Colombia
Biomass Potential for Producing Power via Green Hydrogen
Dec 2021
Publication
Hydrogen (H2 ) has become an important energy vector for mitigating the effects of climate change since it can be obtained from renewable sources and can be fed to fuel cells for producing power. Bioethanol can become a green H2 source via Ethanol Steam Reforming (ESR) but several variables influence the power production in the fuel cell. Herein we explored and optimized the main variables that affect this power production. The process includes biomass fermentation bioethanol purification H2 production via ESR syngas cleaning by a CO-removal reactor and power production in a high temperature proton exchange membrane fuel cell (HT-PEMFC). Among the explored variables the steam-to-ethanol molar ratio (S/E) employed in the ESR has the strongest influence on power production process efficiency and energy consumption. This effect is followed by other variables such as the inlet ethanol concentration and the ESR temperature. Although the CO-removal reactor did not show a significant effect on power production it is key to increase the voltage on the fuel cell and consequently the power production. Optimization was carried out by the response surface methodology (RSM) and showed a maximum power of 0.07 kWh kg−1 of bioethanol with an efficiency of 17% when ESR temperature is 700 ◦C. These values can be reached from different bioethanol sources as the S/E and CO-removal temperature are changed accordingly with the inlet ethanol concentration. Because there is a linear correlation between S/E and ethanol concentration it is possible to select a proper S/E and CO-removal temperature to maximize the power generation in the HT-PEMFC via ESR. This study serves as a starting point to diversify the sources for producing H2 and moving towards a H2 -economy.
Hydrogen Production by Steam Reforming of Ethanol on Rh-Pt Catalysts: Influence of CeO2, ZrO2, and La2O3 as Supports
Nov 2015
Publication
CeO2- ZrO2- and La2O3-supported Rh-Pt catalysts were tested to assess their ability to catalyze the steam reforming of ethanol (SRE) for H2 production. SRE activity tests were performed using EtOH:H2O:N2 (molar ratio 1:3:51) at a gaseous space velocity of 70600 h−1 between 400 and 700 °C at atmospheric pressure. The SRE stability of the catalysts was tested at 700 °C for 27 h time on stream under the same conditions. RhPt/CeO2 which showed the best performance in the stability test also produced the highest H2 yield above 600 °C followed by RhPt/La2O3 and RhPt/ZrO2. The fresh and aged catalysts were characterized by TEM XPS and TGA. The higher H2 selectivity of RhPt/CeO2 was ascribed to the formation of small (~5 nm) and stable particles probably consistent of Rh-Pt alloys with a Pt surface enrichment. Both metals were oxidized and acted as an almost constant active phase during the stability test owing to strong metal-support interactions as well as the superior oxygen mobility of the support. The TGA results confirmed the absence of carbonaceous residues in all the aged catalysts.
Bibliometric Analysis of Global Trends around Hydrogen Production Based on the Scopus Database in the Period 2011–2021
Dec 2022
Publication
Given the increase in population and energy demand worldwide alternative methods have been adopted for the production of hydrogen as a clean energy source. This energy offers an alternative energy source due to its high energy content and without emissions to the environment. In this bibliometric analysis of energy production using electrolysis and taking into account the different forms of energy production. In this analysis it was possible to evaluate the research trends based on the literature in the Scopus database during the years 2011–2021. The results showed a growing interest in hydrogen production from electrolysis and other mechanisms with China being the country with the highest number of publications and the United States TOP in citations. The trend shows that during the first four years of this study (2011–2014) the average number of publications was 74 articles per year from 2015 to 2021 where the growth is an average of 209 articles the journal that published the most on this topic is Applied Energy followed by Energy contributing with almost 33% in the research area. Lastly the keyword analysis identified six important research points for future discussions which we have termed clusters. The study concludes that new perspectives on clean hydrogen energy generation environmental impacts and social acceptance could contribute to the positive evolution of the hydrogen energy industry.
Impact of Chemical Inhomogeneities on Local Material Properties and Hydrogen Environment Embrittlement in AISI 304L Steels
Feb 2018
Publication
This study investigated the influence of segregations on hydrogen environment embrittlement (HEE) of AISI 304L type austenitic stainless steels. The microstructure of tensile specimens that were fabricated from commercially available AISI 304L steels and tested by means of small strain-rate tensile tests in air as well as hydrogen gas at room temperature was investigated by means of combined EDS and EBSD measurements. It was shown that two different austenitic stainless steels having the same nominal alloy composition can exhibit different susceptibilities to HEE due to segregation effects resulting from different production routes (continuous casting/electroslag remelting). Local segregation-related variations of the austenite stability were evaluated by thermodynamic and empirical calculations. The alloying element Ni exhibits pronounced segregation bands parallel to the rolling direction of the material which strongly influences the local austenite stability. The latter was revealed by generating and evaluating two-dimensional distribution maps for the austenite stability. The formation of deformation-induced martensite was shown to be restricted to segregation bands with a low Ni content. Furthermore it was shown that the formation of hydrogen induced surface cracks is strongly coupled with the existence of surface regions of low Ni content and accordingly low austenite stability. In addition the growth behavior of hydrogen-induced cracks was linked to the segregation-related local austenite stability.
Industrial Robots Fuel Cell Based Hybrid Power-Trains: A Comparison between Different Configurations
Jun 2021
Publication
Electric vehicles are becoming more and more popular. One of the most promising possible solutions is one where a hybrid powertrain made up of a FC (Fuel Cell) and a battery is used. This type of vehicle offers great autonomy and high recharging speed which makes them ideal for many industrial applications. In this work three ways to build a hybrid power-train are presented and compared. To illustrate this the case of an industrial robot designed to move loads within a fully automated factory is used. The analysis and comparison are carried out through different objective criteria that indicate the power-train performance in different battery charge levels. The hybrid configurations are tested using real power profiles of the industrial robot. Finally simulation results show the performance of each hybrid configuration in terms of hydrogen consumption battery and FC degradation and dc bus voltage and current regulation.
Investigation of Emission Characteristics and Lubrication Oil Properties in a Dual Diesel–Hydrogen Internal Combustion Engine
Apr 2022
Publication
Hydrogen is considered one of the main gaseous fuels due to its ability to improve thermal performance in diesel engines. However its influence on the characteristics of lubricating oil is generally ignored. Thus in the present investigation an analysis of the effect on the physical and chemical properties of lubricating oil with mixtures of diesel fuel–hydrogen was carried out and the environmental impacts of this type of mixture were assessed. The development of the research was carried out using a diesel engine under four torque conditions (80 Nm 120 Nm 160 Nm and 200 Nm) and three hydrogen gas flow conditions (0.75 lpm 1.00 lpm and 1.25 lpm). From the results it was possible to demonstrate that the presence of hydrogen caused decreases of 3.50% 6.79% and 4.42% in the emissions of CO HC and smoke opacity respectively. However hydrogen further decreased the viscosity of the lubricating oil by 26%. Additionally hydrogen gas produced increases of 17.7% 29.27% 21.95% and 27.41% in metallic components such as Fe Cu Al and Cr respectively. In general hydrogen favors the contamination and oxidation of lubricating oil which implies a greater wear of the engine components. Due to the significantly negative impact of hydrogen on the lubrication system it should be considered due to its influence on the economic and environmental cost during the engine’s life cycle.
Evaluation of a Hydrogen Powered Scooter Toy Prototype
Nov 2022
Publication
Electric scooters are used as alternative ways of transport because they easily make travel faster. However the batteries can take around 5 h to charge and have an autonomy of 30 km. With the presence of the hydrogen cell a hybrid system reduces the charging times and increases the autonomy of the vehicle by using two types of fuel. An increase of up to 80% in maximum distance and of 34% in operating times is obtained with a 1:10 scale prototype with the hydrogen cell; although more energy is withdrawn the combined fuel efficiency increases too. This suggests the cell that is used has the same behavior as some official reported vehicles which have a long range but low power. This allows concluding that use of the cell is functional for load tests and that the comparison factor obtained works as input for real-scale scooter prototypes to compete with the traditional electric scooters.
Innovative Technology Strategies for the Sustainable Development of Self-Produced Energy in the Colombian Industry
Mar 2023
Publication
This research studies the current state of the Colombian industrial sector which is focused on self-generation processes. The study’s objective is to search for viable technological strategies that strengthen this particular sector’s competitiveness and sustainable development. The analysis shows that internal combustion engines represent 49% of the technologies used for self-generation. The main fuel used in the sector is natural gas with a percentage of 56%. The lack of strategies for the use of residual heat and technological inefficiencies caused a loss of 36% in the energy used in the Colombian industrial sector. Thermoelectric generators are a feasible way to recover energy from exhaust gases in engines used for self-generation. Additionally they allow a 4% reduction in fuel consumption and an improvement in the engine’s energy efficiency. The use of hydrogen as fuel allows a 30% reduction in polluting emissions such as CO2 CO HC and particulate matter. Hydrogen production processes such as water electrolysis allow the participation of Colombia’s solar energy potential leading to sustainable hydrogen production efficiency (60–80%) and a lower economic cost. In general the application of thermoelectric generators and the use of hydrogen gas allow the improvement of the Colombian industrial sector’s environmental social and economic aspects due to greater competitiveness and the reduction in emissions and operating costs.
Sizing of a Fuel Cell–battery Backup System for a University Building Based on the Probability of the Power Outages Length
Jul 2022
Publication
Hydrogen is a bright energy vector that could be crucial to decarbonise and combat climate change. This energy evolution involves several sectors including power backup systems to supply priority facility loads during power outages. As buildings now integrate complex automation domotics and security systems energy backup systems cause interest. A hydrogen-based backup system could supply loads in a multi-day blackout; however the backup system should be sized appropriately to ensure the survival of essential loads and low cost. In this sense this work proposes a sizing of fuel cell (FC) backup systems for low voltage (LV) buildings using the history of power outages. Historical data allows fitting a probability function to determine the appropriate survival of loads. The proposed sizing is applied to a university building with a photovoltaic generation system as a case study. Results show that the sizing of an FC–battery backup system for the installation is 7.6% cheaper than a battery-only system under a usual 330-minutes outage scenario. And 59.3% cheaper in the case of an unusual 48-hours outage scenario. It ensures a 99% probability of supplying essential load during power outages. It evidences the pertinence of an FC backup system to attend to outages of long-duration and the integration of batteries to support the abrupt load variations. This research is highlighted by using historical data from actual outages to define the survival of essential loads with total service probability. It also makes it possible to determine adequate survival for non-priority loads. The proposed sizing is generalisable and scalable for other buildings and allows quantifying the reliability of the backup system tending to the resilience of electrical systems.
On the Potential of Blue Hydrogen Production in Colombia: A Fossil Resource-Based Assessment for Low-Emission Hydrogen
Sep 2022
Publication
Latin America is starting its energy transition. In Colombia with its abundant natural resources and fossil fuel reserves hydrogen (H2 ) could play a key role. This contribution analyzes the potential of blue H2 production in Colombia as a possible driver of the H2 economy. The study assesses the natural resources available to produce blue H2 in the context of the recently launched National Hydrogen Roadmap. Results indicate that there is great potential for low-emission blue H2 production in Colombia using coal as feedstock. Such potential besides allowing a more sustainable use of non-renewable resources would pave the way for green H2 deployment in Colombia. Blue H2 production from coal could range from 700 to 8000 ktH2 /year by 2050 under conservative and ambitious scenarios respectively which could supply up to 1.5% of the global H2 demand by 2050. However while feedstock availability is promising for blue H2 production carbon dioxide (CO2 ) capture capacities and investment costs could limit this potential in Colombia. Indeed results of this work indicate that capture capacities of 15 to 180 MtCO2 /year (conservative and ambitious scenarios) need to be developed by 2050 and that the required investment for H2 deployment would be above that initially envisioned by the government. Further studies on carbon capture utilization and storage capacity implementation of a clear public policy and a more detailed hydrogen strategy for the inclusion of blue H2 in the energy mix are required for establishing a low-emission H2 economy in the country.
Design of an Innovative System for Hydrogen Production by Electrolysis Using Waste Heat Recovery Technology in Natural Gas Engines
May 2024
Publication
This research proposes designing and implementing a system to produce hydrogen utilizing the thermal energy from the exhaust gases in a natural gas engine. For the construction of the system a thermoelectric generator was used to convert the thermal energy from the exhaust gases into electrical power and an electrolyzer bank to produce hydrogen. The system was evaluated using a natural gas engine which operated at a constant speed (2400 rpm) and six load conditions (20 % 40 % 60 % 80 % and 100 %). The effect of hydrogen on the engine was evaluated with fuel mixtures (NG + 10 % HEF and NG + 15 % HEF). The results demonstrate that the NG + 10 % HEF and NG + 15 % HEF mixtures allow for a decrease of 1.84 % and 2.33 % in BSFC and an increase of 1.88 % and 2.38 % in BTE. Through the NG + 15 % HEF mixture the engine achieved an energy efficiency of 34.15 % and an exergetic efficiency of 32.84 %. Additionally the NG + 15 % HEF mixture reduces annual CO CO2 and HC emissions by 9.52 % 15.48 % and 13.39 % respectively. The addition of hydrogen positively impacts the engine’s economic cost allowing for a decrease of 1.56 % in the cost of useful work and a reduction of 3.32 % in the cost of exergy loss. In general the proposed system for hydrogen production represents an alternative for utilizing the residual energy from exhaust gases resulting in better performance parameters reduced annual pollutant emissions and lower economic costs.
Recent Developments in State-of-the-art Hydrogen Energy Technologies – Review of Hydrogen Storage Materials
Jan 2023
Publication
Hydrogen energy has been assessed as a clean and renewable energy source for future energy demand. For harnessing hydrogen energy to its fullest potential storage is a key parameter. It is well known that important hydrogen storage characteristics are operating pressure-temperature of hydrogen hydrogen storage capacity hydrogen absorption-desorption kinetics and heat transfer in the hydride bed. Each application needs specific properties. Every class of hydrogen storage materials has a different set of hydrogenation characteristics. Hence it is required to understand the properties of all hydrogen storage materials. The present review is focused on the state-of– the–art hydrogen storage materials including metal hydrides magnesium-based materials complex hydride systems carbonaceous materials metal organic frameworks perovskites and materials and processes based on artificial intelligence. In each category of materials‘ discovery hydrogen storage mechanism and reaction crystal structure and recent progress have been discussed in detail. Together with the fundamental synthesis process latest techniques of material tailoring like nanostructuring nanoconfinement catalyzing alloying and functionalization have also been discussed. Hydrogen energy research has a promising potential to replace fossil fuels from energy uses especially from automobile sector. In this context efforts initiated worldwide for clean hydrogen production and its use via fuel cell in vehicles is much awaiting steps towards sustainable energy demand.
Biological Hydrogen Methanation with Carbon Dioxide Utilization: Methanation Acting as Mediator in the Hydrogen Economy
May 2023
Publication
Hydrogen is one of the main energy carriers playing a prominent role in the future decarbonization of the economy. However several aspects regarding the transport and storage of this gas are challenging. The intermediary conversion of hydrogen into high-density energy molecules may be a crucial step until technological conditions are ready to attain a significant reduction in fossil fuel use in transport and the industrial sector. The process of transforming hydrogen into methane by anaerobic digestion is reviewed showing that this technology is a feasible option for facilitating hydrogen storage and transport. The manuscript focuses on the role of anaerobic digestion as a technology driver capable of fast adaptation to current energy needs. The use of thermophilic systems and reactors capable of increasing the contact between the H2 -fuel and liquid phase demonstrated outstanding capabilities attaining higher conversion rates and increasing methane productivity. Pressure is a relevant factor of the process allowing for better hydrogen solubility and setting the basis for considering feasible underground hydrogen storage concomitant with biological methanation. This feature may allow the integration of sequestered carbon dioxide as a relevant substrate.
Green Hydrogen Potential in Tropical Countries: The Colombian Case
Mar 2023
Publication
Tropical countries can approach their natural resources to produce low-carbon H2 from solar wind hydro and biomass resources to satisfy their domestic demand and to export it. To do so Colombia published the National Hydrogen Roadmap in which green H2 was prioritized. This study estimates Colombia's potential to produce green H2 and a timeline of scenarios displaying the required installed capacity capital investment and environmental analysis related to water utilization and CO2 capture. Accordingly Colombia can produce H2 at a rate of 9 Mt/a by 2050 by installing 121 GW renewables while processing 303 Mt/a of residual biomass. In this scenario Colombia's share of the H2 international market can reach 1.2% with a cumulative investment of over 244 billion USD by 2050. This study provides insights into potential global resources for low-carbon H2 generation.
Role of Low Carbon Emission H2 in the Energy Transition of Colombia: Environmental Assessment of H2 Production Pathways for a Certification Scheme
Oct 2022
Publication
Hydrogen (H2) is a low-carbon carrier. Hence measuring the impact of its supply chain is key to guaranteeing environmental benefits. This research proposes a classification of H2 in Colombia based on its carbon footprint and source. Such environmental characterization enables the design of regulatory instruments to incentivize the demand for low carbon-H2. Life cycle assessment (LCA) was used to determine the carbon footprint of H2 production technologies. Based on our LCA four classes of H2 were defined based on the emission threshold: (i) gray-H2 (21.8 - 17.0 kg CO2-eq/kg H2) (ii) low carbon-H2 (4.13 – 17.0 kg CO2-eq/kg H2) (iii) blue-H2 (<4.13 kg CO2-eq/kg H2) and (iv) green-H2 (<4.13 kg CO2-eq/kg H2). While low carbon-H2 could be employed to reduce 22% of the national greenhouse gas (GHG) emissions as defined in the National Determined Contribution (NDC) both blue and green-H2 could be employed for national and international trade since the standard emissions are aligned with international schemes such as CertifHy and the Chinese model. Besides gasification of biomass results in environmental savings indicating that biomass is a promising feedstock for international and local trade. Furthermore combinations of H2 production technologies such as renewable-based electrolysis natural gas steam reforming with CCS and ethanol conversion were evaluated to explore the production of a combination of green- and blue-H2 to meet the current and future demand of low carbon emission H2 in Colombia. However to comply with the proposed carbon emission threshold the installed capacities of solar and wind energies must be increase.
Analysis of Performance, Emissions, and Lubrication in a Spark-ignition Engine Fueled with Hydrogen Gas Mixtures
Oct 2022
Publication
Hydrogen is one of the main alternative fuels with the greatest potential to replace fossil fuels due to its renewable and environmentally friendly nature. Due to this the present investigation aims to evaluate the combustion characteristics performance parameters emissions and variations in the characteristics of the lubricating oil. The investigation was conducted in a spark-ignition engine fueled by gasoline and hydrogen gas. Four engine load conditions (25% 50% 75% and 100%) and three hydrogen gas mass concentration conditions (3% 6% and 9%) were defined for the study. The investigation results allowed to demonstrate that the injection of hydrogen gas in the gasoline engine causes an increase of 3.2% and 4.0% in the maximum values of combustion pressure and heat release rates. Additionally hydrogen causes a 2.9% increase in engine BTE. Hydrogen's more efficient combustion process allowed for reducing CO HC and smoke opacity emissions. However hydrogen gas causes an additional increase of 14.5% and 30.4% in reducing the kinematic viscosity and the total base number of the lubricating oil. In addition there was evidence of an increase in the concentration of wear debris such as Fe and Cu which implies higher rates of wear in the engine's internal components.
Increasing Energy Efficiency of Hydrogen Refueling Stations via Optimal Thermodynamic Paths
Sep 2023
Publication
This work addresses the energy efficiency of hydrogen refueling stations (HRS) using a first principles model and optimal control methods to find minimal entropy production operating paths. The HRS model shows good agreement with experimental data achieving maximum state of charge and temperature discrepancies of 1 and 7% respectively. Model solution and optimization is achieved at a relatively low computational time (40 s) when compared to models of the same degree of accuracy. The entropy production mapping indicates the flow control valve as the main source of irreversibility accounting for 85% of the total entropy production in the process. The minimal entropy production refueling path achieves energy savings from 20 to 27% with respect to the SAE J2601 protocol depending on the ambient temperature. Finally the proposed method under nearreversible refueling conditions shows a theoretical reduction of 43% in the energy demand with respect to the SAE J2601 protocol.
Comparative Exergy and Environmental Assessment of the Residual Biomass Gasification Routes for Hydrogen and Ammonia Production
Jul 2023
Publication
The need to reduce the dependency of chemicals on fossil fuels has recently motivated the adoption of renewable energies in those sectors. In addition due to a growing population the treatment and disposition of residual biomass from agricultural processes such as sugar cane and orange bagasse or even from human waste such as sewage sludge will be a challenge for the next generation. These residual biomasses can be an attractive alternative for the production of environmentally friendly fuels and make the economy more circular and efficient. However these raw materials have been hitherto widely used as fuel for boilers or disposed of in sanitary landfills losing their capacity to generate other by-products in addition to contributing to the emissions of gases that promote global warming. For this reason this work analyzes and optimizes the biomass-based routes of biochemical production (namely hydrogen and ammonia) using the gasification of residual biomasses. Moreover the capture of biogenic CO2 aims to reduce the environmental burden leading to negative emissions in the overall energy system. In this context the chemical plants were designed modeled and simulated using Aspen plus™ software. The energy integration and optimization were performed using the OSMOSE Lua Platform. The exergy destruction exergy efficiency and general balance of the CO2 emissions were evaluated. As a result the irreversibility generated by the gasification unit has a relevant influence on the exergy efficiency of the entire plant. On the other hand an overall negative emission balance of −5.95 kgCO2/kgH2 in the hydrogen production route and −1.615 kgCO2/kgNH3 in the ammonia production route can be achieved thus removing from the atmosphere 0.901 tCO2/tbiomass and 1.096 tCO2/tbiomass respectively.
Renewable Energy Sources for Green Hydrogen Generation in Colombia and Applicable Case of Studies
Nov 2023
Publication
Electrification using renewable energy sources represents a clear path toward solving the current global energy crisis. In Colombia this challenge also involves the diversification of the electrical energy sources to overcome the historical dependence on hydropower. In this context green hydrogen represents a key energy carrier enabling the storage of renewable energy as well as directly powering industrial and transportation sectors. This work explores the realistic potential of the main renewable energy sources including solar photovoltaics (8172 GW) hydropower (56 GW) wind (68 GW) and biomass (14 GW). In addition a case study from abroad is presented demonstrating the feasibility of using each type of renewable energy to generate green hydrogen in the country. At the end an analysis of the most likely regions in the country and paths to deploy green hydrogen projects are presented favoring hydropower in the short term and solar in the long run. By 2050 this energy potential will enable reaching a levelized cost of hydrogen (LCOH) of 1.7 1.5 3.1 and 1.4 USD/kg-H2 for solar photovoltaic wind hydropower and biomass respectively.
Experimental Study of a Homogeneous Charge Compression Ignition Engine Using Hydrogen at High-Altitude Conditions
Feb 2024
Publication
One of the key factors of the current energy transition is the use of hydrogen (H2 ) as fuel in energy transformation technologies. This fuel has the advantage of being produced from the most primary forms of energy and has the potential to reduce carbon dioxide (CO2 ) emissions. In recent years hydrogen or hydrogen-rich mixtures in internal combustion engines (ICEs) have gained popularity with numerous reports documenting their use in spark ignition (SI) and compression ignition (CI) engines. Homogeneous charge compression ignition (HCCI) engines have the potential for substantial reductions in nitrogen oxides (NOx) and particulate matter (PM) emissions and the use of hydrogen along with this kind of combustion could substantially reduce CO2 emissions. However there have been few reports using hydrogen in HCCI engines with most studies limited to evaluating technical feasibility combustion characteristics engine performance and emissions in laboratory settings at sea level. This paper presents a study of HCCI combustion using hydrogen in a stationary air-cooled Lombardini 25 LD 425-2 modified diesel engine located at 1495 m above sea level. An experimental phase was conducted to determine the intake temperature requirements and equivalence ratios for stable HCCI combustion. These results were compared with previous research carried out at sea level. To the best knowledge of the authors this is the first report on the combustion and operational limits for an HCCI engine fueled with hydrogen under the mentioned specific conditions. Equivalence ratios between 0.21 and 0.28 and intake temperatures between 188 ◦C and 235 ◦C effectively achieved the HCCI combustion. These temperature values were on average 100 ◦C higher than those reported in previous studies. The maximum value for the indicated mean effective pressure (IMEPn) was 1.75 bar and the maximum thermal efficiency (ITEn) was 34.5%. The achieved results are important for the design and implementation of HCCI engines running solely on hydrogen in developing countries located at high altitudes above sea level.
No more items...