Denmark
Discrete Event Simulation in Support to Hydrogen Supply Reliability
Sep 2009
Publication
Discrete Event Simulation (DES) environments are rapidly developing and they appear to be promising tools for developing reliability and risk analysis models of safety-critical systems. DES models are an alternative to the conventional methods such as fault and event trees Bayesian networks and cause-consequence diagrams that could be used to assess the reliability of fuel supply. DES models can rather easily account for the dynamic dimensions and other important features that can hardly be captured by the conventional models. The paper describes a novel approach to estimate gas supply security and the reliability/safety of gas installations and argues that this approach can be transferred to estimate future hydrogen supply reliability. The core of the approach is a DES model of gas or other fuel propulsion through a pipeline to the customers and failures of the components of the pipeline. We will argue in the paper that the experience gained in the modelling of gas supply reliability is very relevant to the security and safety of a future hydrogen supply and worth being employed in this area.
A Barrier Analysis of a Generic Hydrogen Refuelling Station
Sep 2009
Publication
Any technical installation need appropriate safety barriers installed to prevent or mitigate any adverse effects concerning people property and environment. In this context a safety barrier is a series of elements each consisting of a technical system or human action that implement a planned barrier function to prevent control or mitigate the propagation of a condition or event into an undesired condition or event. This is also important for new technologies as hydrogen refuelling stations being operated at very high pressures up to 900bar. In order to establish the needed barriers a hazard identification of the installation has to be carried out to identify the possible hazardous events. In this study this identification was done using the generic layout of a future large hydrogen refuelling station that has been developed by the EU NoE HySafe. This was based on experiences with smaller scale refuelling stations that has been in operation for several years e.g. being used in the former CUTE and ECTOS projects. Using this approach the object of the study is to support activities to further improve the safety performance of future larger refuelling stations. This will again help to inform the authorities and the public to achieve a proper public awareness and to support building up a realistic risk and safety perception of the safety on such future refuelling stations. In the second step the hazardous events that may take place and the barriers installed to stop hazards and their escalation are analysed also using in-house developed software to model the barriers and to quantify their performance. The paper will present an overview and discuss the state-of-the-art of the barriers established in the generic refuelling station.
Complex Metal Hydrides for Hydrogen, Thermal and Electrochemical Energy Storage
Oct 2017
Publication
Hydrogen has a very diverse chemistry and reacts with most other elements to form compounds which have fascinating structures compositions and properties. Complex metal hydrides are a rapidly expanding class of materials approaching multi-functionality in particular within the energy storage field. This review illustrates that complex metal hydrides may store hydrogen in the solid state act as novel battery materials both as electrolytes and electrode materials or store solar heat in a more efficient manner as compared to traditional heat storage materials. Furthermore it is highlighted how complex metal hydrides may act in an integrated setup with a fuel cell. This review focuses on the unique properties of light element complex metal hydrides mainly based on boron nitrogen and aluminum e.g. metal borohydrides and metal alanates. Our hope is that this review can provide new inspiration to solve the great challenge of our time: efficient conversion and large-scale storage of renewable energy.
International Association for Hydrogen Safety ‘Research Priorities Workshop’, September 2018, Buxton, UK
Sep 2018
Publication
Hydrogen has the potential to be used by many countries as part of decarbonising the future energy system. Hydrogen can be used as a fuel ‘vector’ to store and transport energy produced in low-carbon ways. This could be particularly important in applications such as heating and transport where other solutions for low and zero carbon emission are difficult. To enable the safe uptake of hydrogen technologies it is important to develop the international scientific evidence base on the potential risks to safety and how to control them effectively. The International Association for Hydrogen Safety (known as IA HySAFE) is leading global efforts to ensure this. HSE hosted the 2018 IA HySAFE Biennial Research Priorities Workshop. A panel of international experts presented during nine key topic sessions: (1) Industrial and National Programmes; (2) Applications; (3) Storage; (4) Accident Physics – Gas Phase; (5) Accident Physics – Liquid/ Cryogenic Behaviour; (6) Materials; (7) Mitigation Sensors Hazard Prevention and Risk Reduction; (8) Integrated Tools for Hazard and Risk Assessment; (9) General Aspects of Safety.<br/>This report gives an overview of each topic made by the session chairperson. It also gives further analysis of the totality of the evidence presented. The workshop outputs are shaping international activities on hydrogen safety. They are helping key stakeholders to identify gaps in knowledge and expertise and to understand and plan for potential safety challenges associated with the global expansion of hydrogen in the energy system.
The Impact of Hydrogen Admixture into Natural Gas on Residential and Commercial Gas Appliances
Jan 2022
Publication
Hydrogen as a carbon-free fuel is commonly expected to play a major role in future energy supply e.g. as an admixture gas in natural gas grids. Which impacts on residential and commercial gas appliances can be expected due to the significantly different physical and chemical properties of hydrogen-enriched natural gas? This paper analyses and discusses blends of hydrogen and natural gas from the perspective of combustion science. The admixture of hydrogen into natural gas changes the properties of the fuel gas. Depending on the combustion system burner design and other boundary conditions these changes may cause higher combustion temperatures and laminar combustion velocities while changing flame positions and shapes are also to be expected. For appliances that are designed for natural gas these effects may cause risk of flashback reduced operational safety material deterioration higher nitrogen oxides emissions (NOx) and efficiency losses. Theoretical considerations and first measurements indicate that the effects of hydrogen admixture on combustion temperatures and the laminar combustion velocities are often largely mitigated by a shift towards higher air excess ratios in the absence of combustion control systems but also that common combustion control technologies may be unable to react properly to the presence of hydrogen in the fuel.
The Role of Lock-in Mechanisms in Transition Processes: The Case of Energy for Road Transport
Jul 2015
Publication
This paper revisits the theoretical concepts of lock-in mechanisms to analyse transition processes in energy production and road transportation in the Nordic countries focussing on three technology platforms: advanced biofuels e-mobility and hydrogen and fuel cell electrical vehicles. The paper is based on a comparative analysis of case studies.<br/>The main lock-in mechanisms analysed are learning effects economies of scale economies of scope network externalities informational increasing returns technological interrelatedness collective action institutional learning effects and the differentiation of power.<br/>We show that very different path dependencies have been reinforced by the lock-in mechanisms. Hence the characteristics of existing regimes set the preconditions for the development of new transition pathways. The incumbent socio-technical regime is not just fossil-based but may also include mature niches specialised in the exploitation of renewable sources. This implies a need to distinguish between lock-in mechanisms favouring the old fossil-based regime well-established (mature) renewable energy niches or new pathways.
Hydrogen-fueled Car Fire Spread to Adjacent Vehicles in Car Parks
Sep 2019
Publication
Car park fires are known to be dangerous due to the risk of fast fire spread from one car to another. In general no fatalities are recorded in such fires but they may have a great cost in relation to damaged cars and structural repair. A very recent example is the Liverpool multi-storey car park fire from December 31 2017. It destroyed 1400 cars and parts of the building structure collapsed. This questions the validity of current design praxis of car parks. Literature studies assumes a 12 minutes period for the fire spread from one gasoline fuelled car to another. Statistical research and test from the European commission of steel structures states that in an open car park at most 3-4 vehicles are expected to be on fire at the same time.<br/>A number of investigations have been made concerning vehicles performance in car park fires but only a few are concerned with hydrogen-fuelled vehicles (HFV). It is therefore important to investigate how these new vehicles may contribute to potential fire spread scenario. The aim of the paper is to report the outcome of car park fire spread simulations involving common fuelled and hydrogen fuelled cars. The case study is based on a typical car park found in Denmark. The simulation applied numerical models implemented in the Fire Dynamic Simulator (FDS). In particular the focus of the study is on the influence of the parking distance to fire spread to adjacent vehicles in case a TPRD is activated during a car fire. The results help understanding whether different design rules should be envisaged for such structures or how a sufficient safety level can be obtained by ensuring specific parking condition for the hydrogen-fuelled cars.
Power-to-fuels Via Solid-oxide Electrolyzer: Operating Window and Techno-economics
May 2019
Publication
Power-to-fuel systems via solid-oxide electrolysis are promising for storing excess renewable electricity by efficient electrolysis of steam (or co-electrolysis of steam and CO2) into hydrogen (or syngas) which can be further converted into synthetic fuels with plant-wise thermal integration. Electrolysis stack performance and durability determine the system design performance and long-term operating strategy; thus solid-oxide electrolyzer based power-to-fuels were investigated from the stack to system levels. At the stack level the data from a 6000-h stack testing under laboratory isothermal conditions were used to calibrate a quasi-2D model which enables to predict practical isothermal stack performance with reasonable accuracy. Feasible stack operating windows meeting various design specifications (e.g. specific syngas composition) were further generated to support the selection of operating points. At the system level with the chosen similar stack operating points various power-to-fuel systems including power-to-hydrogen power-to-methane power-to-methanol (dimethyl ether) and power-to-gasoline were compared techno-economically considering system-level heat integration. Several operating strategies of the stack were compared to address the increase in stack temperature due to degradation. The modeling results show that the system efficiency for producing H2 methane methanol/dimethyl ether and gasoline decreases sequentially from 94% (power-to-H2) to 64% (power-to-gasoline) based on a higher heating value. Co-electrolysis which allows better heat integration can improve the efficiency of the systems with less exothermic fuel-synthesis processes (e.g. methanol/dimethyl ether) but offers limited advantages for power-to-methane and power-to-gasoline systems. In a likely future scenario where the growing amount of electricity from renewable sources results in increasing periods of a negative electricity price solid oxide electrolyser based power-to-fuel systems are highly suitable for levelling the price fluctuations in an economic way.
Market Segmentation of Domestic and Commercial Natural Gas Appliances
Jan 2021
Publication
The main goal of the project is to enable the wide adoption of H2NG (hydrogen in natural gas) blends by closing knowledge gaps regarding technical impacts on residential and commercial gas appliances. The project consortium will identify and recommend appropriate codes and standards that should be adapted to answer the needs and develop a strategy for addressing the challenges for new and existing appliances.<br/>This deliverable on market segmentation is part of work package 2 and provides a quantitative segmentation of the gas appliance market in terms of appliance population numbers. It therefore prepares the project partners to perform the subsequent selection of the most representative product types to be tested in the laboratories of the THyGA partners.<br/>The classification is developed to categorise appliances installed in the field based on available statistics calculation methods and estimations. As a result appliance populations are provided for each technology segment that draw a representative picture of the installed end-use appliances within the European Union in 2020.
Balancing Wind-power Fluctuation Via Onsite Storage Under Uncertainty Power-to-hydrogen-to-power Versus Lithium Battery
Oct 2019
Publication
Imbalance costs caused by forecasting errors are considerable for grid-connected wind farms. In order to reduce such costs two onsite storage technologies i.e. power-to-hydrogen-to-power and lithium battery are investigated considering 14 uncertain technological and economic parameters. Probability density distributions of wind forecasting errors and power level are first considered to quantify the imbalance and excess wind power. Then robust optimal sizing of the onsite storage is performed under uncertainty to maximize wind-farm profit (the net present value). Global sensitivity analysis is further carried out for parameters prioritization to highlight the key influential parameters. The results show that the profit of power-to-hydrogen-to-power case is sensitive to the hydrogen price wind forecasting accuracy and hydrogen storage price. When hydrogen price ranges in (2 6) €/kg installing only electrolyzer can earn profits over 100 k€/MWWP in 9% scenarios with capacity below 250 kW/MWWP under high hydrogen price (over 4 €/kg); while installing only fuel cell can achieve such high profits only in 1.3% scenarios with capacity below 180 kW/MWWP. Installing both electrolyzer and fuel cell (only suggested in 22% scenarios) results in profits below 160 k€/MWWP and particularly 20% scenarios allow for a profit below 50 k€/MWWP due to the contradictory effects of wind forecasting error hydrogen and electricity price. For lithium battery investment cost is the single highly influential factor which should be reduced to 760 €/kWh. The battery capacity is limited to 88 kW h/MWWP. For profits over 100 k€/MWWP (in 3% scenarios) the battery should be with an investment cost below 510 €/kWh and a depth of discharge over 63%. The power-to-hydrogen-to-power case is more advantageous in terms of profitability reliability and utilization factor (full-load operating hours) while lithium battery is more helpful to reduce the lost wind and has less environmental impact considering current hydrogen market.
Life Cycle Assessment of Hydrogen Production and Consumption in an Isolated Territory
Apr 2018
Publication
Hydrogen produced from renewables works as an energy carrier and as energy storage medium and thus hydrogen can help to overcome the intermittency of typical renewable energy sources. However there is no comprehensive environmental performance study of hydrogen production and consumption. In this study detailed cradle to grave life cycle analyses are performed in an isolated territory. The hydrogen is produced on-site by Polymer Electrolyte Membrane (PEM) water electrolysis based on electricity from wind turbines that would otherwise have been curtailed and subsequently transported with gas cylinder by road and ferry. The hydrogen is used to provide electricity and heat through fuel cell stacks as well as hydrogen fuel for fuel cell vehicles. In order to evaluate the environmental impacts related to the hydrogen production and utilisation this work conducts an investigation of the entire life cycle of the described hydrogen production transportation and utilisation. All the processes related to the equipment manufacture operation maintenance and disposal are considered in this study.
Materials for Hydrogen-based Energy Storage - Past, Recent Progress and Future Outlook
Dec 2019
Publication
Michael Hirscher,
Volodymyr A. Yartys,
Marcello Baricco,
José Bellosta von Colbe,
Didier Blanchard,
Robert C. Bowman Jr.,
Darren P. Broom,
Craig Buckley,
Fei Chang,
Ping Chen,
Young Whan Cho,
Jean-Claude Crivello,
Fermin Cuevas,
William I. F. David,
Petra E. de Jongh,
Roman V. Denys,
Martin Dornheim,
Michael Felderhoff,
Yaroslav Filinchuk,
George E. Froudakis,
David M. Grant,
Evan MacA. Gray,
Bjørn Christian Hauback,
Teng He,
Terry D. Humphries,
Torben R. Jensen,
Sangryun Kim,
Yoshitsugu Kojima,
Michel Latroche,
Hai-wen Li,
Mykhaylo V. Lototskyy,
Joshua W. Makepeace,
Kasper T. Møller,
Lubna Naheed,
Peter Ngene,
Dag Noreus,
Magnus Moe Nygård,
Shin-ichi Orimo,
Mark Paskevicius,
Luca Pasquini,
Dorthe B. Ravnsbæk,
M. Veronica Sofianos,
Terrence J. Udovic,
Tejs Vegge,
Gavin Walker,
Colin Webb,
Claudia Weidenthaler and
Claudia Zlotea
Globally the accelerating use of renewable energy sources enabled by increased efficiencies and reduced costs and driven by the need to mitigate the effects of climate change has significantly increased research in the areas of renewable energy production storage distribution and end-use. Central to this discussion is the use of hydrogen as a clean efficient energy vector for energy storage. This review by experts of Task 32 “Hydrogen-based Energy Storage” of the International Energy Agency Hydrogen TCP reports on the development over the last 6 years of hydrogen storage materials methods and techniques including electrochemical and thermal storage systems. An overview is given on the background to the various methods the current state of development and the future prospects. The following areas are covered; porous materials liquid hydrogen carriers complex hydrides intermetallic hydrides electro-chemical storage of energy thermal energy storage hydrogen energy systems and an outlook is presented for future prospects and research on hydrogen-based energy storage
Artificial Neural Network Based Optimization of a Six-step Two-bed Pressure Swing Adsorption System for Hydrogen Purification
Apr 2021
Publication
The pressure swing adsorption (PSA) system is widely applied to separate and purify hydrogen from gaseous mixtures. The extended Langmuir equation fitted from the extended Langmuir-Freundlich isotherm has been used to predict the adsorption isothermal of hydrogen and methane on the zeolite 5A adsorbent bed. A six-step two-bed PSA model for hydrogen purification is developed and validated by comparing its simulation results with other works. The effects of the adsorption pressure the P/F ratio the adsorption step time and the pressure equalization time on the performance of the hydrogen purification system are studied. A four-step two-bed PSA model is taken into consideration and the six-step PSA system shows higher about 13% hydrogen recovery than the four-step PSA system. The performance of the vacuum pressure swing adsorption (VPSA) system is compared with that of the PSA system the VPSA system shows higher hydrogen purity than the PSA system. Based on the validated PSA model a dataset has been produced to train the artificial neural network (ANN) model. The effects of the number of neurons in the hidden layer and the number of samples used for training ANN model on the predicted performance of ANN model are investigated. Then the well-trained ANN model with 6 neurons in the hidden layer is applied to predict the performance of the PSA system for hydrogen purification. Multi-objective optimization of hydrogen purification system is performed based on the trained ANN model. The artificial neural network can be considered as a very effective method for predicting and optimizing the performance of the PSA system for hydrogen purification.
At What Cost Can Renewable Hydrogen Offset Fossil Fuel Use in Ireland’s Gas Network?
Apr 2020
Publication
The results of a techno-economic model of distributed wind-hydrogen systems (WHS) located at each existing wind farm on the island of Ireland are presented in this paper. Hydrogen is produced by water electrolysis from wind energy and backed up by grid electricity compressed before temporarily stored then transported to the nearest injection location on the natural gas network. The model employs a novel correlation-based approach to select an optimum electrolyser capacity that generates a minimum levelised cost of hydrogen production (LCOH) for each WHS. Three scenarios of electrolyser operation are studied: (1) curtailed wind (2) available wind and (3) full capacity operations. Additionally two sets of input parameters are used: (1) current and (2) future techno-economic parameters. Additionally two electricity prices are considered: (1) low and (2) high prices. A closest facility algorithm in a geographic information system (GIS) package identifies the shortest routes from each WHS to its nearest injection point. By using current parameters results show that small wind farms are not suitable to run electrolysers under available wind operation. They must be run at full capacity to achieve sufficiently low LCOH. At full capacity the future average LCOH is 6–8 €/kg with total hydrogen production capacity of 49 kilotonnes per year or equivalent to nearly 3% of Irish natural gas consumption. This potential will increase significantly due to the projected expansion of installed wind capacity in Ireland from 5 GW in 2020 to 10 GW in 2030
Optimization of Geothermal- and Solar-driven Clean Electricity and Hydrogen Production Multi-generation Systems to Address the Energy Nexus
Jan 2022
Publication
Given the limited sources of fossil fuels mankind should find new ways to meet its energy demands. In this regard geothermal and solar energy are acknowledged as reliable safe promising and clean means for this purpose. In this research study a comparative analysis is applied on geothermal and solar-driven multi-generation systems for clean electricity and hydrogen production through energy and exergy assessments. The system consists of an organic Rankine cycle a proton electrolyte membrane electrolyzer and a thermoelectric generator subsystem. The Engineering Equation Solver software has been utilized in order to model the system and obtain the output contours sensitivity analysis and exergy destruction. The results were calculated considering the ambient temperature of Bandar Abbas city as a case study considering the geothermal system due to better performance in comparison to the solar system. According to the sensitivity analysis the turbine efficiency evaporator inlet temperature thermoelectric generator suitability criterion pump efficiency and evaporator inlet mass flow rate are the most influential parameters. Also the exergy analysis showed that the utmost system's exergy destruction is pertinent to the evaporator and the least is related to the pump. In addition the system produces 352816 kWh and 174.913 kg of electrical power and hydrogen during one year.
Onshore, Offshore or In-turbine Electrolysis? Techno-economic Overview of Alternative Integration Designs for Green Hydrogen Production into Offshore Wind Power Hubs
Aug 2021
Publication
Massive investments in offshore wind power generate significant challenges on how this electricity will be integrated into the incumbent energy systems. In this context green hydrogen produced by offshore wind emerges as a promising solution to remove barriers towards a carbon-free economy in Europe and beyond. Motivated by the recent developments in Denmark with the decision to construct the world’s first artificial Offshore Energy Hub this paper investigates how the lowest cost for green hydrogen can be achieved. A model proposing an integrated design of the hydrogen and offshore electric power infrastructure determining the levelised costs of both hydrogen and electricity is proposed. The economic feasibility of hydrogen production from 2 Offshore Wind Power Hubs is evaluated considering the combination of different electrolyser placements technologies and modes of operations. The results show that costs down to 2.4 €/kg can be achieved for green hydrogen production offshore competitive with the hydrogen costs currently produced by natural gas. Moreover a reduction of up to 13% of the cost of wind electricity is registered when an electrolyser is installed offshore shaving the peak loads.
Hydrogen-based Systems for Integration of Renewable Energy in Power Systems: Achievements and Perspectives
Jul 2021
Publication
This paper is a critical review of selected real-world energy storage systems based on hydrogen ranging from lab-scale systems to full-scale systems in continuous operation. 15 projects are presented with a critical overview of their concept and performance. A review of research related to power electronics control systems and energy management strategies has been added to integrate the findings with outlooks usually described in separate literature. Results show that while hydrogen energy storage systems are technically feasible they still require large cost reductions to become commercially attractive. A challenge that affects the cost per unit of energy is the low energy efficiency of some of the system components in real-world operating conditions. Due to losses in the conversion and storage processes hydrogen energy storage systems lose anywhere between 60 and 85% of the incoming electricity with current technology. However there are currently very few alternatives for long-term storage of electricity in power systems so the interest in hydrogen for this application remains high from both industry and academia. Additionally it is expected that the share of intermittent renewable energy in power systems will increase in the coming decades. This could lead to technology development and cost reductions within hydrogen technology if this technology is needed to store excess renewable energy. Results from the reviewed projects indicate that the best solution from a technical viewpoint consists in hybrid systems where hydrogen is combined with short-term energy storage technologies like batteries and supercapacitors. In these hybrid systems the advantages with each storage technology can be fully exploited to maximize efficiency if the system is specifically tailored to the given situation. The disadvantage is that this will obviously increase the complexity and total cost of the energy system.<br/>Therefore control systems and energy management strategies are important factors to achieve optimal results both in terms of efficiency and cost. By considering the reviewed projects and evaluating operation modes and control systems new hybrid energy systems could be tailored to fit each situation and to reduce energy losses.
A Modeling Study of Lifetime and Performance Improvements of Solid Oxide Fuel Cell by Reversed Pulse Operation
Jan 2022
Publication
Chromium poisoning of the air electrode is a primary degradation mechanism for solid oxide cells (SOCs) operating under fuel cell mode. Recent experimental findings show that reversed pulse operation for SOCs operated as electrolyser cells can reverse this degradation and extend the lifetime. Here we use a multiphysics model of an SOC to investigate the effects of reversed pulse operation for alleviating chromium poisoning of the air electrode. We study the effects of time fraction of the operation under fuel cell and electrolysis modes cyclic operation starting after a certain duration and fuel cell and electrolysis current densities on the cell lifetime total power and hydrogen production. Our modeling shows that reversed pulse operation enhances cell lifetime and total power for all different cases considered in this study. Moreover results suggest that the cell lifetime total power and hydrogen production can be increased by reversed pulse operation at longer operation times under electrolysis mode cyclic operation starting from the beginning and lower electrolysis current densities. All in all this paper documents and establishes a computational framework that can serve as a platform to assess and quantify the increased profitability of SOCs operating under a co-production operation through reversed pulse operation.
Optimal Scheduling of a Hydrogen-Based Energy Hub Considering a Stochastic Multi-Attribute Decision-Making Approach
Jan 2023
Publication
Nowadays the integration of multi-energy carriers is one of the most critical matters in smart energy systems with the aim of meeting sustainable energy development indicators. Hydrogen is referred to as one of the main energy carriers in the future energy industry but its integration into the energy system faces different open challenges which have not yet been comprehensively studied. In this paper a novel day-ahead scheduling is presented to reach the optimal operation of a hydrogen-based energy hub based on a stochastic multi-attribute decision-making approach. In this way the energy hub model is first developed by providing a detailed model of Power-to-Hydrogen (P2H) facilities. Then a new multi-objective problem is given by considering the prosumer’s role in the proposed energy hub model as well as the integrated demand response program (IDRP). The proposed model introduces a comprehensive approach from the analysis of the historical data to the final decision-making with the aim of minimizing the system operation cost and carbon emission. Moreover to deal with system uncertainty the scenario-based method is applied to model the renewable energy resources fluctuation. The proposed problem is defined as mixed-integer non-linear programming (MINLP) and to solve this problem a simple augmented e-constrained (SAUGMECON) method is employed. Finally the simulation of the proposed model is performed on a case study and the obtained results show the effectiveness and benefits of the proposed scheme.
Life Cycle Assessment Integration into Energy System Models: An Application for Power-to-Methane in the EU
Nov 2019
Publication
As the EU energy system transitions to low carbon the technology choices should consider a broader set of criteria. The use of Life Cycle Assessment (LCA) prevents burden shift across life cycle stages or impact categories while the use of Energy System Models (ESM) allows evaluating alternative policies capacity evolution and covering all the sectors. This study does an ex-post LCA analysis of results from JRC-EU-TIMES and estimates the environmental impact indicators across 18 categories in scenarios that achieve 80–95% CO2 emission reduction by 2050. Results indicate that indirect CO2 emissions can be as large as direct ones for an 80% CO2 reduction target and up to three times as large for 95% CO2 reduction. Impact across most categories decreases by 20–40% as the CO2 emission target becomes stricter. However toxicity related impacts can become 35–100% higher. The integrated framework was also used to evaluate the Power-to-Methane (PtM) system to relate the electricity mix and various CO2 sources to the PtM environmental impact. To be more attractive than natural gas the climate change impact of the electricity used for PtM should be 123–181 gCO2eq/kWh when the CO2 comes from air or biogenic sources and 4–62 gCO2eq/kWh if the CO2 is from fossil fuels. PtM can have an impact up to 10 times larger for impact categories other than climate change. A system without PtM results in ~4% higher climate change impact and 9% higher fossil depletion while having 5–15% lower impact for most of the other categories. This is based on a scenario where 9 parameters favor PtM deployment and establishes the upper bound of the environmental impact PtM can have. Further studies should work towards integrating LCA feedback into ESM and standardizing the methodology.
Risk Analysis of Complex Hydrogen Infrastructures
Oct 2015
Publication
Building a network of hydrogen refuelling stations is essential to develop the hydrogen economy within transport. Additional hydrogen is regarded a likely key component to store and convert back excess electrical power to secure future energy supply and to improve the quality of biomass-based fuels. Therefore future hydrogen supply and distribution chains will have to address several objectives. Such a complexity is a challenge for risk assessment and risk management of these chains because of the increasing interactions. Improved methods are needed to assess the supply chain as a whole. The method of “Functional modelling” is discussed in this paper. It will be shown how it could be a basis for other decision support methods for comprehensive risk and sustainability assessments.
Technical and Economic Analysis of One-Stop Charging Stations for Battery and Fuel Cell EV with Renewable Energy Sources
Jun 2020
Publication
Currently most of the vehicles make use of fossil fuels for operations resulting in one of the largest sources of carbon dioxide emissions. The need to cut our dependency on these fossil fuels has led to an increased use of renewable energy sources (RESs) for mobility purposes. A technical and economic analysis of a one-stop charging station for battery electric vehicles (BEV) and fuel cell electric vehicles (FCEV) is investigated in this paper. The hybrid optimization model for electric renewables (HOMER) software and the heavy-duty refueling station analysis model (HDRSAM) are used to conduct the case study for a one-stop charging station at Technical University of Denmark (DTU)-Risø campus. Using HOMER a total of 42 charging station scenarios are analyzed by considering two systems (a grid-connected system and an off-grid connected system). For each system three different charging station designs (design A-hydrogen load; design B-an electrical load and design C-an integrated system consisting of both hydrogen and electrical load) are set up for analysis. Furthermore seven potential wind turbines with different capacity are selected from HOMER database for each system. Using HDRSAM a total 18 scenarios are analyzed with variation in hydrogen delivery option production volume hydrogen dispensing option and hydrogen dispensing option. The optimal solution from HOMER for a lifespan of twenty-five years is integrated into design C with the grid-connected system whose cost was $986065. For HDRSAM the optimal solution design consists of tube trailer as hydrogen delivery with cascade dispensing option at 350 bar together with high production volume and the cost of the system was $452148. The results from the two simulation tools are integrated and the overall cost of the one-stop charging station is achieved which was $2833465. The analysis demonstrated that the one-stop charging station with a grid connection is able to fulfil the charging demand cost-effectively and environmentally friendly for an integrated energy system with RESs in the investigated locations.
Estimation of Uncertainty in Risk Assessment of Hydrogen Applications
Sep 2011
Publication
Hydrogen technologies such as hydrogen fuelled vehicles and refuelling stations are being tested in practice in a number of projects (e.g. HyFleet-Cute and Whistler project) giving valuable information on the reliability and maintenance requirements. In order to establish refuelling stations the permitting authorities request qualitative and quantitative risk assessments to show the safety and acceptability in terms of failure frequencies and respective consequences. For new technologies not all statistical data can be established or are available in good quality causing assumptions and extrapolations to be made. Therefore the risk assessment results contain varying degrees of uncertainty as some components are well established while others are not. The paper describes a methodology to evaluate the degree of uncertainty in data for hydrogen applications based on the bias concept of the total probability and the NUSAP concept to quantify uncertainties of new not fully qualified hydrogen technologies and implications to risk management.
Hydrogen Fueling Standardization: Enabling ZEVs with "Same as Today" Fueling and FCEV Range and Safety
Oct 2015
Publication
Zero Emission Vehicles (ZEVs) are necessary to help reduce the emissions in the transportation sector which is responsible for 40% of overall greenhouse gas emissions. There are two types of ZEVs Battery Electric Vehicles (BEVs) and Fuel Cell Electric Vehicles (FCEVs) Commercial Success of BEVs has been challenging thus far also due to limited range and very long charging duration. FCEVs using H2 infrastructure with SAE J2601 and J2799 standards can be consistently fuelled in a safe manner fast and resulting in a range similar to conventional vehicles. Specifically fuelling with SAE J2601 with the SAE J2799 enables FCEVs to fill with hydrogen in 3-5 minutes and to achieve a high State of Charge (SOC) resulting in 300+ mile range without exceeding the safety storage limits. Standardized H2 therefore gives an advantage to the customer over electric charging. SAE created this H2 fuelling protocol based on modelling laboratory and field tests. These SAE standards enable the first generation of commercial FCEVs and H2 stations to achieve a customer acceptable fueling similar to today's experience. This report details the advantages of hydrogen and the validation of H2 fuelling for the SAE standards.
Safety-Barrier Diagrams for Documenting Safety of Hydrogen Applications
Sep 2007
Publication
Safety-barrier diagrams have proven to be a useful tool in documenting the safety measures taken to prevent incidents and accidents in process industry. In Denmark they are used to inform the authorities and the nonexperts on safety relevant issues as safety-barrier diagrams are less complex compared to fault trees and are easy to understand. Internationally there is a growing interest in this concept with the use of so-called “bowtie” diagrams which are a special case of safety-barrier diagrams. Especially during the on-going introduction of new hydrogen technologies or applications as e.g. hydrogen refueling stations this technique is considered a valuable tool to support the communication with authorities and other stakeholders during the permitting process. Another advantage of safety-barrier diagrams is that there is a direct focus on those system elements that need to be subject to safety management in terms of design and installation operational use inspection and monitoring and maintenance. Safety-barrier diagrams support both quantitative and qualitative or deterministic approaches. The paper will describe the background and syntax of the methodology and thereafter the use of such diagrams for hydrogen technologies are demonstrated.
Uncertainties in Risk Assessment of Hydrogen Discharges from Pressurized Storage Vessels Ranging from Cryogenic to Ambient Temperatures
Sep 2013
Publication
Evaluations of the uncertainties resulting from risk assessment tools to predict releases from the various hydrogen storage types are important to support risk informed safety management. The tools have to predict releases from a wide range of storage pressures (up to 80 MPa) and temperatures (at 20K) e.g. the cryogenic compressed gas storage covers pressures up to 35 MPa and temperatures between 33K and 338 K. Accurate calculations of high pressure releases require real gas EOS. This paper compares a number of EOS to predict hydrogen properties typical in different storage types. The vessel dynamics are modelled to evaluate the performance of various EOS to predict exit pressures and temperatures. The results are compared to experimental data and results from CFD calculations.
Development of a Generalized Integral Jet Model
Sep 2017
Publication
Integral type models to describe stationary plumes and jets in cross-flows (wind) have been developed since about 1970. These models are widely used for risk analysis to describe the consequences of many different scenarios. Alternatively CFD codes are being applied but computational requirements still limit the number of scenarios that can be dealt with using CFD only. The integral models however are not suited to handle transient releases such as releases from pressurized equipment where the initially high release rate decreases rapidly with time. Further on gas ignition a second model is needed to describe the rapid combustion of the flammable part of the plume (flash fire) and a third model has to be applied for the remaining jet fire. The objective of this paper is to describe the first steps of the development of an integral-type model describing the transient development and decay of a jet of flammable gas after a release from a pressure container. The intention is to transfer the stationary models to a fully transient model capable to predict the maximum extension of short-duration high pressure jets. The model development is supported by conducting a set of transient ignited and unignited spontaneous releases at initial pressures between 25bar and 400bar. These data forms the basis for the presented model development approach.
Overview of Power Electronic Converter Topologies Enabling Large-Scale Hydrogen Production via Water Electrolysis
Feb 2022
Publication
Renewable power-to-hydrogen (P2H) technology is one of the most promising solutions for fulfilling the increasing global demand for hydrogen and to buffer large-scale fluctuating renewable energies. The high-power high-current ac/dc converter plays a crucial role in P2H facilities transforming medium-voltage (MV) ac power to a large dc current to supply hydrogen electrolyzers. This work introduces the general requirements and overviews several power converter topologies for P2H systems. The performances of different topologies are evaluated and compared from multiple perspectives. Moreover the future trend of eliminating the line frequency transformer (LFT) is discussed. This work can provide guidance for future designing and implementing of power-electronics-based P2H systems.
Magnesium Based Materials for Hydrogen Based Energy Storage: Past, Present and Future
Jan 2019
Publication
Volodymyr A. Yartys,
Mykhaylo V. Lototskyy,
Etsuo Akiba,
Rene Albert,
V. E. Antonov,
Jose-Ramón Ares,
Marcello Baricco,
Natacha Bourgeois,
Craig Buckley,
José Bellosta von Colbe,
Jean-Claude Crivello,
Fermin Cuevas,
Roman V. Denys,
Martin Dornheim,
Michael Felderhoff,
David M. Grant,
Bjørn Christian Hauback,
Terry D. Humphries,
Isaac Jacob,
Petra E. de Jongh,
Jean-Marc Joubert,
Mikhail A. Kuzovnikov,
Michel Latroche,
Mark Paskevicius,
Luca Pasquini,
L. Popilevsky,
Vladimir M. Skripnyuk,
Eugene I. Rabkin,
M. Veronica Sofianos,
Alastair D. Stuart,
Gavin Walker,
Hui Wang,
Colin Webb,
Min Zhu and
Torben R. Jensen
Magnesium hydride owns the largest share of publications on solid materials for hydrogen storage. The “Magnesium group” of international experts contributing to IEA Task 32 “Hydrogen Based Energy Storage” recently published two review papers presenting the activities of the group focused on magnesium hydride based materials and on Mg based compounds for hydrogen and energy storage. This review article not only overviews the latest activities on both fundamental aspects of Mg-based hydrides and their applications but also presents a historic overview on the topic and outlines projected future developments. Particular attention is paid to the theoretical and experimental studies of Mg-H system at extreme pressures kinetics and thermodynamics of the systems based on MgH2 nanostructuring new Mg-based compounds and novel composites and catalysis in the Mg based H storage systems. Finally thermal energy storage and upscaled H storage systems accommodating MgH2 are presented.
Determination Of Hazardous Zones For A Generic Hydrogen Station – A Case Study
Sep 2007
Publication
A method for determination of hazardous zones for hydrogen installations has been studied. This work has been carried out within the NoE HySafe. The method is based on the Italian Method outlined in Guide 31-30(2004) Guide 31–35(2001) Guide 31-35/A(2001) and Guide 31-35/A; V1(2003). Hazardous zones for a “generic hydrogen refuelling station”(HRS) are assessed based on this method. The method is consistent with the EU directive 1999/92/EC “Safety and Health Protection of Workers potentially at risk from explosive atmospheres” which is the basis for determination of hazardous zones in Europe. This regulation is focused on protection of workers and is relevant for hydrogen installations such as hydrogen refuelling stations repair shops and other stationary installations where some type of work operations will be involved. The method is also based on the IEC standard and European norm IEC/EN60079-10 “Electrical apparatus for explosive gas atmospheres. Part 10 Classification of hazardous areas”. This is a widely acknowledged international standard/norm and it is accepted/approved by Fire and Safety Authorities in Europe and also internationally. Results from the HySafe work and other studies relevant for hydrogen and hydrogen installations have been included in the case study. Sensitivity studies have been carried out to examine the effect of varying equipment failure frequencies and leak sizes as well as environmental condition (ventilation obstacles etc.). The discharge and gas dispersion calculations in the Italian Method are based on simple mathematical formulas. However in this work also CFD (Computational Fluid Dynamics) and other simpler numerical tools have been used to quantitatively estimate the effect of ventilation and of different release locations on the size of the flammable gas cloud. Concentration limits for hydrogen to be used as basis for the extent of the hazardous zones in different situations are discussed.
Safety Aspects of Land-Use Planning Scenarios for a Future Infrastructure with Hydrogen Re-Fuelling Stations
Sep 2005
Publication
Hydrogen is currently gaining much attention as a possible future substitute for oil in the transport sector. Hydrogen is not a primary energy source but can be produced from other sources of energy. A future hydrogen economy will need the establishment of new infrastructures for producing storing distributing dispensing and using hydrogen. Hydrogen can be produced in large-scale centralized facilities or in smaller scale on-site systems. Large-scale production requires distribution in pipelines or trucks. A major challenge is to plan the new infrastructures to approach an even safer society regarding safe use of hydrogen. The paper will on the basis of some scenarios for hydrogen deployment highlight and evaluate safety aspects related to future hydrogen economy infrastructures.
A Survey Among Experts of Safety Related to the Use of Hydrogen as an Energy Carrier
Sep 2005
Publication
Based on the increasing need of energy for the future and the related risks to the environments due to burning of fossils fuels hydrogen is seen as an efficient and application related clean energy carrier that may be derived from renewable energy sources. A variety of applications connected with production and use of hydrogen and the related risks have been identified and a survey has been conducted among a number of experts as an internet exercise for unveiling the potential lack of necessary knowledge in order to handle hydrogen in a safe way concerning the various applications. The main results concern hazardous situations related to release and explosions of hydrogen in confined and semi-confined areas tunnels and garages and mitigation of hazardous situations i.e. preventions of accidents and reduction of consequences from accidents happening anyway.
A Review of the MSCA ITN ECOSTORE—Novel Complex Metal Hydrides for Efficient and Compact Storage of Renewable Energy as Hydrogen and Electricity
Mar 2020
Publication
Hydrogen as an energy carrier is very versatile in energy storage applications. Developments in novel sustainable technologies towards a CO2-free society are needed and the exploration of all-solid-state batteries (ASSBs) as well as solid-state hydrogen storage applications based on metal hydrides can provide solutions for such technologies. However there are still many technical challenges for both hydrogen storage material and ASSBs related to designing low-cost materials with low-environmental impact. The current materials considered for all-solid-state batteries should have high conductivities for Na+ Mg2+ and Ca2+ while Al3+-based compounds are often marginalised due to the lack of suitable electrode and electrolyte materials. In hydrogen storage materials the sluggish kinetic behaviour of solid-state hydride materials is one of the key constraints that limit their practical uses. Therefore it is necessary to overcome the kinetic issues of hydride materials before discussing and considering them on the system level. This review summarizes the achievements of the Marie Skłodowska-Curie Actions (MSCA) innovative training network (ITN) ECOSTORE the aim of which was the investigation of different aspects of (complex) metal hydride materials. Advances in battery and hydrogen storage materials for the efficient and compact storage of renewable energy production are discussed.
Bridging the Maritime-Hydrogen Cost-Gap: Real Options Analysis of Policy Alternatives
May 2022
Publication
Alternative and especially renewable marine fuels are needed to reduce the environmental and climate impacts of the shipping sector. This paper investigates the business case for hydrogen as an alternative fuel in a new-built vessel utilizing fuel cells and liquefied hydrogen. A real option approach is used to model the optimal time and costs for investment as well as the value of deferring an investment as a result of uncertainty. This model is then used to assess the impact of a carbon tax on a ship owner’s investment decision. A low carbon tax results in ship owners deferring investments which then slows the uptake of the technology. We recommend that policymakers set a high carbon tax at an early stage in order to help hydrogen compete with fossil fuels. A clear and timely policy design promotes further investments and accelerates the uptake of new technologies that can fulfill decarbonization targets.
Hydrogen - A Sustainable Energy Carrier
Jan 2017
Publication
Hydrogen may play a key role in a future sustainable energy system as a carrier of renewable energy to replace hydrocarbons. This review describes the fundamental physical and chemical properties of hydrogen and basic theories of hydrogen sorption reactions followed by the emphasis on state-of-the-art of the hydrogen storage properties of selected interstitial metallic hydrides and magnesium hydride especially for stationary energy storage related utilizations. Finally new perspectives for utilization of metal hydrides in other applications will be reviewed.
The Role of Effectiveness Factor on the Modeling of Methanol Steam Reforming Over CuO/ZnO/Al2O3 Catalyst in a Multi-tubular Reactor
Jan 2022
Publication
A pseudo-homogeneous model for the methanol steam reforming process was developed based on reaction kinetics over a CuO/ZnO/Al2O3 catalyst and non-adiabatic heat and mass transfer performances in a co-current packed-bed reactor. A Thiele modulus method and an intraparticle distribution method were applied for predicting the effectiveness factors for main reactions and providing insights into the diffusion-reaction process in a cylindrical catalyst pellet. The results of both methods are validated and show good agreements with the experimental data but the intraparticle distribution method provides better predictions. Results indicate that increases in catalyst size and bulk fluid temperature amplify the impact of intraparticle diffusion limitations showing a decrease in effectiveness factors. To satisfy the requirements of a high temperature polymer electrolyte membrane fuel cell stack the optimized operating conditions which bring the methanol and CO concentrations to less than 1% vol in the reformate stream are determined based on the simulation results.
Application of Hydrides in Hydrogen Storage and Compression: Achievements, Outlook and Perspectives
Feb 2019
Publication
José Bellosta von Colbe,
Jose-Ramón Ares,
Jussara Barale,
Marcello Baricco,
Craig Buckley,
Giovanni Capurso,
Noris Gallandat,
David M. Grant,
Matylda N. Guzik,
Isaac Jacob,
Emil H. Jensen,
Julian Jepsen,
Thomas Klassen,
Mykhaylo V. Lototskyy,
Kandavel Manickam,
Amelia Montone,
Julian Puszkiel,
Martin Dornheim,
Sabrina Sartori,
Drew Sheppard,
Alastair D. Stuart,
Gavin Walker,
Colin Webb,
Heena Yang,
Volodymyr A. Yartys,
Andreas Züttel and
Torben R. Jensen
Metal hydrides are known as a potential efficient low-risk option for high-density hydrogen storage since the late 1970s. In this paper the present status and the future perspectives of the use of metal hydrides for hydrogen storage are discussed. Since the early 1990s interstitial metal hydrides are known as base materials for Ni – metal hydride rechargeable batteries. For hydrogen storage metal hydride systems have been developed in the 2010s [1] for use in emergency or backup power units i. e. for stationary applications.<br/>With the development and completion of the first submarines of the U212 A series by HDW (now Thyssen Krupp Marine Systems) in 2003 and its export class U214 in 2004 the use of metal hydrides for hydrogen storage in mobile applications has been established with new application fields coming into focus.<br/>In the last decades a huge number of new intermetallic and partially covalent hydrogen absorbing compounds has been identified and partly more partly less extensively characterized.<br/>In addition based on the thermodynamic properties of metal hydrides this class of materials gives the opportunity to develop a new hydrogen compression technology. They allow the direct conversion from thermal energy into the compression of hydrogen gas without the need of any moving parts. Such compressors have been developed and are nowadays commercially available for pressures up to 200 bar. Metal hydride based compressors for higher pressures are under development. Moreover storage systems consisting of the combination of metal hydrides and high-pressure vessels have been proposed as a realistic solution for on-board hydrogen storage on fuel cell vehicles.<br/>In the frame of the “Hydrogen Storage Systems for Mobile and Stationary Applications” Group in the International Energy Agency (IEA) Hydrogen Task 32 “Hydrogen-based energy storage” different compounds have been and will be scaled-up in the near future and tested in the range of 500 g to several hundred kg for use in hydrogen storage applications.
Reversible Ammonia-based and Liquid Organic Hydrogen Carriers for High-density Hydrogen Storage: Recent Progress
Feb 2019
Publication
Liquid hydrogen carriers are considered to be attractive hydrogen storage options because of their ease of integration into existing chemical transportation infrastructures when compared with liquid or compressed hydrogen. The development of such carriers forms part of the work of the International Energy Agency Task 32: Hydrogen-Based Energy Storage. Here we report the state-of-the-art for ammonia-based and liquid organic hydrogen carriers with a particular focus on the challenge of ensuring easily regenerable high-density hydrogen storage.
Investigation of Turbulent Premixed Methane/Air and Hydrogen-enriched Methane/Air Flames in a Laboratory-scale Gas Turbine Model Combustor
Feb 2021
Publication
Methane and hydrogen-enriched (25 vol% and 50 vol% H2 -enriched CH4) methane/air premixed flames were investigated in a gas turbine model combustor under atmospheric conditions. The flame operability ranges were mapped at different Reynold numbers (Re) showing the dependence on Re and H2 concentrations. The effects of equivalence ratio (Φ) Re and H2 enrichment on flame structure were examined employing OH-PLIF measurement. For CH4/air cases the flame was stabilized with an M shape; while for H2 -enriched cases the flame transitions to a П shape above a specific Φ. This transition was observed to influence significantly the flashback limits. The flame shape transition is most likely a result of H2 enrichment occurring due to the increase in flame speed higher resistance of the flame to the strain rate and change in the inner recirculation zone. Flow fields of CH4/air flames were compared between low and high Re cases employing high-speed PIV. The flashback events led by two mechanisms (combustion-induced vortex breakdown CIVB and boundary-layer flashback BLF) were observed and recorded using high-speed OH chemiluminescence imaging. It was found that the CIVB flashback occurred only for CH4 flames with M shape whereas the BLF occurs for all H2 -enriched flames with П shape.
From Renewable Energy to Sustainable Protein Sources: Advancement, Challenges, and Future Roadmaps
Jan 2022
Publication
The concerns over food security and protein scarcity driven by population increase and higher standards of living have pushed scientists toward finding new protein sources. A considerable proportion of resources and agricultural lands are currently dedicated to proteinaceous feed production to raise livestock and poultry for human consumption. The 1st generation of microbial protein (MP) came into the market as land-independent proteinaceous feed for livestock and aquaculture. However MP may be a less sustainable alternative to conventional feeds such as soybean meal and fishmeal because this technology currently requires natural gas and synthetic chemicals. These challenges have directed researchers toward the production of 2nd generation MP by integrating renewable energies anaerobic digestion nutrient recovery biogas cleaning and upgrading carbon-capture technologies and fermentation. The fermentation of methane-oxidizing bacteria (MOB) and hydrogen-oxidizing bacteria (HOB) i.e. two protein rich microorganisms has shown a great potential on the one hand to upcycle effluents from anaerobic digestion into protein rich biomass and on the other hand to be coupled to renewable energy systems under the concept of Power-to-X. This work compares various production routes for 2nd generation MP by reviewing the latest studies conducted in this context and introducing the state-of-the-art technologies hoping that the findings can accelerate and facilitate upscaling of MP production. The results show that 2nd generation MP depends on the expansion of renewable energies. In countries with high penetration of renewable electricity such as Nordic countries off-peak surplus electricity can be used within MP-industry by supplying electrolytic H2 which is the driving factor for both MOB and HOB-based MP production. However nutrient recovery technologies are the heart of the 2nd generation MP industry as they determine the process costs and quality of the final product. Although huge attempts have been made to date in this context some bottlenecks such as immature nutrient recovery technologies less efficient fermenters with insufficient gas-to-liquid transfer and costly electrolytic hydrogen production and storage have hindered the scale up of MP production. Furthermore further research into techno-economic feasibility and life cycle assessment (LCA) of coupled technologies is still needed to identify key points for improvement and thereby secure a sustainable production system.
Optimal Day-ahead Dispatch of an Alkaline Electrolyser System Concerning Thermal–electric Properties and State-transitional Dynamics
Oct 2021
Publication
Green hydrogen is viewed as a promising energy carrier for sustainable development goals. However it has suffered from high costs hindering its implementation. For a stakeholder who considers both renewable energy and electrolysis units it is important to exploit the flexibility of such portfolios to maximize system operational revenues. To this end an electrolyser model that can characterize its dynamic behavior is required in both electric and thermal aspects. In this paper we develop a comprehensive alkaline electrolyser model that is capable of describing its hydrogen production properties temperature variations and state transitions (among production stand-by and off states). This model is further used to study the optimal dispatch of an electrolyser based on a real-world hybrid wind/electrolyser system. The results show the model can effectively capture the coupling between thermal–electric dynamics and on–off performance of an electrolyser. The flexible operation strategy based on this model is proven to significantly increase daily revenues under different spot price conditions for electricity. Comparing the model with the ones derived from conventional modeling methods reveals this model offers more operating details and highlights several operational features such as the preference for working at partial load conditions although at the expense of more computing resources. It is suggested to use this model in studies related to energy integration operation planning and control scheme development in which the multi-domain dynamic properties of electrolysers in electricity/gas/heat need to be properly characterized. A sensitivity analysis on key parameters of such electrolyser system is also introduced to connect the daily operation with long-term planning.
THyGA - Intermediate Report on the Test of Technologies by Segment – Impact of the Different H2 Concentrations on Safety, Efficiency, Emissions and Correct Operation
Jan 2022
Publication
This report is the very first version of the document that will present the THyGA short-term test. These tests are carried out to observe how appliances react in the short term (few minutes to few hours) on different H2NG mixtures and long-term test are observing behaviour over several weeks. The analysis is based on the test of about 20 appliances only and is not yet covering extensively all the segments of the project. However most of the aspects of the testing are included in the present version that shall be considered as a draft working document to prepare the final report. We have tried to incorporate all aspects that are important to us but there may be more aspects and more analyses that could be added and will be added in the light of the comments and corrections we will gather after the dissemination of the document.
Dedicated Large-scale Floating Offshore Wind to Hydrogen: Assessing Design Variables in Proposed Typologies
Mar 2022
Publication
To achieve the Net-Zero Emissions goal by 2050 a major upscale in green hydrogen needs to be achieved; this will also facilitate use of renewable electricity as a source of decarbonised fuel in hard-to-abate sectors such as industry and transport. Nearly 80% of the world’s offshore wind resource is in waters deeper than 60 m where bottom-fixed wind turbines are not feasible. This creates a significant opportunity to couple the high capacity factor floating offshore wind and green hydrogen. In this paper we consider dedicated large-scale floating offshore wind farms for hydrogen production with three coupling typologies; (i) centralised onshore electrolysis (ii) decentralised offshore electrolysis and (iii) centralised offshore electrolysis. The typology design is based on variables including for: electrolyser technology; floating wind platform; and energy transmission vector (electrical power or offshore hydrogen pipelines). Offshore hydrogen pipelines are assessed as economical for large and distant farms. The decentralised offshore typology employing a semi-submersible platform could accommodate a proton exchange membrane electrolyser on deck; this would negate the need for an additional separate structure or hydrogen export compression and enhance dynamic operational ability. It is flexible; if one electrolyser (or turbine) fails hydrogen production can easily continue on the other turbines. It also facilities flexibility in further expansion as it is very much a modular system. Alternatively less complexity is associated with the centralised offshore typology which may employ the electrolysis facility on a separate offshore platform and be associated with a farm of spar-buoy platforms in significant water depth locations.
Modelling and Experimental Analysis of a Polymer Electrolyte Membrane Water Electrolysis Cell at Different Operating Temperatures
Nov 2018
Publication
In this paper a simplified model of a Polymer Electrolyte Membrane (PEM) water electrolysis cell is presented and compared with experimental data at 60 ◦C and 80 ◦C. The model utilizes the same modelling approach used in previous work where the electrolyzer cell is divided in four subsections: cathode anode membrane and voltage. The model of the electrodes includes key electrochemical reactions and gas transport mechanism (i.e. H2 O2 and H2O) whereas the model of the membrane includes physical mechanisms such as water diffusion electro osmotic drag and hydraulic pressure. Voltage was modelled including main overpotentials (i.e. activation ohmic concentration). First and second law efficiencies were defined. Key empirical parameters depending on temperature were identified in the activation and ohmic overpotentials. The electrodes reference exchange current densities and change transfer coefficients were related to activation overpotentials whereas hydrogen ion diffusion to Ohmic overvoltages. These model parameters were empirically fitted so that polarization curve obtained by the model predicted well the voltage at different current found by the experimental results. Finally from the efficiency calculation it was shown that at low current densities the electrolyzer cell absorbs heat from the surroundings. The model is not able to describe the transients involved during the cell electrochemical reactions however these processes are assumed relatively fast. For this reason the model can be implemented in system dynamic modelling for hydrogen production and storage where components dynamic is generally slower compared to the cell electrochemical reactions dynamics.
Economic Evaluation of a Power-to-hydrogen System Providing Frequency Regulation Reserves: A Case Study of Denmark
Mar 2023
Publication
Operating costs are dominant in the hydrogen production of a power-to-hydrogen system. An optimal operational strategy or bidding framework is effective in reducing these costs. However it is still found that the production cost of hydrogen is high. As the electrolysis unit is characterized by high flexibility providing ancillary service to the grid becomes a potential pathway for revenue stacking. Recent research has demonstrated the feasibility of providing such a service but the related economics have not been well evaluated. In this work we propose a comprehensive operation model to enable participation in the day-head balancing and reserve markets. Three types of reserves are considered by using different operational constraints. Based on the proposed operation framework we assess the economic performance of a power-to-hydrogen system in Denmark using plentiful actual market data. The results reveal that providing frequency containment reserve and automatic frequency restoration reserve efficiently raises the operational contribution margins. In parallel by investing in the cash flows net present value and break-even hydrogen prices we conclude that providing reserves makes the power-to-hydrogen project more profitable in the studied period and region.
Techno-economic Assessment of Green Ammonia Production with Different Wind and Solar Potentials
Nov 2022
Publication
This paper focuses on developing a fast-solving open-source model for dynamic power-to-X plant techno-economic analysis and analysing the method bias that occurs when using other state-of-the-art power-to-X cost calculation methods. The model is a least-cost optimisation of investments and operation-costs taking as input techno-economic data varying power profiles and hourly grid prices. The fuel analysed is ammonia synthesised from electrolytic hydrogen produced with electricity from photovoltaics wind turbines or the grid. Various weather profiles and electrolyser technologies are compared. The calculated costs are compared with those derived using methods and assumptions prevailing in most literature. Optimisation results show that a semi-islanded set-up is the cheapest option and can reduce the costs up to 23% compared to off-grid systems but leads to e-fuels GHG emissions similar to fossil fuels with today’s electricity blend. For off-grid systems estimating costs using solar or wind levelized cost of electricity and capacity factors to derive operating hours leads to costs overestimation up to 30%. The cheapest off-grid configuration reaches production costs of 842 e/t3 . For comparison the "grey" ammonia price was 250 e/t3 in January 2021 and 1500 e/t3 in April 2022 (Western Europe). The optimal power mix is found to always include photovoltaic with 1-axis tracking and sometimes different types of onshore wind turbines at the same site. For systems fully grid connected approximating a highly fluctuating electricity price by a yearly average and assuming a constant operation leads to a small cost.
Review of Energy Portfolio Optimization in Energy Markets Considering Flexibility of Power-to-X
Mar 2023
Publication
Power-to-X is one of the most attention-grabbing topics in the energy sector. Researchers are exploring the potential of harnessing power from renewable technologies and converting it into fuels used in various industries and the transportation sector. With the current market and research emphasis on Power-to-X and the accompanying substantial investments a review of Power-to-X is becoming essential. Optimization will be a crucial aspect of managing an energy portfolio that includes Power-to-X and electrolysis systems as the electrolyzer can participate in multiple markets. Based on the current literature and published reviews none of them adequately showcase the state-of-the-art optimization algorithms for energy portfolios focusing on Power-to-X. Therefore this paper provides an in-depth review of the optimization algorithms applied to energy portfolios with a specific emphasis on Power-to-X aiming to uncover the current state-of-the-art in the field.
Sizing of Hybrid Supercapacitors and Lithium-Ion Batteries for Green Hydrogen Production from PV in the Australian Climate
Feb 2023
Publication
Instead of storing the energy produced by photovoltaic panels in batteries for later use to power electric loads green hydrogen can also be produced and used in transportation heating and as a natural gas alternative. Green hydrogen is produced in a process called electrolysis. Generally the electrolyser can generate hydrogen from a fluctuating power supply such as renewables. However due to the startup time of the electrolyser and electrolyser degradation accelerated by multiple shutdowns an idle mode is required. When in idle mode the electrolyser uses 10% of the rated electrolyser load. An energy management system (EMS) shall be applied where a storage technology such as a lithium-ion capacitor or lithium-ion battery is used. This paper uses a state-machine EMS of PV microgrid for green hydrogen production and energy storage to manage the hydrogen production during the morning from solar power and in the night using the stored energy in the energy storage which is sized for different scenarios using a lithium-ion capacitor and lithium-ion battery. The mission profile and life expectancy of the lithium-ion capacitor and lithium-ion battery are evaluated considering the system’s local irradiance and temperature conditions in the Australian climate. A tradeoff between storage size and cutoffs of hydrogen production as variables of the cost function is evaluated for different scenarios. The lithium-ion capacitor and lithium-ion battery are compared for each tested scenario for an optimum lifetime. It was found that a lithium-ion battery on average is 140% oversized compared to a lithium-ion capacitor but a lithium-ion capacitor has a smaller remaining capacity of 80.2% after ten years of operation due to its higher calendar aging while LiB has 86%. It was also noticed that LiB is more affected by cycling aging while LiC is affected by calendar aging. However the average internal resistance after 10 years for the lithium-ion capacitor is 264% of the initial internal resistance while for lithium-ion battery is 346% making lithium-ion capacitor a better candidate for energy storage if it is used for grid regulation as it requires maintaining a lower internal resistance over the lifetime of the storage.
NewGasMet - Flow Metering of Renewable Gases (Biogas, Biomethane, Hydrogen, Syngas and Mixtures with Natural Gas): Criteria and Proposals for EMC Tests on Ultrasonic Meters with Non-conventional Gases
Oct 2022
Publication
The NEWGASMET project has the overall objective to increase knowledge about the accuracy and durability of commercially available gas meters after exposure to renewable gases. This should lead to the improvement of existing meter designs and flow calibration standards. One of the recently released results is a proposal for a set of test gases to represent the range of non-conventional gases in the scope of the revision of the gas meter standards. In details these were proposed to be used in the CEN/TC237 standards and the OIML-R137:2014. During the project meetings concerns have been raised regarding the applicability of such test gases to EMC tests for static meters. Today such tests are performed in air but there is a clear agreement that the behaviour of the meter during EMC tests can be influenced by the renewable gas type. At least this agreement exists for the ultrasonic measurement technology while further discussion might be needed for the mass flow. However it is not simply possible to redesign the current EMC tests by replacing air with the defined gas mixtures as this would be quite impractical especially considering the explosive nature of the test gases.
Power-to-X in Energy Hubs: A Danish Case Study of Renewable Fuel Production
Feb 2023
Publication
The European Commission recently proposed requirements for the production of renewable fuels as these are required to decarbonize the hard-to-electrify parts of the industrial and heavy transport sectors. Power-to-X (P2X) energy hubs enable efficient synergies between energy infrastructures production facilities and storage options. In this study we explore the optimal operation of an energy hub by leveraging the flexibility of P2X including hydrogen methanol and ammonia synthesizers by analyzing potential revenue streams such as the day-ahead and ancillary services markets. We propose EnerHub2X a mixed-integer linear program that maximizes the hub’s profit based on current market prices considering the technical constraints of P2X such as unit commitment and non-linear efficiencies. We investigate a representative Danish energy hub and find that without price incentives it mainly sells renewable electricity and produces compressed hydrogen. A sufficient amount of renewable ammonia and methanol is only produced by adding a price premium of about 50% (0.16 e/kg) to the conventional fuel prices. To utilize production efficiently on-site renewable energy sources and P2X must be carefully aligned. We show that renewable power purchase agreements can provide flexibility while complying with the rules set by the European Commission.
The Role of Electrification and Hydrogen in Breaking the Biomass Bottleneck of the Renewable Energy System – A Study on the Danish Energy System
Jun 2020
Publication
The aim of this study is to identify the technical solution space for future fully renewable energy systems that stays within a sustainable biomass demand. In the transition towards non-fossil energy and material systems biomass is an attractive source of carbon for those demands that also in the non-fossil systems depend on high density carbon containing fuels and feedstocks. However extensive land use is already a sustainability challenge and an increase in future demands threat to exceed global sustainable biomass potentials which according to an international expert consensus is around 10 – 30 GJ/person/year in 2050. Our analytical review of 16 scenarios from 8 independent studies of fully renewable energy system designs and synthesis of 9 generic system designs reveals the significance of the role of electrification and hydrogen integration for building a fully renewable energy system which respects the global biomass limitations. The biomass demand of different fully renewable energy system designs was found to lie in the range of 0 GJ/person/year for highly integrated electrified pure electro-fuel scenarios with up to 25 GJ/person/year of hydrogen to above 200 GJ/person/year for poorly integrated full bioenergy scenarios with no electrification or hydrogen integration. It was found that a high degree of system electrification and hydrogen integration of at least 15 GJ/person/year is required to stay within sustainable biomass limits.
A Multi-objective Optimization Approach in Defining the Decarbonization Strategy of a Refinery
Mar 2022
Publication
Nowadays nearly one quarter of global carbon dioxide emissions are attributable to energy use in industry making this an important target for emission reductions. The scope of this study is hence that to define a cost-optimized decarbonization strategy for an energy and carbon intensive industry using an Italian refinery as a case study. The methodology involves the coupling of EnergyPLAN with a Multi-Objective Evolutionary Algorithm (MOEA) considering the minimization of annual cost and CO2 emissions as two potentially conflicting objectives and the energy technologies’ capacities as decision variables. For the target year 2025 EnergyPLAN+MOEA has allowed to model a range of 0-100 % decarbonization solutions characterized by optimal penetration mix of 22 technologies in the electrical thermal hydrogen feedstock and transport demand. A set of nine scenarios with different land use availabilities and implementable technologies each consisting of 100 optimal systems out of 10000 simulated ones has been evaluated. The results show on the one hand the possibility of achieving medium-high decarbonization solutions at costs close to current ones on the other how the decarbonization pathways strongly depend on the available land for solar thermal photovoltaic and wind as well as the presence of a biomass supply chain in the region.
Day-ahead Economic Optimization Scheduling Model for Electricity–hydrogen Collaboration Market
Aug 2022
Publication
This paper presents a day-ahead economic optimization scheduling model for Regional Electricity–Hydrogen Integrated Energy System (REHIES) with high penetration of renewable energies. The electricity–hydrogen coupling devices are modelled with energy storage units and Insensitive Electrical Load (ISEL). The proposed objective function is able to capture the maximum benefits for REHIES in terms of economic benefits and can be summarized as a Quadratic Programming (QP) problem. The simulation verification is performed by MATLAB/CPLEX solver. The simulation results show that the proposed optimization model adapts the market requirement by contributing flexible collaboration between electricity and hydrogen. Also the translational properties of ISEL can implement higher economic profits and more effective utilization of renewable energy.
Hydrogen Deep Ocean Link: A Global Sustainable Interconnected Energy Grid
Mar 2022
Publication
The world is undergoing a substantial energy transition with an increasing share of intermittent sources of energy on the grid which is increasing the challenges to operate the power grid reliably. An option that has been receiving much focus after the COVID pandemic is the development of a hydrogen economy. Challenges for a hydrogen economy are the high investment costs involved in compression storage and long-distance transportation. This paper analyses an innovative proposal for the creation of hydrogen ocean links. It intends to fill existing gaps in the creation of a hydrogen economy with the increase in flexibility and viability for hydrogen production consumption compression storage and transportation. The main concept behind the proposals presented in this paper consists of using the fact that the pressure in the deep sea is very high which allows a thin and cheap HDPE tank to store and transport large amounts of pressurized hydrogen in the deep sea. This is performed by replacing seawater with pressurized hydrogen and maintaining the pressure in the pipes similar to the outside pressure. Hydrogen Deep Ocean Link has the potential of increasing the interconnectivity of different regional energy grids into a global sustainable interconnected energy system.
Fuel Cell Solution for Marine Applications
Sep 2021
Publication
With future regulations on the horizon port authorities and ship owners/operators are looking at alternative propulsion solutions to reduce emission. Fuel cell technology provides an attractive zeroemission solution to generate electric power on board using hydrogen as a fuel. Fuel cell systems are scalable from 200kW to multi-MW providing high efficiency dispatchable clean quiet power generation. Several innovative pilot projects are on the way to demonstrate the marine application of this proven technology. Electrification of propulsion systems is advancing and fuel cell technology provides the opportunity to produce on board large quantity of power with zero-emission using hydrogen as a fuel. We will present the value proposition of having a fuel cell power generator on board of an electric vessel while discussing the safety considerations with the fuel cell module and the onboard fuel storage. We will present some of our current fuel cell marine projects and review some of the product development considerations including system architecture and safety as well as hydrogen supply and on-board fuel storage.
Adapting Maintenance Facilities for Hydrogen
Sep 2021
Publication
Transit planners and managers need to be armed with the best information on how to make the transition towards zero emission transit fleets. Although zero emission transit is becoming increasingly necessary many transit operators are unsure of how to make the transition and how to replace their existing infrastructure especially when it comes to on site bus maintenance facilities. Upgrading vehicle maintenance facilities to safely accommodate hydrogen can be a deciding factor in whether an operator chooses to adopt this fuel for its fleet. This paper reviews best practices in hydrogen bus maintenance facilities for transit agencies. It includes safety and infrastructure factors transit managers must consider when transitioning to servicing and maintaining fuel cell electric buses. Although local requirements and regulations vary this paper will help the reader gain insights on what needs to be considered in transitioning a workshop. As with any fuel hydrogen must be treated with respect and care. Today’s hydrogen fuel cell technologies are mature in their safety features. Fuel cell electric buses are designed and built for safety and the protocols for safe storage maintenance and refuelling are well developed and understood.
On the Feasibility of Direct Hydrogen Utilisation in a Fossil-free Europe
Oct 2022
Publication
Hydrogen is often suggested as a universal fuel that can replace fossil fuels. This paper analyses the feasibility of direct hydrogen utilisation in all energy sectors in a 100% renewable energy system for Europe in 2050 using hour-by-hour energy system analysis. Our results show that using hydrogen for heating purposes has high costs and low energy efficiency. Hydrogen for electricity production is beneficial only in limited quantities to restrict biomass consumption but increases the system costs due to losses. The transport sector results show that hydrogen is an expensive alternative to liquid e-fuels and electrified transport due to high infrastructure costs and respectively low energy efficiency. The industry sector may benefit from hydrogen to reduce biomass at a lower cost than in the other energy sectors but electrification and e-methane may be more feasible. Seen from a systems perspective hydrogen will play a key role in future renewable energy systems but primarily as e-fuel feedstock rather than direct end-fuel in the hard-to-abate sectors.
Source-to-sink Efficiency of Blue and Green District Heating and Hydrogen-based Heat Supply Systems
Apr 2022
Publication
Hydrogen is commonly mentioned as a future proof energy carrier. Hydrogen supporters 6 advocate for repurposing existing natural gas grids for a sustainable hydrogen supply. While the 7 long-term vision of the hydrogen community is green hydrogen the community acknowledges that 8 in the short term it will be to large extent manufactured from natural gas but in a decarbonized 9 way giving it the name blue hydrogen. While hydrogen has a role to play in hard to decarbonize 10 sectors its role for building heating demands is doubtful as mature and more energy efficient alter- 11 natives exist. As building heat supply infrastructures built today will operate for the decades to 12 come it is of highest importance to ensure that the most efficient and sustainable infrastructures are 13 chosen. This paper compares the source to sink efficiencies of hydrogen-based heat supply system 14 to a district heating system operating on the same primary energy source. The results show that a 15 natural gas-based district heating could be 267% more efficient and consequently have significantly 16 lower global warming potential than a blue hydrogen-based heat supply A renewable power-based 17 district heating could achieve above 440% higher efficiency than green hydrogen-based heat supply 18 system.
Going Offshore or Not: Where to Generate Hydrogen in Future Integrated Energy Systems?
Jan 2023
Publication
Hydrogen can be key in the energy system transition. We investigate the role of offshore hydrogen generation in a future integrated energy system. By performing energy system optimisation in a model application of the Northern-central European energy system and the North Sea offshore grid towards 2050 we find that offshore hydrogen generation may likely only play a limited role and that offshore wind energy has higher value when sent to shore in the form of electricity. Forcing all hydrogen generation offshore would lead to increased energy system costs. Under the assumed scenario conditions which result in deep decarbonisation of the energy system towards 2050 hydrogen generation – both onshore and offshore – follows solar PV generation patterns. Combined with hydrogen storage this is the most cost-effective solution to satisfy future hydrogen demand. Overall we find that the role of future offshore hydrogen generation should not simply be derived from minimising costs for the offshore sub-system but by also considering the economic value that such generation would create for the whole integrated energy system. We find as a no-regret option to enable and promote the integration of offshore wind in onshore energy markets via electrical connections.
Overview of First Outcomes of PNR Project HYTUNNEL-CS
Sep 2021
Publication
Dmitry Makarov,
Donatella Cirrone,
Volodymyr V. Shentsov,
Sergii Kashkarov,
Vladimir V. Molkov,
Z. Xu,
Mike Kuznetsov,
Alexandros G. Venetsanos,
Stella G. Giannissi,
Ilias C. Tolias,
Knut Vaagsaether,
André Vagner Gaathaug,
Mark R. Pursell,
Wayne M. Rattigan,
Frank Markert,
Luisa Giuliani,
L.S. Sørensen,
A. Bernad,
Mercedes Sanz Millán,
U. Kummer,
Christian Brauner,
Paola Russo,
J. van den Berg,
F. de Jong,
Tom Van Esbroeck,
M. Van De Veire,
Didier Bouix,
Gilles Bernard-Michel,
Sergey Kudriakov,
Etienne Studer,
Domenico Ferrero,
Joachim Grüne and
G. Stern
The paper presents the first outcomes of the experimental numerical and theoretical studies performed in the funded by Fuel Cell and Hydrogen Joint Undertaking (FCH2 JU) project HyTunnel-CS. The project aims to conduct pre-normative research (PNR) to close relevant knowledge gaps and technological bottlenecks in the provision of safety of hydrogen vehicles in underground transportation systems. Pre normative research performed in the project will ultimately result in three main outputs: harmonised recommendations on response to hydrogen accidents recommendations for inherently safer use of hydrogen vehicles in underground traffic systems and recommendations for RCS. The overall concept behind this project is to use inter-disciplinary and inter-sectoral prenormative research by bringing together theoretical modelling and experimental studies to maximise the impact. The originality of the overall project concept is the consideration of hydrogen vehicle and underground traffic structure as a single system with integrated safety approach. The project strives to develop and offer safety strategies reducing or completely excluding hydrogen-specific risks to drivers passengers public and first responders in case of hydrogen vehicle accidents within the currently available infrastructure.
Exploring Decentralized Ammonia Synthesis for Hydrogen Storage and Transport: A Comprehensive CFD Investigation with Experimental Validation and Parametric Study
Sep 2023
Publication
Hydrogen energy plays a vital role in the transition towards a carbon-neutral society but faces challenges in storage and transport as well as in production due to fluctuations in renewable electricity generation. Ammonia (NH3 ) as a carbon-neutral hydrogen carrier offers a promising solution to the energy storage and transport problem. To realize its potential and support the development of a hydrogen economy exploring NH3 synthesis in a decentralized form that integrates with distributed hydrogen production systems is highly needed. In this study a computational fluid dynamics (CFD) model for the Ruthenium (Ru) catalysts-based Haber– Bosch reactor is developed. First a state-of-the-art kinetic model comprehensively describing the complex catalytic reaction is assessed for its sensitivity and applicability to temperature pressure and conversion. Then the kinetic model is integrated into the CFD model and its accuracy is verified through comparison with experimental data obtained from different Ru-based catalysts and operation conditions. Detailed CFD results for a given case are presented offering a visual understanding of thermal gradients and species distributions inside the reactor. Finally a CFD-based parametric study is performed to reveal the impacts of key operation parameters and optimize the NH3 synthesis reactor. The results show that the NH3 production rate is predominantly influenced by temperature with a two-fold difference observed for every 30 ◦C variation while pressure primarily affects the equilibrium. Additionally the affecting mechanism of space velocity is thoroughly discussed and the best value for efficient NH3 synthesis is found to be 180000 h−1. In conclusion the CFD model and simulation results provide valuable insights for the design and control of decentralized NH3 synthesis reactor and operation contributing to the advancement of sustainable energy technologies.
Model-based Economic Analysis of Off-grid Wind/Hydrogen Systems
Sep 2023
Publication
Hydrogen has emerged in the context of large-scale renewable uptake and deep decarbonization. However the high cost of splitting water into hydrogen using renewable energy hinders the development of green hydrogen. Here we provide a cost analysis of hydrogen from off-grid wind. It is found that the current cost evaluation can be improved by examining the operational details of electrolysis. Instead of using low-resolution wind-speed data and linear electrolysis models we generate 5-min resolution wind data and utilize detailed electrolysis models that can describe the safe working range startup time and efficiency variation. Economic assessments are performed over 112 locations in seven countries to demonstrate the influence of operational models. It is shown that over-simplified models lead to less reliable results and the relative error can be 63.65% at most. Further studies have shown the global picture of producing green hydrogen. Based on the improved model we find that the levelized cost of hydrogen ranges from 1.66$/kg to 13.61$/kg. The wind-based hydrogen is cost-competitive in areas with abundant resources and lower investment cost such as China and Denmark. However it is still costly in most of the studied cases. An optimal sizing strategy or involving a battery as electricity storage can further reduce the hydrogen cost the effectiveness of which is location-specific. The sizing strategies of electrolyzers differ by country and rely on the specific wind resource. In contrast the sizing of batteries presents similar trends. Smaller batteries are preferred in almost all the investigated cases.
NewGasMet - Flow Metering of Renewable Gases (Biogas, Biomethane, Hydrogen, Syngas and Mixtures with Natural Gas): Report on the Usable Technologies for Calibrating Gas Meters with Renewable Gases and Currently Available Flow Standards Suitable for Use with Methane, Crude Biogas, Hydrogen and Mixtures of these gases
Mar 2021
Publication
The main goal stated at the Paris agreement is to limit the global temperature rise well below 2 °C above pre-industrial levels. Limiting the increase of global average temperature to 1.5 °C is striven since risks and impacts of the climate change would be reduced drastically. To face these challenges the European Green Deal was invented by the European Commission. The “Green Deal” is a growth strategy which aims to transform the economy of the EU into a resource-efficient modern and competitive one [1-1 1-2]. Figure 1: The key elements of the European Green Deal [1-2] In this context the European Commission proposed that the amount of renewable energy within the EU’s overall energy mix should reach 20 % by 2020 and therefore producing energy by solar and wind plants become even more important. For example the cumulative installed wind farm capacity increased from 117.3 GW in 2013 to a total capacity of 182.163 GW in 2018 within the EU [1-4-1-6]. Due to the fluctuations in energy produced by wind farms storage of electricity is crucial. One possibility for storage is the production of hydrogen via electrolysis using renewable energy sources like wind farms. The hydrogen is then either directly added to the gas distribution grid or is converted to methane with external CO or CO2 which is then added to the gas distribution grid as a substitute [1-4]. Increasing the knowledge about the impact of renewable gases on available gas meters in terms of accuracy and durability is the main object of the EMPIR NEWGASMET project. Therefore in activity A3.1.1 a literature study was performed to provide information on which technologies can be used to calibrate gas meters when using renewable gases.
Renewable Fuel Production and the Impact of Hydrogen Infrastructure - A Case Study of the Nordics
Apr 2024
Publication
Hard-to-electrify sectors will require renewable fuels to facilitate the green transition in the future. Therefore it is crucial to identify promising production locations while taking into account the local biomass resources variable renewable energy sources and the synergies between sectors. In this study investments and dispatch operations are optimised of a large catalogue of renewable fuel production technologies in the open-source software SpineOpt and this is soft-linked to the comprehensive energy system model Balmorel. We analyse future production pathways by comparing various levels of hydrogen infrastructure including large-scale hydrogen storage and assess system impacts. The results indicate that methanol may provide synergies in its multipurpose use as an early (2030–2040) shipping fuel and later as an aviation fuel through further refining if ammonia becomes more competitive (2050). We furthermore show that a hydrogen infrastructure increases the competitiveness of non-flexible hydrogen-based fuel production technologies. Offshore electrolysis hubs decrease energy system impacts in scenarios with 105 TWh of Nordic hydrogen export. However hydrogen export scenarios are much costlier compared to scenarios with no export unless a high hydrogen price is received. Finally we find that emission taxes in the range of 250–265 e/tCO2 will be necessary for renewable fuels to become competitive.
Incentive Structures for Power-to-X and E-fuel Pathways for Transport in EU and Member States
Jun 2022
Publication
Though Power-to-X pathways primarily Power-to-Liquids attract interest as solutions for decarbonising parts of the transport sector that are not suitable for electrification the regulatory framework until recently slowed down their implementation. This paper examines the updates in the main aspects of the legal framework in the European Union from 2019 to the beginning of 2022 related to Power-to-X: support schemes specific targets and potential barriers. The results show increasing interest and market entrance of electrolysis and push from the different actors and regulatory parties to establish solutions that will enable faster upscaling. However it is visible from the National Energy and Climate Plans and hydrogen strategies that the most emphasis is still on hydrogen as an end fuel for personal vehicles or power-to-gas. On the other hand few countries have implemented legal frameworks facilitating diverse PtX pathways without focusing solely on hydrogen. Nevertheless revisions of RED II have finally set up specific targets for electrofuels and Fit for 55 has introduced new actions supporting electrofuels in aviation and marine transport.
Optimized Configuration of Diesel Engine-Fuel Cell-Battery Hybrid Power Systems in a Platform Supply Vessel to Reduce CO2 Emissions
Mar 2022
Publication
The main objective of this paper is to select the optimal configuration of a ship’s power system considering the use of fuel cells and batteries that would achieve the lowest CO2 emissions also taking into consideration the number of battery cycles. The ship analyzed in this work is a Platform Supply Vessel (PSV) used to support oil and gas offshore platforms transporting goods equipment and personnel. The proposed scheme considers the ship’s retrofitting. The ship’s original main generators are maintained and the fuel cell and batteries are installed as complementary sources. Moreover a sensitivity analysis is pursued on the ship’s demand curve. The simulations used to calculate the CO2 emissions for each of the new hybrid configurations were developed using HOMER software. The proposed solutions are auxiliary generators three types of batteries and a protonexchange membrane fuel cell (PEMFC) with different sizes of hydrogen tanks. The PEMFC and batteries were sized as containerized solutions and the sizing of the auxiliary engines was based on previous works. Each configuration consists of a combination of these solutions. The selection of the best configuration is one contribution of this paper. The new configurations are classified according to the reduction of CO2 emitted in comparison to the original system. For different demand levels the results indicate that the configuration classification may vary. Another valuable contribution of this work is the sizing of the battery and hydrogen storage systems. They were installed in 20 ft containers since the installation of batteries fuel cells and hydrogen tanks in containers is widely used for ship retrofit. As a result the most significant reduction of CO2 emissions is 10.69%. This is achieved when the configuration includes main generators auxiliary generators a 3119 kW lithium nickel manganese cobalt (LNMC) battery a 250 kW PEMFC and 581 kg of stored hydrogen.
Regional Uptake of Direct Reduction Iron Production Using Hydrogen Under Climate Policy
Nov 2022
Publication
The need to reduce CO2 emissions to zero by 2050 has meant an increasing focus on high emitting industrial sectors such as steel. However significant uncertainties remain as to the rate of technology diffusion across steel production pathways in different regions and how this might impact on climate ambition. Informed by empirical analysis of historical transitions this paper presents modelling on the regional deployment of Direction Reduction Iron using hydrogen (DRI-H2). We find that DRI-H2 can play a leading role in the decarbonisation of the sector leading to near-zero emissions by 2070. Regional spillovers from early to late adopting regions can speed up the rate of deployment of DRI-H2 leading to lower cumulative emissions and system costs. Without such effects cumulative emissions are 13% higher than if spillovers are assumed and approximately 15% and 20% higher in China and India respectively. Given the estimates of DRI-H2 cost-effectiveness relative to other primary production technologies we also find that costs increase in the absence of regional spillovers. However other factors can also have impacts on deployment emission reductions and costs including the composition of the early adopter group material efficiency improvements and scrap recycling rates. For the sector to achieve decarbonisation key regions will need to continue to invest in low carbon steel projects recognising their broader global benefit and look to develop and strengthen policy coordination on technologies such as DRI-H2.
Complex Hydrides for Hydrogen Storage – New Perspectives
Apr 2014
Publication
Since the 1970s hydrogen has been considered as a possible energy carrier for the storage of renewable energy. The main focus has been on addressing the ultimate challenge: developing an environmentally friendly successor for gasoline. This very ambitious goal has not yet been fully reached as discussed in this review but a range of new lightweight hydrogen-containing materials has been discovered with fascinating properties. State-of-the-art and future perspectives for hydrogen-containing solids will be discussed with a focus on metal borohydrides which reveal significant structural flexibility and may have a range of new interesting properties combined with very high hydrogen densities.
Safety and Other Considerations in the Development of a Hydrogen Fueling Protocol for Heavy-duty Vehicles
Sep 2021
Publication
Several manufacturers are developing heavy duty (HD) hydrogen stations and vehicles as zeroemissions alternatives to diesel and gasoline. In order to meet customer demands the new technology must be comparable to conventional approaches including safety reliability fueling times and final fill levels. For a large HD vehicle with a storage rated to 70 MPa nominal working pressure the goal to meet liquid fuel parity means providing 100 kg of hydrogen in 10 minutes. This paper summarizes the results to date of the PRHYDE project efforts to define the concepts of HD fueling which thereby lays the groundwork for the development of the safe and effective approach to filling these large vehicles. The project starts by evaluating the impact of several different assumptions such as the availability of static vehicle data (e.g. vehicle tank type and volume) and station data (e.g. expected station precooling capability) but also considers using real time dynamic data (e.g. vehicle tank gas temperature and pressure station gas temperature etc.) for optimisation to achieve safety and efficiency improvements. With this information the vehicle or station can develop multiple maps of fill time versus the hydrogen delivery temperature which are used to determine the speed of fueling. This will also allow the station or vehicle to adjust the rate of fueling as the station pre-cooling levels and other conditions change. The project also examines different steps for future protocol development such as communication of data between the vehicle and station and if the vehicle or station is controlling the fueling.
A Review of The Methanol Economy: The Fuel Cell Route
Jan 2020
Publication
This review presents methanol as a potential renewable alternative to fossil fuels in the fight against climate change. It explores the renewable ways of obtaining methanol and its use in efficient energy systems for a net zero-emission carbon cycle with a special focus on fuel cells. It investigates the different parts of the carbon cycle from a methanol and fuel cell perspective. In recent years the potential for a methanol economy has been shown and there has been significant technological advancement of its renewable production and utilization. Even though its full adoption will require further development it can be produced from renewable electricity and biomass or CO2 capture and can be used in several industrial sectors which make it an excellent liquid electrofuel for the transition to a sustainable economy. By converting CO2 into liquid fuels the harmful effects of CO2 emissions from existing industries that still rely on fossil fuels are reduced. The methanol can then be used both in the energy sector and the chemical industry and become an all-around substitute for petroleum. The scope of this review is to put together the different aspects of methanol as an energy carrier of the future with particular focus on its renewable production and its use in high-temperature polymer electrolyte fuel cells (HT-PEMFCs) via methanol steam reforming.
Optimal Operation of the Hydrogen-based Energy Management System with P2X Demand Response and Ammonia Plant
Jul 2021
Publication
Hydrogen production is the key in utilizing an excess renewable energy. Many studies and projects looked at the energy management systems (EMSs) that allow to couple hydrogen production with renewable generation. In the majority of these studies however hydrogen demand is either produced for powering fuel cells or sold to the external hydrogen market. Hydrogen demand from actual industrial plants is rarely considered. In this paper we propose an EMS based on the industrial cluster of GreenLab Skive (GLS) that can minimize the system’s operational cost or maximize its green hydrogen production. EMS utilizes a conventional and P2X demand response (DR) flexibility from electrolysis plant hydrogen storage tank electric battery and hydrogen-consuming plants to design the optimal schedule with maximized benefits. A potential addition to the existing components at GLS - an ammonia plant is modelled to identify its P2X potential and assess the economic viability of its construction. The results show a potential reduction of 51.5–61.6% for the total operational cost of the system and an increase of the share of green hydrogen by 10.4–37.6% due to EMS operation.
Fire Spread Scenarios Involving Hydrogen Vehicles
Sep 2021
Publication
Fire spread between vehicles provides a potential risk in parking areas with many vehicles. Several reported very large fires caused the loss of a great number of vehicles. These fires seem to be in contradiction to the European design rules for car parks assuming only a very limited number of vehicles may be on fire at the same time. The fire spread in a car park environment is dependent on many factors of both the vehicles and the structure e.g. the latter has an impact on the rate of fire spread due to reradiation of the vehicles heat release. Therefore a CFD model is established to develop a tool to assess vehicles and better understand fire scenarios in different structures. Further the model enables testing of building design to prevent and mitigate such fires scenarios involving hydrogen vehicles. In this study a real layout of a car park is modelled to investigate the effects of hydrogen emergency releases that have used different TPRD diameters. The results provide insight into the behaviour of hydrogen cars and the release pattern of the TPRD's as well as the temperature development of the concrete ceiling and concrete beams above the cars. It shows that the TPRD diameter has a little effect on the TPRD activation time of the no.1 vehicle when the amount of H2 in the tank is the same. For the surface temperature of the ceiling and beam the peak temperature for a 1mm diameter TPRD release is found highest.
“Bigger than Government”: Exploring the Social Construction and Contestation of Net-zero Industrial Megaprojects in England
Jan 2023
Publication
Industry is frequently framed as hard-to-decarbonize given its diversity of requirements technologies and supply chains many of which are unique to particular sectors. Net zero commitments since 2019 have begun to challenge the carbon intensity of these various industries but progress has been slow globally. Against this backdrop the United Kingdom has emerged as a leader in industrial decarbonization efforts. Their approach is based on industrial clusters which cut across engineering spatial and socio-political dimensions. Two of the largest of these clusters in England in terms of industrial emissions are the Humber and Merseyside. In this paper drawn from a rich mixed methods original dataset involving expert interviews (N = 46 respondents) site visits (N = 20) a review of project documents and the academic literature we explore ongoing efforts to decarbonize both the Humber and Merseyside through the lens of spatially expansive and technically complex megaprojects. Both have aggressive implementation plans in place for the deployment of net-zero infrastructure with Zero Carbon Humber seeking billions in investment to build the country’s first large-scale bioenergy with carbon capture and storage (BECCS) plant alongside a carbon transport network and hydrogen production infrastructure and HyNet seeking billions in investment to build green and blue hydrogen facilities along with a carbon storage network near Manchester and Liverpool. We draw from the social construction of technology (SCOT) literature to examine the relevant social groups interpretive flexibility and patterns of closure associated with Zero Carbon Humber and HyNet. We connect our findings to eight interpretive frames surrounding the collective projects and make connections to problems contestation and closure.
NewGasMet - Flow Metering of Renewable Gases (Biogas, Biomethane, Hydrogen, Syngas and Mixtures with Natural Gas): Report on the Impact of Renewable Gases, and Mixtures with Natural Gas, on the Accuracy, Cost and Lifetime of Gas Meters
May 2022
Publication
For the usage of domestic gas meters with combustible gases like hydrogen natural gas or mixtures of hydrogen and natural gas in public grids the metrological behaviour of the gas meters has to fulfil the requirements described in the Measuring Instrument Directive (MID). The MID requires also that a measuring instrument shall be suitable for the application. The tightness of a meter is required in order to obtain correct results in case of accuracy tests but also for an application in the grid or for durability tests to avoid risks such as explosive gas mixtures. Due to the different properties of renewable gases leak tightness to one gas mixtures does not necessarily imply leak tightness for other gases. Hydrogen molecules are smaller than those in conventional natural gas which can more easily result in a gas leakage. The EMPIR project NEWGASMET includes beside metrological investigations also a durability test with hydrogen. In order to carry out these activities but also for further hydrogen leakage investigations for instance the investigation of proper seal materials used in the gas meter installation a reliable gas tightness test was developed.
Hubs and Clusters Approach to Unlock the Development of Carbon Capture and Storage - Case Study in Spain
Jul 2021
Publication
Xiaolong Sun,
Juan Alcalde,
Mahdi Bakhtbidar,
Javier Elío,
Víctor Vilarrasa,
Jacobo Canal,
Julio Ballesteros,
Niklas Heinemann,
Stuart Haszeldine,
Andrew Cavanagh,
David Vega-Maza,
Fernando Rubiera,
Roberto Martínez-Orio,
Gareth Johnson,
Ramon Carbonell,
Ignacio Marzan,
Anna Travé and
Enrique Gomez-Rivas
Many countries have assigned an indispensable role for carbon capture and storage (CCS) in their national climate change mitigation pathways. However CCS deployment has stalled in most countries with only limited commercial projects realised mainly in hydrocarbon-rich countries for enhanced oil recovery. If the Paris Agreement is to be met then this progress must be replicated widely including hydrocarbon-limited countries. In this study we present a novel source-to-sink assessment methodology based on a hubs and clusters approach to identify favourable regions for CCS deployment and attract renewed public and political interest in viable deployment pathways. Here we apply this methodology to Spain where fifteen emission hubs from both the power and the hard-to-abate industrial sectors are identified as potential CO2 sources. A priority storage structure and two reserves for each hub are selected based on screening and ranking processes using a multi-criteria decision-making method. The priority source-to-sink clusters are identified indicating four potential development regions with the North-Western and North-Eastern Spain recognised as priority regions due to resilience provided by different types of CO2 sources and geological structures. Up to 68.7 Mt CO2 per year comprising around 21% of Spanish emissions can be connected to clusters linked to feasible storage. CCS especially in the hard-to-abate sector and in combination with other low-carbon energies (e.g. blue hydrogen and bioenergy) remains a significant and unavoidable contributor to the Paris Agreement’s mid-century net-zero target. This study shows that the hubs and clusters approach can facilitate CCS deployment in Spain and other hydrocarbon-limited countries.
NewGasMet - Flow Metering of Renewable Gases (Biogas, Biomethane, Hydrogen, Syngas and Mixtures with Natural Gas): Effect of the Renewable Gases on the Uncertainty Budgets of Gas Meters
Sep 2022
Publication
During the study of the CEN/TC 237 standards “Gas meters” in the European Metrology Programme for Innovation and Research (EMPIR) project named NEWGASMET the impact of the renewable gases (biogas biomethane hydrogen syngas and mixtures with natural gas) on the uncertainty on the gas meter was discussed and described in several recommendation reports. This report is on the activity A2.1.15 where the objective is “Using input from A2.1.2-A2.1.8 FORCE with support from Cesame CMI NEL PTB VSL and ISSI will write a report on the effects of renewable gases on the uncertainty budgets of gas meters.”
Feasibility of Hydrogen Storage in Depleted Hydrocarbon Chalk Reservoirs: Assessment of Biochemical and Chemical Effects
Jul 2022
Publication
Hydrogen storage is one of the energy storage methods that can help realization of an emission free future by saving surplus renewable energy for energy deficit periods. Utilization of depleted hydrocarbon reservoirs for large-scale hydrogen storage may be associated with the risk of chemical/biochemical reactions. In the specific case of chalk reservoirs the principal reactions are abiotic calcite dissolution acetogenesis methanogenesis and biological souring. Here we use PHREEQC to evaluate the dynamics and the extent of hydrogen loss by each of these reactions in hydrogen storage scenarios for various Danish North Sea chalk hydrocarbon reservoirs. We find that: (i) Abiotic calcite dissolution does not occur in the temperature range of 40-180◦ C. (ii) If methanogens and acetogens grow as slow as the slowest growing methanogens and acetogens reported in the literature methanogenesis and acetogenesis cannot cause a hydrogen loss more than 0.6% per year. However (iii) if they proceed as fast as the fastest growing methanogens and acetogens reported in the literature a complete loss of all injected hydrogen in less than five years is possible. (iv) Co-injection of CO2 can be employed to inhibit calcite dissolution and keep the produced methane due to methanogenesis carbon neutral. (v) Biological sulfate reduction does not cause significant hydrogen loss during 10 years but it can lead to high hydrogen sulfide concentrations (1015 ppm). Biological sulfate reduction is expected to impact hydrogen storage only in early stages if the only source of sulfur substrates are the dissolved species in the brine and not rock minerals. Considering these findings we suggest that depleted chalk reservoirs may not possess chemical/biochemical risks and be good candidates for large-scale underground hydrogen storage.
Review on Ammonia as a Potential Fuel: From Synthesis to Economics
Feb 2021
Publication
Ammonia a molecule that is gaining more interest as a fueling vector has been considered as a candidate to power transport produce energy and support heating applications for decades. However the particular characteristics of the molecule always made it a chemical with low if any benefit once compared to conventional fossil fuels. Still the current need to decarbonize our economy makes the search of new methods crucial to use chemicals such as ammonia that can be produced and employed without incurring in the emission of carbon oxides. Therefore current efforts in this field are leading scientists industries and governments to seriously invest efforts in the development of holistic solutions capable of making ammonia a viable fuel for the transition toward a clean future. On that basis this review has approached the subject gathering inputs from scientists actively working on the topic. The review starts from the importance of ammonia as an energy vector moving through all of the steps in the production distribution utilization safety legal considerations and economic aspects of the use of such a molecule to support the future energy mix. Fundamentals of combustion and practical cases for the recovery of energy of ammonia are also addressed thus providing a complete view of what potentially could become a vector of crucial importance to the mitigation of carbon emissions. Different from other works this review seeks to provide a holistic perspective of ammonia as a chemical that presents benefits and constraints for storing energy from sustainable sources. State-of-the-art knowledge provided by academics actively engaged with the topic at various fronts also enables a clear vision of the progress in each of the branches of ammonia as an energy carrier. Further the fundamental boundaries of the use of the molecule are expanded to real technical issues for all potential technologies capable of using it for energy purposes legal barriers that will be faced to achieve its deployment safety and environmental considerations that impose a critical aspect for acceptance and wellbeing and economic implications for the use of ammonia across all aspects approached for the production and implementation of this chemical as a fueling source. Herein this work sets the principles research practicalities and future views of a transition toward a future where ammonia will be a major energy player.
A Model for Assessing the Risk of Liquid Hydrogen Transport through Road Tunnels
Sep 2023
Publication
Among the new energy carriers aimed at reducing greenhouse gas emissions the use of hydrogen is expected to grow significantly in various applications and sectors (i.e. industrial commercial transportation etc.) due to its high energy content by weight and zero carbon emissions. The increasingly widespread use of hydrogen will require massive distribution from production sites to final consumers and the delivery by means of liquid hydrogen road tankers may be a suitable cost-effective option for market penetration in the short-medium term. Liquid hydrogen (LH2) presents different hazards compared to gaseous hydrogen and an accidental release in confined spaces such as road tunnels might lead to the formation of a flammable hydrogen cloud that might deflagrate or even detonate. Nevertheless the potential negative effects on users in the event of accidental leakage of liquid hydrogen from a tanker in road tunnels so far have not been sufficiently investigated. Therefore a 3D Computational Fluid Dynamics model for the release of LH2 and its dispersion within a road tunnel was developed in this study. The proposed model was validated by a comparison with certain experimental and numerical studies found in the literature. Such modeling is demanding for long tunnels. Therefore the results of the simulations (e.g. the amount of hydrogen contained within the cloud) were combined with established simplified consequence methods to estimate the overpressures generated from a potential hydrogen deflagration. This was then used to evaluate the effects on users while evacuating from the tunnel. The findings showed that the worst scenario is when the release is in the middle of the tunnel length and the ignition occurs 90 s after the leakage.
Assessing Fluctuating Wind to Hydrogen Production via Long-term Testing of Solid Oxide Electrolysis Stacks
Mar 2024
Publication
The Danish government plans two energy islands to collect offshore wind power for power distribution and green fuel production. Wind power is often criticized for lacking stability which challenges downstream fuel synthesis processes. Solid oxide electrolysis cells (SOEC) are promising for green hydrogen production on a commercial scale but the impact of fluctuating power on SOEC remains uncertain. This paper explores the feasibility of a Wind-SOEC coupled system by conducting a 2104-h durability test with the state-of-the-art Topsoe TSP-1 stack. Three periods of steady operation and two periods of dynamic operation were conducted. Wind power fluctuation was simulated during the dynamic period and two control strategies were used to handle it. The constant flow (CF) and constant conversion (CC) strategies maintain the feedstock flow rate and conversion ratio of steamto‑hydrogen respectively. Compared to steady operation the stack shows no signs of additional degradation in dynamic operation. Thus the TSP-1 stack has been proven robust and flexible enough to handle fluctuating wind power supplies under both operation strategies. Further stack performance during dynamic periods was compared and analyzed by removing degradation effects. Accordingly SOEC stacks with CC control will consume less external heat than CF to maintain a heat balance. Nevertheless SOEC systems with CF and CC control strategies may have different efficiency or hydrogen production costs. Tech-economic analyses will be needed to investigate control strategies at the system level.
Analysing Long-term Opportunities for Offshore Energy System Integration in the Danish North Sea
Aug 2021
Publication
This study analyzes future synergies between the Oil and Gas (O&G) and renewables sectors in a Danish context and explores how exploiting these synergies could lead to economic and environmental benefits. We review and highlight relevant technologies and related projects and synthesize the state of the art in offshore energy system integration. All of these preliminary results serve as input data for a holistic energy system analysis in the Balmorel modeling framework. With a timeframe out to 2050 and model scope including all North Sea neighbouring countries this analysis explores a total of nine future scenarios for the North Sea energy system. The main results include an immediate electrification of all operational Danish platforms by linking them to the shore and/or a planned Danish energy island. These measures result in cost and CO2 emissions savings compared to a BAU scenario of 72% and 85% respectively. When these platforms cease production this is followed by the repurposing of the platforms into hydrogen generators with up to 3.6 GW of electrolysers and the development of up to 5.8 GW of floating wind. The generated hydrogen is assumed to power the future transport sector and is delivered to shore in existing and/or new purpose-built pipelines. The contribution of the O&G sector to this hydrogen production amounts to around 19 TWh which represents about 2% of total European hydrogen demand for transport in 2050. The levelized costs (LCOE) of producing this hydrogen in 2050 are around 4 €2020/kg H2 which is around twice those expected in similar studies. But this does not account for energy policies that may incentivize green hydrogen production in the future which would serve to reduce this LCOE to a level that is more competitive with other sources.
The Role of Biomass Gasification in Low-carbon Energy and Transport Systems
Mar 2021
Publication
The design of future energy systems requires the efficient use of all available renewable resources. Biomass can complement variable renewable energy sources by ensuring energy system flexibility and providing a reliable feedstock to produce renewable fuels. We identify biomass gasification suitable to utilise the limited biomass resources efficiently. In this study we inquire about its role in a 100% renewable energy system for Denmark and a net-zero energy system for Europe in the year 2050 using hourly energy system analysis. The results indicate bio-electrofuels produced from biomass gasification and electricity to enhance the utilisation of wind and electrolysis and reduce the energy system costs and fuels costs compared to CO2-electrofuels from carbon capture and utilisation. Despite the extensive biomass use overall biomass consumption would be higher without biomass gasification. The production of electromethanol shows low biomass consumption and costs while Fischer-Tropsch electrofuels may be an alternative for aviation. Syngas from biomass gasification can supplement biogas in stationary applications as power plants district heat or industry but future energy systems must meet a balance between producing transport fuels and syngas for stationary units. CO2-electrofuels are found complementary to bio-electrofuels depending on biomass availability and remaining non-fossil CO2 emitters
Data-driven Scheme for Optimal Day-ahead Operation of a Wind/hydrogen System Under Multiple Uncertainties
Nov 2022
Publication
Hydrogen is believed as a promising energy carrier that contributes to deep decarbonization especially for the sectors hard to be directly electrified. A grid-connected wind/hydrogen system is a typical configuration for hydrogen production. For such a system a critical barrier lies in the poor cost-competitiveness of the produced hydrogen. Researchers have found that flexible operation of a wind/hydrogen system is possible thanks to the excellent dynamic properties of electrolysis. This finding implies the system owner can strategically participate in day-ahead power markets to reduce the hydrogen production cost. However the uncertainties from imperfect prediction of the fluctuating market price and wind power reduce the effectiveness of the offering strategy in the market. In this paper we proposed a decision-making framework which is based on data-driven robust chance constrained programming (DRCCP). This framework also includes multi-layer perception neural network (MLPNN) for wind power and spot electricity price prediction. Such a DRCCP-based decision framework (DDF) is then applied to make the day-ahead decision for a wind/hydrogen system. It can effectively handle the uncertainties manage the risks and reduce the operation cost. The results show that for the daily operation in the selected 30 days offering strategy based on the framework reduces the overall operation cost by 24.36% compared to the strategy based on imperfect prediction. Besides we elaborate the parameter selections of the DRCCP to reveal the best parameter combination to obtain better optimization performance. The efficacy of the DRCCP method is also highlighted by the comparison with the chance-constrained programming method.
A Novel Scheme to Allocate the Green Energy Transportation Costs—Application to Carbon Captured and Hydrogen
Mar 2023
Publication
Carbon dioxide (CO2 ) and hydrogen (H2 ) are essential energy vectors in the green energy transition. H2 is a fuel produced by electrolysis and is applied in heavy transportation where electrification is not feasible yet. The pollutant substance CO2 is starting to be captured and stored in different European locations. In Denmark the energy vision aims to use this CO2 to be reacted with H2 producing green methanol. Typically the production units are not co-located with consumers and thus the required transportation infrastructure is essential for meeting supply and demand. This work presents a novel scheme to allocate the transportation costs of CO2 and H2 in pipeline networks which can be applied to any network topology and with any allocation method. During the tariff formation process coordinated adjustments are made by the novel scheme on the original tariffs produced by the allocation method employed considering the location of each customer connected to pipeline network. Locational tariffs are provided as result and the total revenue recovery is guaranteed to the network owner. Considering active customers the novel scheme will lead to a decrease of distant pipeline flows thereby contributing to the prevention of bottlenecks in the transportation network. Thus structural reinforcements can be avoided reducing the total transportation cost paid by all customers in the long-term.
NewGasMet - Flow Metering of Renewable Gases (Biogas, Biomethane, Hydrogen, Syngas and Mixtures with Natural Gas): Effect of Hydrogen Admixture on the Accuracy of a Rotary Flow Meter
Aug 2021
Publication
With the rise of hydrogen use in the natural gas grid a need exists for reliable measurements of the amount of energy being transported and traded for hydrogen admixtures. Using VSL’s high-pressure Gas Oil Piston Prover (GOPP) primary standard the effect of mixing hydrogen with natural gas on the performance of a high-pressure gas flow meter was investigated. The error of a rotary flow meter was determined using the best possible uncertainty by calibration with the primary standard for high-pressure natural gas flow. The rotary flow meter was calibrated using both natural gas and hydrogen enriched natural gas (nominally 15% hydrogen) at two different pressures: 9 and 16 bar. Results indicate that for the rotary flow meter and hydrogen admixtures used the differences in the meter errors between high-pressure hydrogen-enriched natural gas calibration and high-pressure natural gas calibration are smaller than the corresponding differences between atmospheric pressure air calibration and high-pressure natural gas calibration.
Low-carbon and Cost-efficient Hydrogen Optimisation through a Grid-connected Electrolyser: The Case of GreenLab Skive
Nov 2022
Publication
Power-to-X technologies are a promising means to achieve Denmark’s carbon emission reduction targets. Water electrolysis can potentially generate carbon-neutral fuels if powered with renewable electricity. However the high variability of renewable sources threatens the Power-to-X plant’s cost-efficiency instead favouring high and constant operation rates. Therefore a diversified electricity supply is often an option to maximise the load factor of the Power-to-X systems. This paper analyses the impact of using different power sources on the cost of production and the carbon intensity of hydrogen produced by a Power-to-X system. GreenLab Skive the world’s first industrial facility with Power-to-X integrated into an industrial symbiosis network has been used as a case study. Results show that the wind/PV/grid-connected electrolyser for hydrogen and electricity production can reduce operational costs and emissions saving 30.6 × 107 kgCO2 and having a Net Present Value twice higher than a grid-connected electrolyser. In addition the carbon emission coefficient for this configuration is 3.5 × 10− 2 kgH2/kgCO2 against 7.0 gH2/gCO2 produced by Steam Methane Reforming. A sensitivity analysis detects the optimal capacity ratio between the renewables and the electrolyser. A plateau is reached for carbon emission performances suggesting a wind/grid-connected electrolyser setup with a wind farm three times the size of the electrolyser. Results demonstrate that hydrogen cost is not competitive yet with the electricity suggesting an investment cost reduction but can be competitive with the current hydrogen price if the wind capacity is less than three times the electrolyser capacity.
The Socio-technical Dynamics of Net-zero Industrial Megaprojects: Outside-in and Inside-out Analyses of the Humber Industrial Cluster
Feb 2023
Publication
Although energy-intensive industries are often seen as ‘hard-to-decarbonise’ net-zero megaprojects for industrial clusters promise to improve the technical and economic feasibility of hydrogen fuel switching and carbon capture and storage (CCS). Mobilising insights from the megaproject literature this paper analyses the dynamics of an ambitious first-of-kind net-zero megaproject in the Humber industrial cluster in the United Kingdom which includes CCS and hydrogen infrastructure systems industrial fuel switching CO2 capture green and blue hydrogen production and hydrogen storage. To analyse the dynamics of this emerging megaproject the article uses a socio-technical system lens to focus on developments in technology actors and institutions. Synthesising multiple megaproject literature insights the paper develops a comprehensive framework that addresses both aggregate (‘outside-in’) developments and the endogenous (‘inside-out’) experiences and activities regarding three specific challenges: technical system integration actor coordination and institutional alignment. Drawing on an original dataset involving expert interviews (N = 46) site visits (N = 7) and document analysis the ‘outside-in’ analysis finds that the Humber megaproject has progressed rapidly from outline visions to specific technical designs enacted by new coalitions and driven by strengthening policy targets and financial support schemes. The complementary ‘inside-out’ analysis however also finds 12 alignment challenges that can delay or derail materialisation of the plans. While policies are essential aggregate drivers institutional misalignments presently also prevent project-actors from finalising design and investment decisions. Our analysis also finds important tensions between the project's high-pace delivery focus (to meet government targets) and allowing sufficient time for pilot projects learning-by-doing and design iterations.
Assessing and Modelling Hydrogen Reactivity in Underground Hydrogen Storage: A Review and Models Simulating the Lobodice Town Gas Storage
Apr 2023
Publication
Underground Hydrogen storage (UHS) is a promising technology for safe storage of large quantities of hydrogen in daily to seasonal cycles depending on the consumption requirements. The development of UHS requires anticipating hydrogen behavior to prevent any unexpected economic or environmental impact. An open question is the hydrogen reactivity in underground porous media storages. Indeed there is no consensus on the effects or lack of geochemical reactions in UHS operations because of the strong coupling with the activity of microbes using hydrogen as electron donor during anaerobic reduction reactions. In this work we apply different geochemical models to abiotic conditions or including the catalytic effect of bacterial activity in methanogenesis acetogenesis and sulfate-reduction reactions. The models are applied to Lobodice town gas storage (Czech Republic) where a conversion of hydrogen to methane was measured during seasonal gas storage. Under abiotic conditions no reaction is simulated. When the classical thermodynamic approach for aqueous redox reactions is applied the simulated reactivity of hydrogen is too high. The proper way to simulate hydrogen reactivity must include a description of the kinetics of the aqueous redox reactions. Two models are applied to simulate the reactions of hydrogen observed at Lobodice gas storage. One modeling the microbial activity by applying energy threshold limitations and another where microbial activity follows a Monod-type rate law. After successfully calibrating the bio-geochemical models for hydrogen reactivity on existing gas storage data and constraining the conditions where microbial activity will inhibit or enhance hydrogen reactivity we now have a higher confidence in assessing the hydrogen reactivity in future UHS in aquifers or depleted reservoirs.
Low-Carbon Optimal Scheduling Model for Peak Shaving Resources in Multi-Energy Power Systems Considering Large-Scale Access for Electric Vehicles
May 2023
Publication
Aiming at the synergy between a system’s carbon emission reduction demand and the economy of peak shaving operation in the process of optimizing the flexible resource peaking unit portfolio of a multi-energy power system containing large-scale electric vehicles this paper proposes a low-carbon optimal scheduling model for peak shaving resources in multi-energy power systems considering large-scale access for electric vehicles. Firstly the charging and discharging characteristics of electric vehicles were studied and a comprehensive cost model for electric vehicles heat storage and hydrogen storage was established. At the same time the carbon emission characteristics of multienergy power systems and their emission cost models under specific carbon trading mechanisms were established. Secondly the change characteristics of the system’s carbon emissions were studied and a carbon emission cost model of multi-energy power was established considering the carbon emission reduction demand of the system. Then taking the carbon emission of the system and the peak regulating operation costs of traditional units energy storage and new energy unit as optimization objectives the multi-energy power system peak regulation multi-objective optimization scheduling model was established and NSGA-II was used to solve the scheduling model. Finally based on a regional power grid data in Northeast China the improved IEEE 30 node multi-energy power system peak shaving simulation model was built and the simulation analysis verified the feasibility of the optimal scheduling model proposed in this paper.
THyGA - Long Term Effect of H2 on Appliances Tested
May 2023
Publication
The goals of the long-term tests were to see the impact of blends of hydrogen and natural gas on the technical condition of the appliances and their performance after several hours of operation. To do so they were run through an accelerated test program amounting to more than 3000 testing hours for the boilers and more than 2500 testing hours for the cookers. The percentage of hydrogen in the test gas was 30% by volume. Three boilers and two cookers were tested by DGC and two boilers by GWI. This report describes the test protocol the results and analysis on the seven appliances tested.
Correlations between Component Size Green Hydrogen Demand and Breakeven Price for Energy Islands
Jun 2023
Publication
The topic of energy islands is currently a focal point in the push for the energy transition. An ambitious project in the North Sea aims to build an offshore wind-powered electrolyser for green hydrogen production. Power-to-X (PtX) is a process of converting renewable electricity into hydrogen-based energy carriers such as natural gas liquid fuels and chemicals. PtH2 represents a subset of PtX wherein hydrogen is the resultant green energy from the conversion process. Many uncertainties surround PtH2 plants affecting the economic success of the investment and making the price of hydrogen and the levelized cost of hydrogen (LCOH) of this technology uncompetitive. Several studies have analysed PtH2 layouts to identify the hydrogen price without considering how component capacities and external inputs affect the breakeven price. Unlike previous works this paper investigates component capacity dependencies under variables such as wind and hydrogen demand shape for dedicated/non-dedicated system layouts. To this end the techno-economic analysis finds the breakeven price optimising the components to reach the lowest selling price. Results show that the hydrogen price can reach 2.2 €/kg for a non-dedicated system for certain combinations of maximum demand and electrolyser capacity. Furthermore the LCOH analysis revealed that the offshore wind electrolyser system is currently uncompetitive with hydrogen production from carbon-based technologies but is competitive with renewable technologies. The sensitivity analysis reveals the green electricity price in the non-dedicated case for which a dedicated system has a lower optimum hydrogen price. The price limit for the dedicated case is 116 €/MWh.
THyGA - Test Report on Mitigation Solutions for Residential Natural Gas Appliances Not Designed for Hydrogen Admixture
Apr 2023
Publication
This report from the WP5 “Mitigation” provides information and test results regarding perturbations that hydrogen could cause to gas appliances when blended to natural gas especially on anatural draught for exhaust fumes or acidity for the condensates. The important topic of on-site adjustment is also studied with test results on alternative technologies and proposals of mitigation approaches.
Hydrogen Deep Ocean Link: A Global Sustainable Interconnected Energy Grid<br/><br/><br/>
Mar 2022
Publication
The world is undergoing a substantial energy transition with an increasing share of intermittent sources of energy on the grid which is increasing the challenges to operate the power grid reliably. An option that has been receiving much focus after the COVID pandemic is the development of a hydrogen economy. Challenges for a hydrogen economy are the high investment costs involved in compression storage and long-distance transportation. This paper analyses an innovative proposal for the creation of hydrogen ocean links. It intends to fill existing gaps in the creation of a hydrogen economy with the increase in flexibility and viability for hydrogen production consumption compression storage and transportation. The main concept behind the proposals presented in this paper consists of using the fact that the pressure in the deep sea is very high which allows a thin and cheap HDPE tank to store and transport large amounts of pressurized hydrogen in the deep sea. This is performed by replacing seawater with pressurized hydrogen and maintaining the pressure in the pipes similar to the outside pressure. Hydrogen Deep Ocean Link has the potential of increasing the interconnectivity of different regional energy grids into a global sustainable interconnected energy system.
Potential Role of Renewable Gas in the Transition of Electricity and District Heating Systems
Dec 2019
Publication
With the constant increase in variable renewable energy production in electricity and district heating systems integration with the gas system is a way to provide flexibility to the overall energy system. In the sustainable transition towards a zero-emission energy system traditional natural gas can be substituted by renewable gasses derived from anaerobic digestion or thermal gasification and hydrogen. In this paper we present a methodology for modelling renewable gas options and limits on biomass resources across sectors in the energy optimisation model Balmorel. Different scenarios for socio-economic pathways to emission neutral electricity and district heating systems in Denmark Sweden Norway and Germany show that a renewable based energy system benefits from a certain percentage of gas as a supplement to other flexibility options like interconnectors. Especially upgraded biogas from anaerobic digestion serves as a substitute for natural gas in all scenarios. Allocating only 10% of available biomass to the electricity and district heating sector leads to full exploitation of the scarce biomass resource by boosting biogas and syngas with hydrogen. The need for renewable gasses is highest in Germany and least in Norway where hydro-power provides flexibility in terms of storable and dispatchable electricity production. The scenarios show that a required ‘‘late sprint" from fossils to achieve a zero-emission energy system in 2050 causes (1) significant higher accumulated emissions and (2) a system which strongly relies on fuels also in an emission free system instead of stronger integration of the electricity and district heating systems through electrification as well as stronger integration of the power systems across countries through interconnectors.
How to Connect Energy Islands: Trade-offs Between Hydrogen and Electricity Infrastructure
Apr 2023
Publication
In light of offshore wind expansions in the North and Baltic Seas in Europe further ideas on using offshore space for renewable-based energy generation have evolved. One of the concepts is that of energy islands which entails the placement of energy conversion and storage equipment near offshore wind farms. Offshore placement of electrolysers will cause interdependence between the availability of electricity for hydrogen production and for power transmission to shore. This paper investigates the trade-offs between integrating energy islands via electricity versus hydrogen infrastructure. We set up a combined capacity expansion and electricity dispatch model to assess the role of electrolysers and electricity cables given the availability of renewable energy from the islands. We find that the electricity system benefits more from connecting close-to-shore wind farms via power cables. In turn electrolysis is more valuable for far-away energy islands as it avoids expensive long-distance cable infrastructure. We also find that capacity investment in electrolysers is sensitive to hydrogen prices but less to carbon prices. The onshore network and congestion caused by increased activity close to shore influence the sizing and siting of electrolysers.
Techno-economic Analysis and Predictive Operation of a Power-to-hydrogen for Renewable Microgrids
Oct 2023
Publication
To enhance renewable energy (RE) generation and maintain power balance energy storage systems are of utmost importance. This research introduces a cutting-edge Power-to-Hydrogen (PtH) framework that harnesses hydrogen as a clean and versatile energy storage medium. The primary focus of this study lies in optimizing power flow within a microgrid (G) equipped with RE and energy storage systems considering various factors such as RE generation power demand battery charge cycles and operational costs. To achieve the optimal balance between power generation and consumption a sophisticated mathematical solution is devised. This solution governs the charging and discharging patterns for both battery and electrolyzer ensuring a harmonious power equilibrium. The use of short-term forecasting further refines the optimization process adapting the parameters based on anticipated RE sources and load requirements. To fine-tune the power management solution for day-to-day operations an artificial neural fuzzy inference system (ANFIS)-based shortterm prediction model is employed. The predictive analysis provides confidence intervals for crucial aspects including power generation demand battery charging cycles and hydrogen generation. This facilitates precise cost estimation across various hydrogen and heat price ranges. the proposed PtH optimization framework offers an efficient approach to balance power generation and consumption in Gs driven by RE sources and energy storage. To validate the proposed approach numerical simulations are performed based on data from wind and solar farms load requirements and cost of energy. The results show that the proposed energy management strategy significantly reduces operational costs and optimizes PtH generation while maintaining power balance within the microgrid (G). The predictive approach helps fine-tune the optimization process improving efficiency and cost-effectiveness. The research convincingly demonstrate the economic advantages of adopting hydrogen as an energy storage medium paving the way for a cleaner and more sustainable energy future.
Anion Exchange Membrane Water Electrolyzer: Electrode Design, Lab-scaled Testing System and Performance Evaluation
Aug 2022
Publication
Green hydrogen produced by water electrolysis is one of the most promising technologies to realize the efficient utilization of intermittent renewable energy and the decarbonizing future. Among various electrolysis technologies the emerging anion-exchange membrane water electrolysis (AEMWE) shows the most potential for producing green hydrogen at a competitive price. In this review we demonstrate a comprehensive introduction to AEMWE including the advanced electrode design the lab-scaled testing system establishment and the electrochemical performance evaluation. Specifically recent progress in developing high activity transition metal-based powder electrocatalysts and self-supporting electrodes for AEMWE is summarized. To improve the synergistic transfer behaviors between electron charge water and gas inside the gas diffusion electrode (GDE) two optimizing strategies are concluded by regulating the pore structure and interfacial chemistry. Moreover we provide a detailed guideline for establishing the AEMWE testing system and selecting the electrolyzer components. The influences of the membrane electrode assembly (MEA) technologies and operation conditions on cell performance are also discussed. Besides diverse electrochemical methods to evaluate the activity and stability implement the failure analyses and realize the in-situ characterizations are elaborated. In end some perspectives about the optimization of interfacial environment and cost assessments have been proposed for the development of advanced and durable AEMWE.
Explosion Mitigation Techniques in Tunnels and their Applicability to Scenarios of Hydrogen Tank Rupture in a Fire
Sep 2023
Publication
This paper presents a comprehensive review of existing explosion mitigation techniques for tunnels and evaluates their applicability in scenarios of hydrogen tank rupture in a fire. The study provides an overview of the current state of the art in tunnel explosion mitigation and discusses the challenges associated with hydrogen explosions in the context of fire incidents. The review shows that there are several approaches available to decrease the effects of explosions including wrapping the tunnel with a flexible and compressible barrier and introducing energy-absorbing flexible honeycomb elements. However these methods are limited to the mitigation of the action and do not consider either the mitigation of the structural response or the effects on the occupants. The study highlights how the structural response is affected by the duration of the action and the natural period of the structural elements and how an accurate design of the element stiffness can be used in order to mitigate the structural vulnerability to the explosion. The review also presents various passive and active mitigation techniques aimed at mitigating the explosion effects on the occupants. Such techniques include tunnel branching ventilation openings evacuation lanes right-angled bends drop-down perforated plates or high-performance fibre-reinforced cementitious composite (HPFRCC) panels for blast shielding. While some of these techniques can be introduced during the tunnel's construction phase others require changes to the already working tunnels. To simulate the effect of blast wave propagation and evaluate the effectiveness of these mitigation techniques a CFD-FEM study is proposed for future analysis. The study also highlights the importance of considering these mitigation techniques to ensure the safety of the public and first responders. Finally the study identifies the need for more research to understand blast wave mitigation by existing structural elements in the application for potential accidents associated with hydrogen tank rupture in a tunnel.
Validation of a Hydrogen Jet Fire Model in FDS
Sep 2023
Publication
Hydrogen jet fire occurs with high probability when hydrogen leaks from high-pressure equipment. The hydrogen jet fire is characterized by its high velocity and energy. Computational Fluid Dynamics (CFD) numerical analysis is a prominent way to predict the potential hazards associated with hydrogen jet fire. Validation of the CFD model is essential to ensure and quantify the accuracy of numerical results. This study focuses on the validation of the hydrogen jet fire model using Fire Dynamic Simulation (FDS). Hydrogen release is modeled using high-speed Lagrangian particles released from a virtual nozzle thus avoiding the modeling of the actual nozzle. The mesh size sensitivity analysis of the model is carried out in a container-size domain with 0.04m – 0.08m resolution of the jet. The model is validated by comparing gas temperatures and heat fluxes with test data. The promising results demonstrated that the model could predict the hazardous influence of the jet fire.
Off-grid Wind/Hydrogen Systems with Multi-electrolyzers: Optimized Operational Strategies
Sep 2023
Publication
Optimized operation of wind/hydrogen systems can increase the system efficiency and further reduce the hydrogen production cost. In this regard extensive research has been done but there is a lack of detailed electrolyzer models and effective management of multiple electrolyzers considering their physical restrictions. This work proposes electrolyzer models that integrate the efficiency variation caused by load level change start–stop cycle (including hot and cold start) thermal management and degradation caused by frequent starts. Based on the proposed models three operational strategies are considered in this paper: two traditionally utilized methods simple start–stop and cycle rotation strategies and a newly proposed rolling optimizationbased strategy. The results from daily operation show that the new strategy results in a more balanced load level among the electrolyzers and a more stable temperature. Besides from a yearly operation perspective it is found that the proposed rolling optimization method results in more hydrogen production higher system efficiency and lower LCOH. The new method leads to hydrogen production of 311297 kg compared to 289278 kg and 303758 kg for simple start–stop and cycle rotation methods. Correspondingly the system efficiencies for the new simple start–stop and cycle rotation methods are 0.613 0.572 and 0.587. The resulting LCOH from the new method is 3.89 e/kg decreasing by 0.35 e/kg and 0.21 e/kg compared to the simple start–stop and cycle rotation methods. Finally the proposed model is compared with two conventional models to show its effectiveness in revealing more operational details and reliable results.
No more items...