France
A Thermodynamically Consistent Methodology to Develop Predictive Simplified Kinetics for Detonation Simulations
Sep 2023
Publication
The number of species and elementary reactions needed for describing the oxidation of fuels increases with the size of the molecule and in turn the complexity of detailed mechanisms. Although the kinetics for conventional fuels (H2 CH4 C3H8...) are somewhat well-established chemical integration in detonation applications remains a major challenge. Significant efforts have been made to develop reduction techniques that aim to keep the predictive capabilities of detailed mechanisms intact while minimizing the number of species and reactions required. However as their starting point of development is based on homogeneous reactors or ZND profiles reduced mechanisms comprising a few species and reactions are not predictive. The methodology presented here relies on defining virtual chemical species such that the thermodynamic equilibrium of the ZND structure is properly recovered thereby circumventing the need to account for minor intermediate species. A classical asymptotic expression relating the ignition delay time with the reaction rate constant is then used to fit the Arrhenius coefficients targeting computations carried out with detailed kinetics. The methodology was extended to develop a three-step mechanism in which the Arrhenius coefficients were optimized to accurately reproduce the one-dimensional laminar ZND structure and the D−κ curves for slightly-curved quasi-steady detonation waves. Two-dimensional simulations performed with the three-step mechanism successfully reproduce the spectrum of length scales present in soot foils computed with detailed kinetics (i.e. cell regularity and size). Results attest for the robustness of the proposed methodology/approximation and its flexibility to be adapted to different configurations.
Experiments and Simulations of Large Scale Hydrogen-Nitrogen-Air Gas Explosions for Nuclear and Hydrogen Safety Applications
Sep 2023
Publication
Hydrogen safety is a general concern because of the high reactivity compared to hydrocarbon-based fuels. The strength of knowledge in risk assessments related to the physical phenomena and the ability of models to predict the consequence of accidental releases is a key aspect for the safe implementation of new technologies. Nuclear safety considers the possibility of accidental leakages of hydrogen gas and subsequent explosion events in risk analysis. In many configurations the considered gaseous streams involve a large fraction of nitrogen gas mixed with hydrogen. This work presents the results of a large scale explosion experimental campaign for hydrogen-nitrogen-air mixtures. The experiments were performed in a 50 m3 vessel at Gexcon’s test site in Bergen Norway. The nitrogen fraction the equivalence ratio and the congestion level were investigated. The experiments are simulated in the FLACS-CFD software to inform about the current level of conservatism of the predictions for engineering application purposes. The study shows the reduced overpressure with nitrogen added to hydrogen mixtures and supports the use of FLACS-CFD-based risk analysis for hydrogen-nitrogen scenarios.
Safe Design for Large Scale H2 Production Facilities
Sep 2023
Publication
To contribute to a more diverse and efficient energy infrastructure large quantities of hydrogen are requested for industries (e.g. mining refining fertilizers…). These applications need large scale facilities such as dozens of electrolyzer stacks from atmospheric pressure to 30 bar with a total capacity ranging from 100 up to 400 MW and associated hydrogen storage from a few to 50 tons.
Local use can be fed by electrolyzer in 20 feet container and stored in bundles with small volumes. Nevertheless industrial applications can request much bigger capacity of production which are generally located in buildings. The different technologies available for the production of hydrogen at large scale are alkaline or PEM electrolyzer with for example 100 MW capacity in a building of 20000 m3 and hydrogen stored in tube trailers or other fixed hydrogen storage solution with large volumes.
These applications led to the use of hydrogen inside large but confined spaces with the risk of fire and explosion in case of loss of containment followed by ignition. This can lead to severe consequences on asset workers and public due to the large inventories of hydrogen handled.
This article aims to provide an overview of the strategy to safely design large scale hydrogen production facilities in buildings through benchmarks based on projects and literature reviews best practices & standards regulations. It is completed by a risk assessment taking into consideration hydrogen behavior and influence of different parameters in dispersion and explosion in large buildings.
This article provides recommendations for hydrogen project stakeholders to perform informed-based decisions for designing large scale production buildings. It includes safety measures as reducing hydrogen inventories inside building allocating clearance around electrolyzer stacks implementing early detection and isolation devices and building geometry to avoid hydrogen accumulation.
Local use can be fed by electrolyzer in 20 feet container and stored in bundles with small volumes. Nevertheless industrial applications can request much bigger capacity of production which are generally located in buildings. The different technologies available for the production of hydrogen at large scale are alkaline or PEM electrolyzer with for example 100 MW capacity in a building of 20000 m3 and hydrogen stored in tube trailers or other fixed hydrogen storage solution with large volumes.
These applications led to the use of hydrogen inside large but confined spaces with the risk of fire and explosion in case of loss of containment followed by ignition. This can lead to severe consequences on asset workers and public due to the large inventories of hydrogen handled.
This article aims to provide an overview of the strategy to safely design large scale hydrogen production facilities in buildings through benchmarks based on projects and literature reviews best practices & standards regulations. It is completed by a risk assessment taking into consideration hydrogen behavior and influence of different parameters in dispersion and explosion in large buildings.
This article provides recommendations for hydrogen project stakeholders to perform informed-based decisions for designing large scale production buildings. It includes safety measures as reducing hydrogen inventories inside building allocating clearance around electrolyzer stacks implementing early detection and isolation devices and building geometry to avoid hydrogen accumulation.
Buoyant Jet Model to Predict a Vertical Thermal Stratification During Refueling of Gaseous Hydrogen Tanks in Horizontal Position with Axial Injection
Sep 2023
Publication
Thermodynamic modeling of hydrogen tank refueling i.e. 0 dimension (0D) model considers the gas in the tank as a single homogeneous volume. Based on thermodynamic considerations i.e. mass and energy balance equations the gas temperature and pressure predicted at each time step are volume-averaged. These models cannot detect the onset of the thermal stratification nor the maximum local temperature of the gas inside the tank.<br/>For safety reasons the temperature must be maintained below 85 °C in the composite tank. When thermal stratification occurs the volume-averaged gas temperature predicted by 0D models can be below 85 °C while local temperature may significantly exceed 85 °C. Then thermally stratified scenarios must be predicted to still employ 0D models safely.<br/>Up to now only computational fluid dynamics (CFD) approaches can predict the onset of the thermal stratification and estimate the amplitude of thermal gradients. However CFD approaches require much larger computational resources and CPU time than 0D models. This makes it difficult to use CFD for parametric studies or a live-stream temperature prediction for embedded applications. Previous CFD studies revealed the phenomenon of jet deflection during horizontal refueling of hydrogen tanks. The cold hydrogen injected into the warm gas bulk forms a round jet sinking down towards the lower part of the tank due to buoyancy forces. The jet breaks the horizontal symmetry and dumps the cold gas towards the lower part of the tank.<br/>The jet behavior is a key factor for the onset of the thermal stratification for horizontally filled tanks. Free round jets released in a homogeneous environment with a different density than the jet density were extensively investigated in the literature. A buoyant round jet modeling can be applied to predict the jet deflection in the tank. It requires initial conditions that can be provided by 0D refueling models. Therefore 0D models coupled with a buoyant round jet modeling can be used to predict the onset of the thermal stratification without CFD simulation. This approach clarifies the validity domain of 0D models and thus improves the safety of engineering applications
Gas Leak Detection Using Acoustics and Artificial Intelligence
Sep 2023
Publication
Gas leak detection on a production site is a major challenge for the safety and health of workers for environmental considerations and from an economic point of view. In addition flammable gas leaks are a safety risk because if ignited they can cause serious fires or explosions. For these reasons Acoem Metravib in collaboration with TotalEnergies One Tech R&D Safety has developed for the past four years a system called AGLED for the early detection localization and classification of such leaks exploiting acoustics and artificial intelligence driven by physics. Numerous tests have been conducted on a theater representative of gas production facilities created by TotalEnergies in Lacq (France) to build a robust learning database of leaks varying in flowrates exhaust diameters and also types (hole nozzle flange...). Moreover to limit the number of false alarms a relearning strategy has been implemented to handle unexpected disturbances (wildlife human activities meteorological events...). The presented paper describes the global architecture of the system from noise acquisition to the gas leak probability and coordinates. It gives a more in-depth look at the relearning algorithm and its performance in various environments. Finally thanks to a complementary collaboration with Air Liquide an example of test campaign in a real industrial environment is presented with an emphasis on the improvement obtained through relearning.
Deflagration-to-detonation Transition Due to a Pressurised Release of a Hydrogen Jet. First Results of the Ongoing TAU_NRCN-CEA Project
Sep 2023
Publication
A sudden release of compressed gases and the formation of a jet flow can occur in nature and various engineering applications. In particular high-pressure hydrogen jets can spontaneously ignite when released into an environment that contains oxygen. For some scenarios these high-pressure hydrogen jets can be released into a mixture containing hydrogen and oxygen. This scenario can possibly lead to a wide range of combustion regimes such as jet flames slow or fast deflagrations or even hazardous detonations. Each combustion regime is characterized by typical pressures and temperatures however fast transition between regimes is also possible.<br/>A common project between Tel Aviv University (TAU) Nuclear Research Center Negev (NRCN) and Commissariat à l’Energie Atomique et aux énergies alternatives (CEA) has been recently launched in order to understand these phenomena from experimental modelling and numerical points of view. The main goal is to investigate the dynamics and combustion regimes that arise once a pressurized hydrogen jet is released into a reactive environment that contains inhomogeneous concentrations of hydrogen steam and air.<br/>In this paper we present the first numerical results describing high-pressure hydrogen release obtained using a massively parallel compressible structured-grid flow solver. The experimental arrangements devoted to this phenomenon will also be described.
SSEXHY Experimental Results on Pressure Dynamics from Head-on Reflections of Hydrogen Flames
Sep 2023
Publication
In the past few years CEA has been fully involved at both experimental and modeling levels in projects related to hydrogen safety in nuclear and chemical industries and has carried out a test program using the experimental bench SSEXHY (Structure Submitted to an EXplosion of HYdrogen) in order to build a database of the deformations of simple structures following an internal hydrogen explosion. Different propagation regimes of explosions were studied varying from detonations to slow deflagrations.<br/>During the experimental campaign it was found that high-speed deflagrations corresponding to relatively poor hydrogen-air mixtures resulted in higher specimen deformation compared to those related to detonations of nearly stoichiometric mixtures. This paper explains this counter-intuitive result from qualitative and quantitative points of view. It is shown that the overpressure and impulse from head-on reflections of hydrogen flames corresponding to poor mixtures of specific concentrations could have very high values at the tube end.
Enhancing Safety of Liquid and Vaporised Hydrogen Transfer Technologies in Public Areas for Mobile Applications
Sep 2023
Publication
Federico Ustolin,
Donatella Cirrone,
Vladimir V. Molkov,
Dmitry Makarov,
Alexandros G. Venetsanos,
Stella G. Giannissi,
Giordano Emrys Scarponi,
Alessandro Tugnoli,
Ernesto Salzano,
Valerio Cozzani,
Daniela Lindner,
Birgit Gobereit,
Bernhard Linseisen,
Stuart J. Hawksworth,
Thomas Jordan,
Mike Kuznetsov,
Simon Jallais and
Olga Aneziris
International standards related to cryogenic hydrogen transferring technologies for mobile applications (filling of trucks ships stationary tanks) are missing and there is lack of experience. The European project ELVHYS (Enhancing safety of liquid and vaporized hydrogen transfer technologies in public areas for mobile applications) aims to provide indications on inherently safer and efficient cryogenic hydrogen technologies and protocols in mobile applications by proposing innovative safety strategies which are the results of a detailed risk analysis. This is carried out by applying an inter-disciplinary approach to study both the cryogenic hydrogen transferring procedures and the phenomena that may arise from the loss of containment of a piece of equipment containing hydrogen. ELVHYS will provide critical inputs for the development of international standards by creating inherently safer and optimized procedures and guidelines for cryogenic hydrogen transferring technologies thus increasing their safety level and efficiency. The aim of this paper is twofold: present the state of the art of liquid hydrogen transfer technologies by focusing on previous research projects such as PRESLHY and introduce the objectives and methods planned in the new EU project ELVHYS.
Safety Challenges Related to the Use of Hydrogen-Natural Gas Blends in Gas Turbines
Sep 2023
Publication
In a context of the decarbonization of the power sector the gas turbine manufacturers are expected tohandle and burn hydrogen or hydrogen/natural gas mixtures. This evolution is conceptually simple in order to displace CO2 emissions by H2O in the combustion exhaust but raises potential engineering andsafety related questions. Concerning the safety aspect the flammability domain is wider and the laminar flame speed is higher for hydrogen than for natural gas. As a result handling fuels with increased hydrogen concentration should a priori lead to an increased the risk of flammable cloud formation with air and also increase the potential explosion violence.<br/>A central topic for the gas turbine manufacturer is the quantification of the hydrogen fuel content from which the explosion risk increases significantly when compared with the use of natural gas. This work will be focused on a risk study of the fuel supply piping of a gas turbine in a scenario where mixing between fuel and air would occur. The pipes are a few dozens of meters long and show singularities: elbows connections with other lines … They are operated at high temperature and atmospheric or high pressure.<br/>The paper will first highlight through CFD modelling the impact of increasing hydrogen content in the fuel on the explosion risk based on a geometry representative of a realistic system. Second the quantification of the explosion effects will be addressed. Some elements of the bibliography relative to flame propagation in pipes will be recalled and put in sight of the characteristics of the industrial case. Finally a CFD model proposed recently for accounting for methane or hydrogen flames propagating in long open steel tubes was used to assess a hydrogen fuel content from which the flame can strongly accelerate and generate significative pressure effects for a flammable mixture initially at atmospheric conditions.
Risk Management in a Containerized Metal Hydride Storage System
Sep 2023
Publication
HyCARE project supported by the Clean Hydrogen Partnership of the European Union deals with a prototype of hydrogen storage tank using a solid-state hydrogen carrier. Up to 40 kilograms of hydrogen are stored in twelve tanks at less than 50 barg and less than 100 °C. The innovative design is based on a standard twenty-foot container including twelve TiFe-based metal hydride (MH) hydrogen storage tanks coupled with a thermal energy storage in phase change materials (PCM). This article aims at showing the main risks related to hydrogen storage in a MH system and the safety barriers considered based on HyCARE’s specific risk analysis.<br/>Regarding the TiFe MH material used to store hydrogen experimental tests showed that the exposure of the MH to air or water did not cause spontaneous ignition. Furthermore an explosion within the solid MH cannot propagate due to internal pore size. Additionally in case of leakage the speed of hydrogen desorption from the MH is self-limited which is an important safety characteristic since it reduces the potential consequences from the hydrogen release scenario.<br/>Regarding the integrated system the critical scenarios identified during the risk analysis were: explosion due to release of hydrogen inside or outside the container internal explosion inside MH tanks due to accidental mix of hydrogen and air and asphyxiation due to inert gas accumulation in the container. This identification phase of the risk analysis allowed to pinpoint the most relevant safety barriers already in place and recommend additional ones if needed to further reduce the risk that were later implemented.<br/>The main safety barriers identified were: material and component selection (including the MH selected) safety interlocks safety valves ventilation gas detection and safety distances.<br/>The risk management process based on risk identification and assessment contributed to coherently integrate inherently safe design features and safety barriers.
Engineering Models for Refueling Protocol Development: Validation and Recommendations
Sep 2023
Publication
Fouad Ammouri,
Nicola Benvenuti,
Elena Vyazmina,
Vincent Ren,
Guillaume Lodier,
Quentin Nouvelot,
Thomas Guewouo,
Dorine Crouslé,
Rony Tawk,
Nicholas Hart,
Steve Mathison,
Taichi Kuroki,
Spencer Quong,
Antonio Ruiz,
Alexander Grab,
Alexander Kvasnicka,
Benoit Poulet,
Christopher Kutz and
Martin Zerta
The PRHYDE project (PRotocol for heavy duty HYDrogEn refueling) funded by the Clean Hydrogen partnership aims at developing recommendations for heavy-duty refueling protocols used for future standardization activities for trucks and other heavy duty transport systems applying hydrogen technologies. Development of a protocol requires a validated approach. Due to the limited time and budget the experimental data cannot cover the whole possible ranges of protocol parameters such as initial vehicle pressure and temperature ambient and precooling temperatures pressure ramp refueling time hardware specifications etc. Hence a validated numerical tool is essential for a safe and efficient protocol development. For this purpose engineering tools are used. They give good results in a very reasonable computation time of several seconds or minutes. These tools provide the heat parameters estimation in the gas (volume average temperature) and 1D temperature distribution in the tank wall. The following models were used SOFIL (Air Liquide tool) HyFill (by ENGIE) and H2Fills (open access code by NREL). The comparison of modelling results and experimental data demonstrated a good capability of codes to predict the evolution of average gas temperature in function of time. Some recommendations on model validation for the future protocol development are given.
An Improved Passive Scalar Model for Hazardous H2-Air Ignition Prediction
Sep 2023
Publication
As hydrogen becomes an increasingly popular alternative fuel for transportation the need for tools to predict ignition events has grown. Recently a cost-effective passive scalar formulation has been developed to address this need [1]. This approach employs a self-reacting scalar to model the hydrogenair chain-branched explosion (due to reactions of the type Reactant + Radical → Radical + Radical). The scalar branching rate is derived analytically from the kinetic Jacobian matrix [2]. The method accurately reproduces ignition delays obtained by detailed chemistry for temperatures above crossover where branching is the dominant process. However for temperatures below the crossover temperature where other phenomena like thermal runaway are more significant the scalar approach fails to predict ignition events correctly. Therefore modifications to the scalar framework have been made to extend its validity across the entire temperature range. Additionally a simple technique for approximating the molecular diffusion of the scalar has been developed using the eigenvector of the Jacobian which accounts for differences in the radical pool’s composition and non-unity Lewis number effects. The complete modified framework is presented and its capability is evaluated in canonical scenarios and a more challenging double mixing layer.
Calculating the Fundamental Parameters to Assess the Explosion Risk Due to Crossover in Electrolysers
Sep 2023
Publication
With the predicted high demand of hydrogen projected to support the neutral carbon society transition in the coming years the production of hydrogen is set to increase alongside the demand. As electrolysis is set to be amongst the main solutions for green hydrogen production ensuring the safety of electrolysers during operation will become a central concern. This is mainly due to the crossover risk (hydrogen into oxygen or the other way around) in the separators as throughout the years several cases of incidents have been reported. This study aims to evaluate the methodologies for calculating H2/O2 detonation cell size and laminar flame velocity using detailed kinetic mechanisms at the operating conditions of electrolysers (up to 35 bar and 360 K). Therefore the modeling of H2/O2 and H2/Air shock tube delay times and laminar flame speeds at initial different pressures and temperature based on the GRI mech 3.0 [1] Mevel et al.[2] Li et al.[3] Lutz et al. [4] and Burke et al. [5] kinetic mechanisms were performed and compared with the available experimental data in the literature. In each case a best candidate mechanism was then chosen to build a database for the detonation cell size then for the laminar flame speeds up to the operating conditions of electrolysers (293-360K and 1-35 bar).
Experimental Characterization of the Operational Behavior of a Catalytic Recombiner for Hydrogen Mitigation
Sep 2023
Publication
One of the significant safety concerns in large-scale storage and transportation of liquefied (cryogenic) hydrogen (LH2) is the formation of flammable hydrogen/air mixtures after leakages during storage or transportation. Especially in maritime transportation hydrogen accumulations could occur within large and congested geometries. The installation of passive auto-catalytic recombiners (PARs) is a suitable mitigation measure for local areas where venting is insufficient or even impossible. Numerical models describing the operational behavior of PARs are required to allow for optimizing the location and assessing the efficiency of the mitigation measure. In the present study the operational behavior of a PAR with a compact design has been experimentally investigated. In order to obtain data for model validation an experimental program has been performed in the REKO-4 facility a 5.5 m³ vessel. The test procedure includes two phases steady-state and dynamic. The results provide insights into the hydrogen recombination rates and catalyst temperatures under different boundary conditions.
An Overview of Low-carbon Hydrogen Production via Water Splitting Driven by Piezoelectric and Pyroelectric Catalysis
Jun 2024
Publication
The focus on sustainable energy sources is intensifying as they present a viable alternative to conventional fossil fuels. The emergence of clean and renewable hydrogen fuel marks a significant technological shift toward decarbonizing the environment. Harnessing mechanical and thermal energy through piezoelectric and pyroelectric catalysis has emerged as an effective strategy for producing hydrogen and contributing to reducing dependence on carbon-based fuels. In this regard this review presents recent advances in piezoelectric and pyroelectric catalysis induced by mechanical and thermal excitations respectively towards hydrogen generation via the water splitting process. A thorough description of the fundamental principles underlying the piezoelectric and pyroelectric effects is provided complemented by an analysis of the catalytic processes induced by these effects. Subsequently these effects are examined to propose the prerequisites needed for such catalysts to achieve water splitting reaction and hydrogen generation. Special attention is devoted to identifying the various strategies adopted to enhance hydrogen production in order to provide new paths for increased efficiency.
A New Dimensionless Number for Type IV Composite Pressure Vessel Designer to Increase Efficiency and Reduce Cost
Sep 2023
Publication
A new dimensionless number (DN) is proposed in order to evaluate the performance of a high-pressure vessel composite structure. It shows that very few composite part is used at its maximum loading potential during bursting. Today for 70 MPa on-board type IV composite tanks DN values close to 20%. The suggested DN will be a useful indicator for an industrial application. By maximizing the DN at the design phase it is possible to minimize the mass of the composite structure of a CPV to reduce the manufacturing time and cost. To increase the DN as close as possible to 100% it is necessary to succeed in increasing the overall loading of the composite structure to have better oriented fibre. For this it seems necessary to find new processes which make it possible to better orient the fibre.
Instances of Safety-Related Advances in Hydrogen as Regards Its Gaseous Transport and Buffer Storage and Its Solid-State Storage
Jul 2024
Publication
As part of the ongoing transition from fossil fuels to renewable energies advances are particularly expected in terms of safe and cost-effective solutions. Publicising instances of such advances and emphasising global safety considerations constitute the rationale for this communication. Knowing that high-strength steels can prove economically relevant in the foreseeable future for transporting hydrogen in pipelines by limiting the pipe wall thickness required to withstand high pressure one advance relates to a bench designed to assess the safe transport or renewableenergy-related buffer storage of hydrogen gas. That bench has been implemented at the technology readiness level TRL 6 to test initially intact damaged or pre-notched 500 mm-long pipe sections with nominal diameters ranging from 300 to 900 mm in order to appropriately validate or question the use of reputedly satisfactory predictive models in terms of hydrogen embrittlement and potential corollary failure. The other advance discussed herein relates to the reactivation of a previously fruitful applied research into safe mass solid-state hydrogen storage by magnesium hydride through a new public–private partnership. This latest development comes at a time when markets have started driving the hydrogen economy bearing in mind that phase-change materials make it possible to level out heat transfers during the absorption/melting and solidification/desorption cycles and to attain an overall energy efficiency of up to 80% for MgH2 -based compacts doped with expanded natural graphite.
Green Hydrogen Cooperation between Egypt and Europe: The Perspective of Locals in Suez and Port Said
Jun 2024
Publication
Hydrogen produced by renewable energy sources (green hydrogen) is at the centrepiece of European decarbonization strategies necessitating large imports from third countries. Egypt potentially stands out as major production hub. While technical and economic viability are broadly discussed in literature analyses of local acceptance are absent. This study closes this gap by surveying 505 locals in the Suez Canal Economic Zone (Port Said and Suez) regarding their attitudes towards renewable energy development and green hydrogen production. We find overall support for both national deployment and export to Europe. Respondents see a key benefit in rising income thereby strongly underlying the economic argument. Improved trade relationships or improved political relationships are seen as potential benefits of export but as less relevant for engaging in cooperation putting a spotlight on local benefits. Our study suggests that the local population is more positive than negative towards the development and scaling up of green hydrogen projects in Egypt.
Hydrogen Refuelling Station Calibration with a Traceable Gravimetric Standard
Apr 2020
Publication
Of all the alternatives to hydrocarbon fuels hydrogen offers the greatest long-term potential to radically reduce the many problems inherent in fuel used for transportation. Hydrogen vehicles have zero tailpipe emissions and are very efficient. If the hydrogen is made from renewable sources such as nuclear power or fossil sources with carbon emissions captured and sequestered hydrogen use on a global scale would produce almost zero greenhouse gas emissions and greatly reduce air pollutant emissions. The aim of this work is to realise a traceability chain for hydrogen flow metering in the range typical for fuelling applications in a wide pressure range with pressures up to 875 bar (for Hydrogen Refuelling Station - HRS with Nominal Working Pressure of 700 bar) and temperature changes from −40 °C (pre-cooling) to 85 °C (maximum allowed vehicle tank temperature) in accordance with the worldwide accepted standard SAE J2601. Several HRS have been tested in Europe (France Netherlands and Germany) and the results show a good repeatability for all tests. This demonstrates that the testing equipment works well in real conditions. Depending on the installation configuration some systematic errors have been detected and explained. Errors observed for Configuration 1 stations can be explained by pressure differences at the beginning and end of fueling in the piping between the Coriolis Flow Meter (CFM) and the dispenser: the longer the distance the bigger the errors. For Configuration 2 where this distance is very short the error is negligible.
The Fuel Flexibility of Gas Turbines: A Review and Retrospective Outlook
May 2023
Publication
Land-based gas turbines (GTs) are continuous-flow engines that run with permanent flames once started and at stationary pressure temperature and flows at stabilized load. Combustors operate without any moving parts and their substantial air excess enables complete combustion. These features provide significant space for designing efficient and versatile combustion systems. In particular as heavy-duty gas turbines have moderate compression ratios and ample stall margins they can burn not only high- and medium-BTU fuels but also low-BTU ones. As a result these machines have gained remarkable fuel flexibility. Dry Low Emissions combustors which were initially confined to burning standard natural gas have been gradually adapted to an increasing number of alternative gaseous fuels. The paper first delivers essential technical considerations that underlie this important fuel portfolio. It then reviews the spectrum of alternative GT fuels which currently extends from lean gases (coal bed coke oven blast furnace gases . . . ) to rich refinery streams (LPG olefins) and from volatile liquids (naphtha) to heavy hydrocarbons. This “fuel diet” also includes biogenic products (biogas biodiesel and ethanol) and especially blended and pure hydrogen the fuel of the future. The paper also outlines how historically land-based GTs have gradually gained new fuel territories thanks to continuous engineering work lab testing experience extrapolation and validation on the field.
No more items...