provide a skilled workforce.
The Committee will also hear from leaders of research consortia asking them about support for their research sectors and how this compares with countries leading the development of the technologies. The Committee will explore coordination between research into batteries fuel cells and wider strategies such as for hydrogen and whether research for transport can be transferred to applications in other sectors such as power grids and heating.
At 10.00am: Oral evidence
Mr Tony Harper Industrial Strategy Challenge Director Faraday Battery Challenge at UK Research and Innovation (UKRI) at University of Central Lancashire
Dr Lucy Martin Deputy Director of Cross-Council Programmes and lead for Net Zero at University of Central Lancashire
Dr Bob Moran Deputy Director Head of Environment Strategy at University of Central Lancashire
Professor Paul Monks Chief Scientific Adviser at University of Central Lancashire
At 11.00am: Oral evidence
Professor Philip Taylor Director at EPSRC Supergen Energy Networks Hub and Pro-Vice Chancellor for Research and Enterprise at University of Bristol
Professor David Greenwood CEO High Value Manufacturing Catapult at University of Central Lancashire Director Industrial Engagement at University of Central Lancashire and Professor of Advanced Propulsion Systems at University of Warwick
Professor Paul Dodds Professor of Energy Systems at University of Central Lancashire
Possible questions
Parliament TV video of the meeting
This is part three of a three part enquiry.
Part one can be found here and part two can be found here.
The Committee will question officials from government departments and research councils about the UK’s increased support for battery development and how the initiatives and funding will evolve. The Committee will compare the support given to fuel cell research and ask how this technology will be developed for applications such as heavy transport. For both technologies it will ask how training will be delivered to provide a skilled workforce.
The Committee will also hear from leaders of research consortia asking them about support for their research sectors and how this compares with countries leading the development of the technologies. The Committee will explore coordination between research into batteries fuel cells and wider strategies such as for hydrogen and whether research for transport can be transferred to applications in other sectors such as power grids and heating.
At 10.00am: Oral evidence
Mr Tony Harper Industrial Strategy Challenge Director Faraday Battery Challenge at UK Research and Innovation (UKRI) at University of Central Lancashire
Dr Lucy Martin Deputy Director of Cross-Council Programmes and lead for Net Zero at University of Central Lancashire
Dr Bob Moran Deputy Director Head of Environment Strategy at University of Central Lancashire
Professor Paul Monks Chief Scientific Adviser at University of Central Lancashire
At 11.00am: Oral evidence
Professor Philip Taylor Director at EPSRC Supergen Energy Networks Hub and Pro-Vice Chancellor for Research and Enterprise at University of Bristol
Professor David Greenwood CEO High Value Manufacturing Catapult at University of Central Lancashire Director Industrial Engagement at University of Central Lancashire and Professor of Advanced Propulsion Systems at University of Warwick
Professor Paul Dodds Professor of Energy Systems at University of Central Lancashire
Possible questions
- On which aspects of battery and fuel cell research and development is the UK focusing and why?
- How successful have the UK’s new research initiatives been in advancing battery science and application?
- Does battery research receive greater public funding than fuel cell research? If so why?
- What technologies are seen as the most likely options for heavy transport i.e. HGVs buses and trains?
- What is the Government’s strategy for supporting the growth of skilled workers for battery and fuel cell research and development?
- To what extent is battery and fuel cell research and development coordinated in the UK? If so who is responsible for this coordination?
Parliament TV video of the meeting
This is part three of a three part enquiry.
Part one can be found here and part two can be found here.
Hydrogen an Enabler of the Grand Transition Future Energy Leader Position Paper
Jan 2018
Publication
A major transformation and redesign of the global energy system is required towards decarbonisation and to achieve the Paris Agreement targets. This Grand Transition is a complex pressing issue where global joint efforts and system solutions are essential; with hydrogen being one of them.<br/>Hydrogen has the potential to be a powerful effective accelerator towards a low-carbon energy system capable of addressing multiple energy challenges: from facilitating the massive integration of renewables and decarbonisation of energy production to energy transportation in a zero-carbon energy economy to electrification of end uses.
The Merit and the Context of Hydrogen Production from Water and Its Effect on Global CO2 Emission
Feb 2022
Publication
For a green economy to be possible in the near future hydrogen production from water is a sought-after alternative to fossil fuels. It is however important to put things into context with respect to global CO2 emission and the role of hydrogen in curbing it. The present world annual production of hydrogen is about 70 million metric tons of which almost 50% is used to make ammonia NH3 (that is mostly used for fertilizers) and about 15% is used for other chemicals [1]. The hydrogen produced worldwide is largely made by steam CH4 reforming (SMR) which is one of the most energy-intensive processes in the chemical industry [2]. It releases based on reaction stoichiometry 5.5 kg of CO2 per 1 kg of H2 (CH4+ 2 H2O → CO2 + 4 H2). When the process itself is taken into account in addition the production [3] becomes about 9 kg of CO2 per kg of H2 and this ratio can be as high as 12 [4]. This results in the production of about one billion tons/year of CO2. The world annual CO2 emission from fossil fuels is however much larger: it is about 36 billion tons of which roughly 25% is emitted while generating electricity and heat 20% due to transport activity and 20% from other industrial processes. Because of the link between global warming and CO2 emissions there is an increasing move towards finding alternative approaches for energy vectors and their applications.
Patterned Membranes for Proton Exchange Membrane Fuel Cells Working at Low Humidity
Jun 2021
Publication
High performing proton exchange membrane fuel cells (PEMFCs) that can operate at low relative humidity is a continuing technical challenge for PEMFC developers. In this work micro-patterned membranes are demonstrated at the cathode side by solution casting techniques using stainless steel moulds with laser-imposed periodic surface structures (LIPSS). Three types of patterns lotus lines and sharklet are investigated for their influence on the PEMFC power performance at varying humidity conditions. The experimental results show that the cathode electrolyte pattern in all cases enhances the fuel cell power performance at 100% relative humidity (RH). However only the sharklet pattern exhibits a significant improvement at 25% RH where a peak power density of 450 mW cm−2 is recorded compared with 150 mW cm−2 of the conventional flat membrane. The improvements are explored based on high-frequency resistance electrochemically active surface area (ECSA) and hydrogen crossover by in situ membrane electrode assembly (MEA) testing.
Environmentally-Assisted Cracking of Type 316L Austenitic Stainless Steel in Low Pressure Hydrogen Steam Environments
Aug 2019
Publication
A low pressure superheated hydrogen-steam system has been used to accelerate the oxidation kinetics while keeping the electrochemical conditions similar to those of the primary water in a pressurized water reactor. The initiation has been investigated using a Constant Extension Rate Tensile (CERT) test. Tests were performed on flat tapered specimens made from Type 316L austenitic stainless steel with strain rates of 2×10-6 and 2×10-8 ms-1 at room temperature and at an elevated temperature of 350 °C. R = 1/6 was chosen as a more oxidizing environment and R = 6 was selected as a more reducing environment where the parameter R represents the ratio between the oxygen partial pressure at the Ni/NiO transition and the oxygen partial pressure. Different exposures (1 day and 5 days) prior to loading were investigated post-test evaluation by scanning electron microscopy.
Accelerating to Net Zero with Hydrogen Blending Standards Development in the UK, Canada and the US - Part 2
Mar 2021
Publication
Hydrogen is expected to play a critical role in the move to a net-zero economy. However large-scale deployment is still in its infancy and there is still much to be done before we can blend hydrogen in large volumes into gas networks and ramp up the production that is required to meet demands of the energy transport and industry sectors. KTN Global Alliance will host two webinars to explore these challenges and opportunities in hydrogen blending on the 2nd and 3rd March 2021.
Exciting pilot projects are being conducted and explored in the UK Canada and US states such as California to determine the technical feasibility of blending hydrogen into existing natural gas systems. Whilst the deployment of hydrogen is in its early stages there is increasing interest around permitting significant percentage blends of hydrogen into gas networks which would enable the carbon intensity of gas supplies to be reduced creating a new demand for hydrogen and with the use of separation and purification technologies downstream support the transportation of pure hydrogen to markets.
Gaps in codes and standards need to be addressed to enable adoption and there may be opportunities for international collaboration and harmonisation to ensure that best practices are shared globally and to facilitate the growth of trade and export markets. There is an opportunity for the UK Canada and US three G7 countries to work together and show market making leadership in key enabling regulation for the new hydrogen economy.
Delivered by KTN Global Alliance on behalf of the British Consulate-General in Vancouver and the UK Science and Innovation Network in Canada and the US these two webinars will showcase hydrogen blending pilot projects in the UK Canada and California highlighting challenges and opportunities with regard to standards development for hydrogen blending and supporting further transatlantic collaboration in this area. The events also form part of the UK’s international engagement to build momentum towards a successful outcome at COP26 the UN climate summit that the UK will host in Glasgow in November 2021. The webinars will bring together experts from industry academia and policy from the UK Canada and California. Attendees will have an opportunity to ask questions and interact using Mentimeter.
Part 1 Highlights and Perspectives from the UK can be found here.
Exciting pilot projects are being conducted and explored in the UK Canada and US states such as California to determine the technical feasibility of blending hydrogen into existing natural gas systems. Whilst the deployment of hydrogen is in its early stages there is increasing interest around permitting significant percentage blends of hydrogen into gas networks which would enable the carbon intensity of gas supplies to be reduced creating a new demand for hydrogen and with the use of separation and purification technologies downstream support the transportation of pure hydrogen to markets.
Gaps in codes and standards need to be addressed to enable adoption and there may be opportunities for international collaboration and harmonisation to ensure that best practices are shared globally and to facilitate the growth of trade and export markets. There is an opportunity for the UK Canada and US three G7 countries to work together and show market making leadership in key enabling regulation for the new hydrogen economy.
Delivered by KTN Global Alliance on behalf of the British Consulate-General in Vancouver and the UK Science and Innovation Network in Canada and the US these two webinars will showcase hydrogen blending pilot projects in the UK Canada and California highlighting challenges and opportunities with regard to standards development for hydrogen blending and supporting further transatlantic collaboration in this area. The events also form part of the UK’s international engagement to build momentum towards a successful outcome at COP26 the UN climate summit that the UK will host in Glasgow in November 2021. The webinars will bring together experts from industry academia and policy from the UK Canada and California. Attendees will have an opportunity to ask questions and interact using Mentimeter.
Part 1 Highlights and Perspectives from the UK can be found here.
Tees Valley Multi-modal Hydrogen Transport Hub Masterplan
Mar 2021
Publication
Study setting out a vision and plan for a multi-modal hydrogen transport hub within the UK. The study considers the:
- size of operational trials
- quantity of green hydrogen required
- research and development facilities which will support a living lab
- green hydrogen infrastructure required including:
- production
- storage
- distribution
- The study uses Tees Valley as an example region although the blueprint may be applied to other areas.
No more items...