Denmark
Analysing Long-term Opportunities for Offshore Energy System Integration in the Danish North Sea
Aug 2021
Publication
This study analyzes future synergies between the Oil and Gas (O&G) and renewables sectors in a Danish context and explores how exploiting these synergies could lead to economic and environmental benefits. We review and highlight relevant technologies and related projects and synthesize the state of the art in offshore energy system integration. All of these preliminary results serve as input data for a holistic energy system analysis in the Balmorel modeling framework. With a timeframe out to 2050 and model scope including all North Sea neighbouring countries this analysis explores a total of nine future scenarios for the North Sea energy system. The main results include an immediate electrification of all operational Danish platforms by linking them to the shore and/or a planned Danish energy island. These measures result in cost and CO2 emissions savings compared to a BAU scenario of 72% and 85% respectively. When these platforms cease production this is followed by the repurposing of the platforms into hydrogen generators with up to 3.6 GW of electrolysers and the development of up to 5.8 GW of floating wind. The generated hydrogen is assumed to power the future transport sector and is delivered to shore in existing and/or new purpose-built pipelines. The contribution of the O&G sector to this hydrogen production amounts to around 19 TWh which represents about 2% of total European hydrogen demand for transport in 2050. The levelized costs (LCOE) of producing this hydrogen in 2050 are around 4 €2020/kg H2 which is around twice those expected in similar studies. But this does not account for energy policies that may incentivize green hydrogen production in the future which would serve to reduce this LCOE to a level that is more competitive with other sources.
The Role of Biomass Gasification in Low-carbon Energy and Transport Systems
Mar 2021
Publication
The design of future energy systems requires the efficient use of all available renewable resources. Biomass can complement variable renewable energy sources by ensuring energy system flexibility and providing a reliable feedstock to produce renewable fuels. We identify biomass gasification suitable to utilise the limited biomass resources efficiently. In this study we inquire about its role in a 100% renewable energy system for Denmark and a net-zero energy system for Europe in the year 2050 using hourly energy system analysis. The results indicate bio-electrofuels produced from biomass gasification and electricity to enhance the utilisation of wind and electrolysis and reduce the energy system costs and fuels costs compared to CO2-electrofuels from carbon capture and utilisation. Despite the extensive biomass use overall biomass consumption would be higher without biomass gasification. The production of electromethanol shows low biomass consumption and costs while Fischer-Tropsch electrofuels may be an alternative for aviation. Syngas from biomass gasification can supplement biogas in stationary applications as power plants district heat or industry but future energy systems must meet a balance between producing transport fuels and syngas for stationary units. CO2-electrofuels are found complementary to bio-electrofuels depending on biomass availability and remaining non-fossil CO2 emitters
Data-driven Scheme for Optimal Day-ahead Operation of a Wind/hydrogen System Under Multiple Uncertainties
Nov 2022
Publication
Hydrogen is believed as a promising energy carrier that contributes to deep decarbonization especially for the sectors hard to be directly electrified. A grid-connected wind/hydrogen system is a typical configuration for hydrogen production. For such a system a critical barrier lies in the poor cost-competitiveness of the produced hydrogen. Researchers have found that flexible operation of a wind/hydrogen system is possible thanks to the excellent dynamic properties of electrolysis. This finding implies the system owner can strategically participate in day-ahead power markets to reduce the hydrogen production cost. However the uncertainties from imperfect prediction of the fluctuating market price and wind power reduce the effectiveness of the offering strategy in the market. In this paper we proposed a decision-making framework which is based on data-driven robust chance constrained programming (DRCCP). This framework also includes multi-layer perception neural network (MLPNN) for wind power and spot electricity price prediction. Such a DRCCP-based decision framework (DDF) is then applied to make the day-ahead decision for a wind/hydrogen system. It can effectively handle the uncertainties manage the risks and reduce the operation cost. The results show that for the daily operation in the selected 30 days offering strategy based on the framework reduces the overall operation cost by 24.36% compared to the strategy based on imperfect prediction. Besides we elaborate the parameter selections of the DRCCP to reveal the best parameter combination to obtain better optimization performance. The efficacy of the DRCCP method is also highlighted by the comparison with the chance-constrained programming method.
A Novel Scheme to Allocate the Green Energy Transportation Costs—Application to Carbon Captured and Hydrogen
Mar 2023
Publication
Carbon dioxide (CO2 ) and hydrogen (H2 ) are essential energy vectors in the green energy transition. H2 is a fuel produced by electrolysis and is applied in heavy transportation where electrification is not feasible yet. The pollutant substance CO2 is starting to be captured and stored in different European locations. In Denmark the energy vision aims to use this CO2 to be reacted with H2 producing green methanol. Typically the production units are not co-located with consumers and thus the required transportation infrastructure is essential for meeting supply and demand. This work presents a novel scheme to allocate the transportation costs of CO2 and H2 in pipeline networks which can be applied to any network topology and with any allocation method. During the tariff formation process coordinated adjustments are made by the novel scheme on the original tariffs produced by the allocation method employed considering the location of each customer connected to pipeline network. Locational tariffs are provided as result and the total revenue recovery is guaranteed to the network owner. Considering active customers the novel scheme will lead to a decrease of distant pipeline flows thereby contributing to the prevention of bottlenecks in the transportation network. Thus structural reinforcements can be avoided reducing the total transportation cost paid by all customers in the long-term.
NewGasMet - Flow Metering of Renewable Gases (Biogas, Biomethane, Hydrogen, Syngas and Mixtures with Natural Gas): Effect of Hydrogen Admixture on the Accuracy of a Rotary Flow Meter
Aug 2021
Publication
With the rise of hydrogen use in the natural gas grid a need exists for reliable measurements of the amount of energy being transported and traded for hydrogen admixtures. Using VSL’s high-pressure Gas Oil Piston Prover (GOPP) primary standard the effect of mixing hydrogen with natural gas on the performance of a high-pressure gas flow meter was investigated. The error of a rotary flow meter was determined using the best possible uncertainty by calibration with the primary standard for high-pressure natural gas flow. The rotary flow meter was calibrated using both natural gas and hydrogen enriched natural gas (nominally 15% hydrogen) at two different pressures: 9 and 16 bar. Results indicate that for the rotary flow meter and hydrogen admixtures used the differences in the meter errors between high-pressure hydrogen-enriched natural gas calibration and high-pressure natural gas calibration are smaller than the corresponding differences between atmospheric pressure air calibration and high-pressure natural gas calibration.
Low-carbon and Cost-efficient Hydrogen Optimisation through a Grid-connected Electrolyser: The Case of GreenLab Skive
Nov 2022
Publication
Power-to-X technologies are a promising means to achieve Denmark’s carbon emission reduction targets. Water electrolysis can potentially generate carbon-neutral fuels if powered with renewable electricity. However the high variability of renewable sources threatens the Power-to-X plant’s cost-efficiency instead favouring high and constant operation rates. Therefore a diversified electricity supply is often an option to maximise the load factor of the Power-to-X systems. This paper analyses the impact of using different power sources on the cost of production and the carbon intensity of hydrogen produced by a Power-to-X system. GreenLab Skive the world’s first industrial facility with Power-to-X integrated into an industrial symbiosis network has been used as a case study. Results show that the wind/PV/grid-connected electrolyser for hydrogen and electricity production can reduce operational costs and emissions saving 30.6 × 107 kgCO2 and having a Net Present Value twice higher than a grid-connected electrolyser. In addition the carbon emission coefficient for this configuration is 3.5 × 10− 2 kgH2/kgCO2 against 7.0 gH2/gCO2 produced by Steam Methane Reforming. A sensitivity analysis detects the optimal capacity ratio between the renewables and the electrolyser. A plateau is reached for carbon emission performances suggesting a wind/grid-connected electrolyser setup with a wind farm three times the size of the electrolyser. Results demonstrate that hydrogen cost is not competitive yet with the electricity suggesting an investment cost reduction but can be competitive with the current hydrogen price if the wind capacity is less than three times the electrolyser capacity.
The Socio-technical Dynamics of Net-zero Industrial Megaprojects: Outside-in and Inside-out Analyses of the Humber Industrial Cluster
Feb 2023
Publication
Although energy-intensive industries are often seen as ‘hard-to-decarbonise’ net-zero megaprojects for industrial clusters promise to improve the technical and economic feasibility of hydrogen fuel switching and carbon capture and storage (CCS). Mobilising insights from the megaproject literature this paper analyses the dynamics of an ambitious first-of-kind net-zero megaproject in the Humber industrial cluster in the United Kingdom which includes CCS and hydrogen infrastructure systems industrial fuel switching CO2 capture green and blue hydrogen production and hydrogen storage. To analyse the dynamics of this emerging megaproject the article uses a socio-technical system lens to focus on developments in technology actors and institutions. Synthesising multiple megaproject literature insights the paper develops a comprehensive framework that addresses both aggregate (‘outside-in’) developments and the endogenous (‘inside-out’) experiences and activities regarding three specific challenges: technical system integration actor coordination and institutional alignment. Drawing on an original dataset involving expert interviews (N = 46) site visits (N = 7) and document analysis the ‘outside-in’ analysis finds that the Humber megaproject has progressed rapidly from outline visions to specific technical designs enacted by new coalitions and driven by strengthening policy targets and financial support schemes. The complementary ‘inside-out’ analysis however also finds 12 alignment challenges that can delay or derail materialisation of the plans. While policies are essential aggregate drivers institutional misalignments presently also prevent project-actors from finalising design and investment decisions. Our analysis also finds important tensions between the project's high-pace delivery focus (to meet government targets) and allowing sufficient time for pilot projects learning-by-doing and design iterations.
Assessing and Modelling Hydrogen Reactivity in Underground Hydrogen Storage: A Review and Models Simulating the Lobodice Town Gas Storage
Apr 2023
Publication
Underground Hydrogen storage (UHS) is a promising technology for safe storage of large quantities of hydrogen in daily to seasonal cycles depending on the consumption requirements. The development of UHS requires anticipating hydrogen behavior to prevent any unexpected economic or environmental impact. An open question is the hydrogen reactivity in underground porous media storages. Indeed there is no consensus on the effects or lack of geochemical reactions in UHS operations because of the strong coupling with the activity of microbes using hydrogen as electron donor during anaerobic reduction reactions. In this work we apply different geochemical models to abiotic conditions or including the catalytic effect of bacterial activity in methanogenesis acetogenesis and sulfate-reduction reactions. The models are applied to Lobodice town gas storage (Czech Republic) where a conversion of hydrogen to methane was measured during seasonal gas storage. Under abiotic conditions no reaction is simulated. When the classical thermodynamic approach for aqueous redox reactions is applied the simulated reactivity of hydrogen is too high. The proper way to simulate hydrogen reactivity must include a description of the kinetics of the aqueous redox reactions. Two models are applied to simulate the reactions of hydrogen observed at Lobodice gas storage. One modeling the microbial activity by applying energy threshold limitations and another where microbial activity follows a Monod-type rate law. After successfully calibrating the bio-geochemical models for hydrogen reactivity on existing gas storage data and constraining the conditions where microbial activity will inhibit or enhance hydrogen reactivity we now have a higher confidence in assessing the hydrogen reactivity in future UHS in aquifers or depleted reservoirs.
Low-Carbon Optimal Scheduling Model for Peak Shaving Resources in Multi-Energy Power Systems Considering Large-Scale Access for Electric Vehicles
May 2023
Publication
Aiming at the synergy between a system’s carbon emission reduction demand and the economy of peak shaving operation in the process of optimizing the flexible resource peaking unit portfolio of a multi-energy power system containing large-scale electric vehicles this paper proposes a low-carbon optimal scheduling model for peak shaving resources in multi-energy power systems considering large-scale access for electric vehicles. Firstly the charging and discharging characteristics of electric vehicles were studied and a comprehensive cost model for electric vehicles heat storage and hydrogen storage was established. At the same time the carbon emission characteristics of multienergy power systems and their emission cost models under specific carbon trading mechanisms were established. Secondly the change characteristics of the system’s carbon emissions were studied and a carbon emission cost model of multi-energy power was established considering the carbon emission reduction demand of the system. Then taking the carbon emission of the system and the peak regulating operation costs of traditional units energy storage and new energy unit as optimization objectives the multi-energy power system peak regulation multi-objective optimization scheduling model was established and NSGA-II was used to solve the scheduling model. Finally based on a regional power grid data in Northeast China the improved IEEE 30 node multi-energy power system peak shaving simulation model was built and the simulation analysis verified the feasibility of the optimal scheduling model proposed in this paper.
THyGA - Long Term Effect of H2 on Appliances Tested
May 2023
Publication
The goals of the long-term tests were to see the impact of blends of hydrogen and natural gas on the technical condition of the appliances and their performance after several hours of operation. To do so they were run through an accelerated test program amounting to more than 3000 testing hours for the boilers and more than 2500 testing hours for the cookers. The percentage of hydrogen in the test gas was 30% by volume. Three boilers and two cookers were tested by DGC and two boilers by GWI. This report describes the test protocol the results and analysis on the seven appliances tested.
Correlations between Component Size Green Hydrogen Demand and Breakeven Price for Energy Islands
Jun 2023
Publication
The topic of energy islands is currently a focal point in the push for the energy transition. An ambitious project in the North Sea aims to build an offshore wind-powered electrolyser for green hydrogen production. Power-to-X (PtX) is a process of converting renewable electricity into hydrogen-based energy carriers such as natural gas liquid fuels and chemicals. PtH2 represents a subset of PtX wherein hydrogen is the resultant green energy from the conversion process. Many uncertainties surround PtH2 plants affecting the economic success of the investment and making the price of hydrogen and the levelized cost of hydrogen (LCOH) of this technology uncompetitive. Several studies have analysed PtH2 layouts to identify the hydrogen price without considering how component capacities and external inputs affect the breakeven price. Unlike previous works this paper investigates component capacity dependencies under variables such as wind and hydrogen demand shape for dedicated/non-dedicated system layouts. To this end the techno-economic analysis finds the breakeven price optimising the components to reach the lowest selling price. Results show that the hydrogen price can reach 2.2 €/kg for a non-dedicated system for certain combinations of maximum demand and electrolyser capacity. Furthermore the LCOH analysis revealed that the offshore wind electrolyser system is currently uncompetitive with hydrogen production from carbon-based technologies but is competitive with renewable technologies. The sensitivity analysis reveals the green electricity price in the non-dedicated case for which a dedicated system has a lower optimum hydrogen price. The price limit for the dedicated case is 116 €/MWh.
THyGA - Test Report on Mitigation Solutions for Residential Natural Gas Appliances Not Designed for Hydrogen Admixture
Apr 2023
Publication
This report from the WP5 “Mitigation” provides information and test results regarding perturbations that hydrogen could cause to gas appliances when blended to natural gas especially on anatural draught for exhaust fumes or acidity for the condensates. The important topic of on-site adjustment is also studied with test results on alternative technologies and proposals of mitigation approaches.
Hydrogen Deep Ocean Link: A Global Sustainable Interconnected Energy Grid<br/><br/><br/>
Mar 2022
Publication
The world is undergoing a substantial energy transition with an increasing share of intermittent sources of energy on the grid which is increasing the challenges to operate the power grid reliably. An option that has been receiving much focus after the COVID pandemic is the development of a hydrogen economy. Challenges for a hydrogen economy are the high investment costs involved in compression storage and long-distance transportation. This paper analyses an innovative proposal for the creation of hydrogen ocean links. It intends to fill existing gaps in the creation of a hydrogen economy with the increase in flexibility and viability for hydrogen production consumption compression storage and transportation. The main concept behind the proposals presented in this paper consists of using the fact that the pressure in the deep sea is very high which allows a thin and cheap HDPE tank to store and transport large amounts of pressurized hydrogen in the deep sea. This is performed by replacing seawater with pressurized hydrogen and maintaining the pressure in the pipes similar to the outside pressure. Hydrogen Deep Ocean Link has the potential of increasing the interconnectivity of different regional energy grids into a global sustainable interconnected energy system.
Potential Role of Renewable Gas in the Transition of Electricity and District Heating Systems
Dec 2019
Publication
With the constant increase in variable renewable energy production in electricity and district heating systems integration with the gas system is a way to provide flexibility to the overall energy system. In the sustainable transition towards a zero-emission energy system traditional natural gas can be substituted by renewable gasses derived from anaerobic digestion or thermal gasification and hydrogen. In this paper we present a methodology for modelling renewable gas options and limits on biomass resources across sectors in the energy optimisation model Balmorel. Different scenarios for socio-economic pathways to emission neutral electricity and district heating systems in Denmark Sweden Norway and Germany show that a renewable based energy system benefits from a certain percentage of gas as a supplement to other flexibility options like interconnectors. Especially upgraded biogas from anaerobic digestion serves as a substitute for natural gas in all scenarios. Allocating only 10% of available biomass to the electricity and district heating sector leads to full exploitation of the scarce biomass resource by boosting biogas and syngas with hydrogen. The need for renewable gasses is highest in Germany and least in Norway where hydro-power provides flexibility in terms of storable and dispatchable electricity production. The scenarios show that a required ‘‘late sprint" from fossils to achieve a zero-emission energy system in 2050 causes (1) significant higher accumulated emissions and (2) a system which strongly relies on fuels also in an emission free system instead of stronger integration of the electricity and district heating systems through electrification as well as stronger integration of the power systems across countries through interconnectors.
How to Connect Energy Islands: Trade-offs Between Hydrogen and Electricity Infrastructure
Apr 2023
Publication
In light of offshore wind expansions in the North and Baltic Seas in Europe further ideas on using offshore space for renewable-based energy generation have evolved. One of the concepts is that of energy islands which entails the placement of energy conversion and storage equipment near offshore wind farms. Offshore placement of electrolysers will cause interdependence between the availability of electricity for hydrogen production and for power transmission to shore. This paper investigates the trade-offs between integrating energy islands via electricity versus hydrogen infrastructure. We set up a combined capacity expansion and electricity dispatch model to assess the role of electrolysers and electricity cables given the availability of renewable energy from the islands. We find that the electricity system benefits more from connecting close-to-shore wind farms via power cables. In turn electrolysis is more valuable for far-away energy islands as it avoids expensive long-distance cable infrastructure. We also find that capacity investment in electrolysers is sensitive to hydrogen prices but less to carbon prices. The onshore network and congestion caused by increased activity close to shore influence the sizing and siting of electrolysers.
Techno-economic Analysis and Predictive Operation of a Power-to-hydrogen for Renewable Microgrids
Oct 2023
Publication
To enhance renewable energy (RE) generation and maintain power balance energy storage systems are of utmost importance. This research introduces a cutting-edge Power-to-Hydrogen (PtH) framework that harnesses hydrogen as a clean and versatile energy storage medium. The primary focus of this study lies in optimizing power flow within a microgrid (G) equipped with RE and energy storage systems considering various factors such as RE generation power demand battery charge cycles and operational costs. To achieve the optimal balance between power generation and consumption a sophisticated mathematical solution is devised. This solution governs the charging and discharging patterns for both battery and electrolyzer ensuring a harmonious power equilibrium. The use of short-term forecasting further refines the optimization process adapting the parameters based on anticipated RE sources and load requirements. To fine-tune the power management solution for day-to-day operations an artificial neural fuzzy inference system (ANFIS)-based shortterm prediction model is employed. The predictive analysis provides confidence intervals for crucial aspects including power generation demand battery charging cycles and hydrogen generation. This facilitates precise cost estimation across various hydrogen and heat price ranges. the proposed PtH optimization framework offers an efficient approach to balance power generation and consumption in Gs driven by RE sources and energy storage. To validate the proposed approach numerical simulations are performed based on data from wind and solar farms load requirements and cost of energy. The results show that the proposed energy management strategy significantly reduces operational costs and optimizes PtH generation while maintaining power balance within the microgrid (G). The predictive approach helps fine-tune the optimization process improving efficiency and cost-effectiveness. The research convincingly demonstrate the economic advantages of adopting hydrogen as an energy storage medium paving the way for a cleaner and more sustainable energy future.
Anion Exchange Membrane Water Electrolyzer: Electrode Design, Lab-scaled Testing System and Performance Evaluation
Aug 2022
Publication
Green hydrogen produced by water electrolysis is one of the most promising technologies to realize the efficient utilization of intermittent renewable energy and the decarbonizing future. Among various electrolysis technologies the emerging anion-exchange membrane water electrolysis (AEMWE) shows the most potential for producing green hydrogen at a competitive price. In this review we demonstrate a comprehensive introduction to AEMWE including the advanced electrode design the lab-scaled testing system establishment and the electrochemical performance evaluation. Specifically recent progress in developing high activity transition metal-based powder electrocatalysts and self-supporting electrodes for AEMWE is summarized. To improve the synergistic transfer behaviors between electron charge water and gas inside the gas diffusion electrode (GDE) two optimizing strategies are concluded by regulating the pore structure and interfacial chemistry. Moreover we provide a detailed guideline for establishing the AEMWE testing system and selecting the electrolyzer components. The influences of the membrane electrode assembly (MEA) technologies and operation conditions on cell performance are also discussed. Besides diverse electrochemical methods to evaluate the activity and stability implement the failure analyses and realize the in-situ characterizations are elaborated. In end some perspectives about the optimization of interfacial environment and cost assessments have been proposed for the development of advanced and durable AEMWE.
Explosion Mitigation Techniques in Tunnels and their Applicability to Scenarios of Hydrogen Tank Rupture in a Fire
Sep 2023
Publication
This paper presents a comprehensive review of existing explosion mitigation techniques for tunnels and evaluates their applicability in scenarios of hydrogen tank rupture in a fire. The study provides an overview of the current state of the art in tunnel explosion mitigation and discusses the challenges associated with hydrogen explosions in the context of fire incidents. The review shows that there are several approaches available to decrease the effects of explosions including wrapping the tunnel with a flexible and compressible barrier and introducing energy-absorbing flexible honeycomb elements. However these methods are limited to the mitigation of the action and do not consider either the mitigation of the structural response or the effects on the occupants. The study highlights how the structural response is affected by the duration of the action and the natural period of the structural elements and how an accurate design of the element stiffness can be used in order to mitigate the structural vulnerability to the explosion. The review also presents various passive and active mitigation techniques aimed at mitigating the explosion effects on the occupants. Such techniques include tunnel branching ventilation openings evacuation lanes right-angled bends drop-down perforated plates or high-performance fibre-reinforced cementitious composite (HPFRCC) panels for blast shielding. While some of these techniques can be introduced during the tunnel's construction phase others require changes to the already working tunnels. To simulate the effect of blast wave propagation and evaluate the effectiveness of these mitigation techniques a CFD-FEM study is proposed for future analysis. The study also highlights the importance of considering these mitigation techniques to ensure the safety of the public and first responders. Finally the study identifies the need for more research to understand blast wave mitigation by existing structural elements in the application for potential accidents associated with hydrogen tank rupture in a tunnel.
Validation of a Hydrogen Jet Fire Model in FDS
Sep 2023
Publication
Hydrogen jet fire occurs with high probability when hydrogen leaks from high-pressure equipment. The hydrogen jet fire is characterized by its high velocity and energy. Computational Fluid Dynamics (CFD) numerical analysis is a prominent way to predict the potential hazards associated with hydrogen jet fire. Validation of the CFD model is essential to ensure and quantify the accuracy of numerical results. This study focuses on the validation of the hydrogen jet fire model using Fire Dynamic Simulation (FDS). Hydrogen release is modeled using high-speed Lagrangian particles released from a virtual nozzle thus avoiding the modeling of the actual nozzle. The mesh size sensitivity analysis of the model is carried out in a container-size domain with 0.04m – 0.08m resolution of the jet. The model is validated by comparing gas temperatures and heat fluxes with test data. The promising results demonstrated that the model could predict the hazardous influence of the jet fire.
Off-grid Wind/Hydrogen Systems with Multi-electrolyzers: Optimized Operational Strategies
Sep 2023
Publication
Optimized operation of wind/hydrogen systems can increase the system efficiency and further reduce the hydrogen production cost. In this regard extensive research has been done but there is a lack of detailed electrolyzer models and effective management of multiple electrolyzers considering their physical restrictions. This work proposes electrolyzer models that integrate the efficiency variation caused by load level change start–stop cycle (including hot and cold start) thermal management and degradation caused by frequent starts. Based on the proposed models three operational strategies are considered in this paper: two traditionally utilized methods simple start–stop and cycle rotation strategies and a newly proposed rolling optimizationbased strategy. The results from daily operation show that the new strategy results in a more balanced load level among the electrolyzers and a more stable temperature. Besides from a yearly operation perspective it is found that the proposed rolling optimization method results in more hydrogen production higher system efficiency and lower LCOH. The new method leads to hydrogen production of 311297 kg compared to 289278 kg and 303758 kg for simple start–stop and cycle rotation methods. Correspondingly the system efficiencies for the new simple start–stop and cycle rotation methods are 0.613 0.572 and 0.587. The resulting LCOH from the new method is 3.89 e/kg decreasing by 0.35 e/kg and 0.21 e/kg compared to the simple start–stop and cycle rotation methods. Finally the proposed model is compared with two conventional models to show its effectiveness in revealing more operational details and reliable results.
No more items...