China, People’s Republic
Modulating Electronic Structure of Metal-organic Frameworks by Introducing Atomically Dispersed Ru for Efficient Hydrogen Evolution
Mar 2021
Publication
Developing high-performance electrocatalysts toward hydrogen evolution reaction is important for clean and sustainable hydrogen energy yet still challenging. Herein we report a single-atom strategy to construct excellent metal-organic frameworks (MOFs) hydrogen evolution reaction electrocatalyst (NiRu0.13-BDC) by introducing atomically dispersed Ru. Significantly the obtained NiRu0.13-BDC exhibits outstanding hydrogen evolution activity in all pH especially with a low overpotential of 36 mV at a current density of 10 mA cm−2 in 1 M phosphate buffered saline solution which is comparable to commercial Pt/C. X-ray absorption fine structures and the density functional theory calculations reveal that introducing Ru single-atom can modulate electronic structure of metal center in the MOF leading to the optimization of binding strength for H2O and H* and the enhancement of HER performance. This work establishes single-atom strategy as an efficient approach to modulate electronic structure of MOFs for catalyst design.
Boosting Photocatalytic Hydrogen Production from Water by Photothermally Induced Biphase Systems
Feb 2021
Publication
Solar-driven hydrogen production from water using particulate photocatalysts is considered the most economical and effective approach to produce hydrogen fuel with little environmental concern. However the efficiency of hydrogen production from water in particulate photocatalysis systems is still low. Here we propose an efficient biphase photocatalytic system composed of integrated photothermal–photocatalytic materials that use charred wood substrates to convert liquid water to water steam simultaneously splitting hydrogen under light illumination without additional energy. The photothermal–photocatalytic system exhibits biphase interfaces of photothermally-generated steam/photocatalyst/hydrogen which significantly reduce the interface barrier and drastically lower the transport resistance of the hydrogen gas by nearly two orders of magnitude. In this work an impressive hydrogen production rate up to 220.74 μmol h−1 cm−2 in the particulate photocatalytic systems has been achieved based on the wood/CoO system demonstrating that the photothermal–photocatalytic biphase system is cost-effective and greatly advantageous for practical applications.
Consequence-based Safety Distances and Mitigation Measures for Gaseous Hydrogen Refueling Stations
Oct 2010
Publication
With the rapid development of hydrogen vehicle technology and large scale fuel cell vehicle (FCV) demonstration project worldwide more hydrogen refueling stations need to be built. Safety distances of hydrogen refueling stations have always been a public concern and have become a critical issue to further implementation of hydrogen station. In this paper safety distances for 35MPa and 70MPa gaseous hydrogen refueling station are evaluated on the basis of the maximum consequences likely to occur. Four typical consequences of hydrogen release are considered in modeling: physical explosion jet fire flash fire and confined vapor cloud explosion. Results show that physical explosion and the worst case of confined vapor cloud explosion produce the longest harm effect distances for instantaneous and continuous release respectively indicating that they may be considered as leading consequences for the determination of safety distances. For both 35MPa station and 70MPa station safety measures must be implemented because the calculated safety distances of most hydrogen facilities can not meet the criteria in national code if without sufficient mitigation measures. In order to reduce the safety distances to meet the national code some mitigation measures are investigated including elevation of hydrogen facilities using smaller vessel and pipe work and setting enclosure around compressors. Results show that these measures are effective to improve safety but each has different effectiveness on safety distance reduction. The combination of these safety measures may effectively eliminate the hazard of 35MPa station however may be not enough for 70MPa station. Further improvements need to be studied for compressors inside 70MPa station.
A Multi‐input and Single‐output Voltage Control for a Polymer Electrolyte Fuel Cell System Using Model Predictive Control Method
Mar 2021
Publication
Efficient and robust control strategies can greatly contribute to the reliability of fuel cell systems and a stable output voltage is a key criterion for evaluating a fuel cell system's reliability as a power source. In this study a polymer electrolyte fuel cell (PEFC) system model is developed and its performances under different operating conditions are studied. Then two different novel controllers—a proportional integral derivative (PID) controller and a model predictive control (MPC) controller—are proposed and applied in the PEFC system to control its output voltage at a desired value by regulating the hydrogen and air flow rates at the same time which features a multi‐input and single‐output control problem. Simulation results demonstrate that the developed PEFC system model is qualified to capture the system's behaviour. And both the developed PID and MPC controllers are effective at controlling the PEFC system's output voltage. While the MPC controller presents superior performance with faster response and smaller overshoot. The proposed MPC controller can be easily employed in various control applications for fuel cell systems.
Enhanced Hydrogen Generation from Hydrolysis of MgLi Doped with Expanded Graphite
Apr 2021
Publication
Hydrolysis of Mg-based materials is considered as a potential means of safe and convenient real-time control of H2 release enabling efficient loading discharge and utilization of hydrogen in portable electronic devices. At present work the hydrogen generation properties of MgLi-graphite composites were evaluated for the first time. The MgLi-graphite composites with different doping amounts of expanded graphite (abbreviated as EG hereinafter) were synthesized through ball milling and the hydrogen behaviors of the composites were investigated in chloride solutions. Among the above doping systems the 10 wt% EG-doped MgLi exhibited the best hydrogen performance in MgCl2 solutions. In particular the 22 h-milled MgLi-10 wt% EG composites possessed both desirable hydrogen conversion and rapid reaction kinetics delivering a hydrogen yield of 966 mL H2 g−1 within merely 2 min and a maximum hydrogen generation rate of 1147 mL H2 min−1 g−1 as opposed to the sluggish kinetics in the EG-free composites. Moreover the EG-doped MgLi showed superior air-stable ability even under a 75 RH% ambient atmosphere. For example the 22 h-milled MgLi-10 wt% EG composites held a fuel conversion of 89% after air exposure for 72 h rendering it an advantage for Mg-based materials to safely store and transfer in practical applications. The similar favorable hydrogen performance of MgLi-EG composites in (simulate) seawater may shed light on future development of hydrogen generation technologies.
Hydrogen-Rich Gas Production from Two-Stage Catalytic Pyrolysis of Pine Sawdust with Nano-NiO/Al2O3 Catalyst
Feb 2022
Publication
Hydrogen production from biomass pyrolysis is economically and technologically attractive from the perspectives of energy and the environment. The two-stage catalytic pyrolysis of pine sawdust for hydrogen-rich gas production is investigated using nano-NiO/Al2O3 as the catalyst at high temperatures. The influences of residence time (0–30 s) and catalytic temperature (500–800 ◦C) on pyrolysis performance are examined in the distribution of pyrolysis products gas composition and gas properties. The results show that increasing the residence time decreased the solid and liquid products but increased gas products. Longer residence times could promote tar cracking and gas-phase conversion reactions and improve the syngas yield H2/CO ratio and carbon conversion. The nano-NiO/A12O3 exhibits excellent catalytic activity for tar removal with a tar conversion rate of 93% at 800 ◦C. The high catalytic temperature could significantly improve H2 and CO yields by enhancing the decomposition of tar and gas-phase reactions between CO2 and CH4 . The increasing catalytic temperature increases the dry gas yield and carbon conversion but decreases the H2/CO ratio and low heating value.
Electronic Structure and d-Band Center Control Engineering over Ni-Doped CoP3 Nanowall Arrays for Boosting Hydrogen Production
Jun 2021
Publication
To address the challenge of highly efficient water splitting into H2 successful fabrication of novel porous three-dimensional Ni-doped CoP3 nanowall arrays on carbon cloth was realized resulting in an effective self-supported electrode for the electrocatalytic hydrogen-evolution reaction. The synthesized samples exhibit rough curly and porous structures which are beneficial for gaseous transfer and diffusion during the electrocatalytic process. As expected the obtained Ni-doped CoP3 nanowall arrays with a doping concentration of 7% exhibit the promoted electrocatalytic activity. The achieved overpotentials of 176 mV for the hydrogen-evolution reaction afford a current density of 100 mA cm−2 which indicates that electrocatalytic performance can be dramatically enhanced via Ni doping. The Ni-doped CoP3 electrocatalysts with increasing catalytic activity should have significant potential in the field of water splitting into H2. This study also opens an avenue for further enhancement of electrocatalytic performance through tuning of electronic structure and d-band center by doping.
Recent Advances in Carbon Dioxide Conversion: A Circular Bioeconomy Perspective
Jun 2021
Publication
Managing the concentration of atmospheric CO2 requires a multifaceted engineering strategy which remains a highly challenging task. Reducing atmospheric CO2 (CO2R) by converting it to value-added chemicals in a carbon neutral footprint manner must be the ultimate goal. The latest progress in CO2R through either abiotic (artificial catalysts) or biotic (natural enzymes) processes is reviewed herein. Abiotic CO2R can be conducted in the aqueous phase that usually leads to the formation of a mixture of CO formic acid and hydrogen. By contrast a wide spectrum of hydrocarbon species is often observed by abiotic CO2R in the gaseous phase. On the other hand biotic CO2R is often conducted in the aqueous phase and a wide spectrum of value-added chemicals are obtained. Key to the success of the abiotic process is understanding the surface chemistry of catalysts which significantly governs the reactivity and selectivity of CO2R. However in biotic CO2R operation conditions and reactor design are crucial to reaching a neutral carbon footprint. Future research needs to look toward neutral or even negative carbon footprint CO2R processes. Having a deep insight into the scientific and technological aspect of both abiotic and biotic CO2R would advance in designing efficient catalysts and microalgae farming systems. Integrating the abiotic and biotic CO2R such as microbial fuel cells further diversifies the spectrum of CO2R.
A Model for Hydrogen Detonation Diffraction or Transmission to a Non-confined Layer
Sep 2021
Publication
One strategy for arresting propagating detonation waves in pipes is by imposing a sudden area enlargement which provides a rapid lateral divergence of the gases in the reaction zone and attenuates the leading shock. For sufficiently small tube diameter the detonation decays to a deflagration and the shock decays to negligible strengths. This is known as the critical tube diameter problem. In the present study we provide a closed form model to predict the detonation quenching for 2D channels. This problem also applies to the transmission of a detonation wave from a confined layer to a weakly-confined layer. Whitham’s geometric shock dynamics coupled with a shock evolution law based on shocks sustained by a constant source obtained by the shock change equations of Radulescu is shown to capture the lateral shock dynamics response to the failure wave originating at the expansion corner. A criterion for successful detonation transmission to open space is that the lateral strain rate provided by the failure wave not exceed the critical strain rate of steady curved detonations. Using the critical lateral strain rate obtained by He and Clavin a closed form solution is obtained for the critical channel opening permitting detonation transmission. The predicted critical channel width is found in excellent agreement with our recent experiments and simulations of diffracting H2/O2/Ar detonations. Model comparison with available data for H2/air detonation diffraction into open space at ambient conditions or for transmission into a weakly confined layer by air is also found in good agreement within a factor never exceeding 2 for the critical opening or layer dimension.
Spin Pinning Effect to Reconstructed Oxyhydroxide Layer on Ferromagnetic Oxides for Enhanced Water Oxidation
Jun 2021
Publication
Producing hydrogen by water electrolysis suffers from the kinetic barriers in the oxygen evolution reaction (OER) that limits the overall efficiency. With spin-dependent kinetics in OER to manipulate the spin ordering of ferromagnetic OER catalysts (e.g. by magnetization) can reduce the kinetic barrier. However most active OER catalysts are not ferromagnetic which makes the spin manipulation challenging. In this work we report a strategy with spin pinning effect to make the spins in paramagnetic oxyhydroxides more aligned for higher intrinsic OER activity. The spin pinning effect is established in oxideFM/oxyhydroxide interface which is realized by a controlled surface reconstruction of ferromagnetic oxides. Under spin pinning simple magnetization further increases the spin alignment and thus the OER activity which validates the spin effect in rate-limiting OER step. The spin polarization in OER highly relies on oxyl radicals (O∙) created by 1st dehydrogenation to reduce the barrier for subsequent O-O coupling.
Controlled Biosynthesis of ZnCdS Quantum Dots with Visible-Light-Driven Photocatalytic Hydrogen Production Activity
May 2021
Publication
The development of visible-light-responsive photocatalysts with high efficiency stability and eco-friendly nature is beneficial to the large-scale application of solar hydrogen production. In this work the production of biosynthetic ternary ZnCdS photocatalysts (Eg = 2.35–2.72 eV) by sulfate-reducing bacteria (SRB) under mild conditions was carried out for the first time. The huge amount of biogenic S2− and inherent extracellular proteins (EPs) secreted by SRB are important components of rapid extracellular biosynthesis. The ternary ZnCdS QDs at different molar ratios of Zn2+and Cd2+ from 15:1 to 1:1 were monodisperse spheres with good crystallinity and average crystallite size of 6.12 nm independent of the molar ratio of Cd2+ to Zn2+. All the ZnCdS QDs had remarkable photocatalytic activity and stability for hydrogen evolution under visible light without noble metal cocatalysts. Especially ZnCdS QDs at Zn/Cd = 3:1 showed the highest H2 production activity of 3.752 mmol·h−1·g−1. This excellent performance was due to the high absorption of visible light the high specific surface area and the lower recombination rate between photoexcited electrons and holes. The adhered inherent EPs on the ZnCdS QDs slowed down the photocorrosion and improved the stability in photocatalytic hydrogen evolution. This study provides a new direction for solar hydrogen production.
Electric Field Effects on Photoelectrochemical Water Splitting: Perspectives and Outlook
Feb 2022
Publication
The grand challenges in renewable energy lie in our ability to comprehend efficient energy conversion systems together with dealing with the problem of intermittency via scalable energy storage systems. Relatively little progress has been made on this at grid scale and two overriding challenges still need to be addressed: (i) limiting damage to the environment and (ii) the question of environmentally friendly energy conversion. The present review focuses on a novel route for producing hydrogen the ultimate clean fuel from the Sun and renewable energy source. Hydrogen can be produced by light-driven photoelectrochemical (PEC) water splitting but it is very inefficient; rather we focus here on how electric fields can be applied to metal oxide/water systems in tailoring the interplay with their intrinsic electric fields and in how this can alter and boost PEC activity drawing both on experiment and non-equilibrium molecular simulation.
Discussion on the Feasibility of the Integration of Wind Power and Coal Chemical Industries for Hydrogen Production
Oct 2021
Publication
To improve the utilization rate of the energy industry and reduce high energy consumption and pollution caused by coal chemical industries in north western China a planning scheme of a wind‐coal coupling energy system was developed. This scheme involved the analysis method evaluation criteria planning method and optimization operation check for the integration of a comprehensive evaluation framework. A system was established to plan the total cycle revenue to maximize the net present value of the goal programming model and overcome challenges associated with the development of new forms of energy. Subsequently the proposed scheme is demonstrated using a 500‐MW wind farm. The annual capacity of a coal‐to‐methanol system is 50000. Results show that the reliability of the wind farm capacity and the investment subject are the main factors affecting the feasibility of the wind‐coal coupled system. Wind power hydrogen production generates O2 and H2 which are used for methanol preparation and electricity production in coal chemical systems respectively. Considering electricity price constraints and environmental benefits a methanol production plant can construct its own wind farm matching its output to facilitate a more economical wind‐coal coupled system. Owing to the high investment cost of wind power plants an incentive mechanism for saving energy and reducing emissions should be provided for the wind‐ coal coupled system to ensure economic feasibility and promote clean energy transformation.
Evaluation of a New Combined Energy System Performance to Produce Electricity and Hydrogen with Energy Storage Option
Mar 2021
Publication
According to new findings the use of alternative energy sources such as wind energy is needed to supply the energy demand of future generations. On the other hand combined renewable energy systems can be more efficient than their stand-alone systems. Therefore clean energy-based hybrid energy systems can be a suitable solution for fossil fuels. However for their widespread commercialization more detailed and powerful studies are needed. On the other hand in order to attain sustainable development for the use of renewable energy sources due to their nature energy storage is required. The motivation of this study is introduce and examine a new energy system performance for the production of electricity and hydrogen fuel as well as energy storage. So this paper presents the energy and exergy operation of a hybrid wind turbine water electrolyzer and Pumped-hydro-compressed air system. The electricity produced by the wind turbine is used to produce hydrogen fuel in electrolyzer and the excess energy is stored using the storage system. It was found that the electrolyzer needed 512.6 W of electricity to generate 5 mol/h of hydrogen fuel which was supplied by a 10 kW-wind turbine. In such a context the efficiency of the process was 74.93%. Furthermore on average the isothermal process requires 17.53% less storage capacity than the isentropic process. The effect of key parameters such as rate of hydrogen fuel production operating pressures wind speed and components efficiency on the process operation is also examined.
Synergetic Effect of Multiple Phases on Hydrogen Desorption Kinetics and Cycle Durability in Ball Milled MgH2–PrF3–Al–Ni Composite
Jan 2021
Publication
A new MgH2–PrF3–Al–Ni composite was prepared by ball milling under hydrogen atmosphere. After initial dehydrogenation and rehydrogenation Pr3Al11 MgF2 PrH3 and Mg2NiH4 nanoparticles formed accompanying the main phase MgH2. The hydrogen absorption-desorption properties were measured by using a Sieverts-type apparatus. The results showed that the MgH2–PrF3–Al–Ni composite improved cycle stability and enhanced hydrogen desorption kinetics. The improvement of hydrogen absorption-desorption properties is ascribed to the synergetic effect of the in situ formed Pr3Al11 MgF2 PrH3 and Mg2NiH4 nanoparticles. This work provides an important inspiration for the improvement of hydrogen storage properties in Mg-based materials.
Effect of Hydrogen-storage Pressure on the Detonation Characteristics of Emulsion Explosives Sensitized by Glass Microballoons
Mar 2021
Publication
In this study hydrogen-storage glass microballoons were introduced into emulsion explosives to improve the detonation performance of the explosives. The effect of hydrogen-storage pressure on the detonation characteristics of emulsion explosives was systematically investigated. Detonation velocity experiments shows that the change of sensitizing gas and the increase of hydrogen pressure have different effects on the detonation velocity. The experimental parameters of underwater explosion increase first and then decreases with the increase of hydrogen pressure. The decrease of these parameters indicates that the strength of glass microballoons is the limiting factor to improve the detonation performance of hydrogen-storage emulsion explosives. Compared with the traditional emulsion explosives the maximum peak pressure of shock wave of hydrogen-storage emulsion explosives increases by 10.6% at 1.0 m and 10.2% at 1.2 m the maximum values of shock impulse increase by 5.7% at 1.0 m and 19.4% at 1.2 m. The stored hydrogen has dual effects of sensitizers and energetic additives which can improve the energy output of emulsion explosives.
Multi-Criteria Optimization of a Biomass-Based Hydrogen Production System Integrated With Organic Rankine Cycle
Oct 2020
Publication
Biomass-based gasification is an attractive and promising pathway for hydrogen production. In this work a biomass-based hydrogen production system integrated with organic Rankine cycle was designed and investigated to predict the performance of hydrogen production yield and electricity generation under various operating conditions. The modified equilibrium model presented desirable results for the produced syngas compositions compared with the experimental data. Hydrogen yields from four types of biomass (wood chips daily manure sorghum and grapevine pruning wastes) were compared under the same operating condition with wood chips exhibiting the maximum hydrogen yield of 11.59 mol/kg. The effects of gasification temperature equivalence ratio and steam-to-biomass ratio on the hydrogen yield and electricity generation were investigated by using the response surface method. Furthermore the system was optimized using a genetic algorithm based on the response surface model. A preferred optimal solution with a hydrogen yield of 39.31 mol/kg and an output power of 3558.08 kW (0.99 kW h/kg) was selected by the linear programming technique for multidimensional analysis of the preference method.
Insights into the Principles, Design Methodology and Applications of Electrocatalysts Towards Hydrogen Evolution Reaction
Apr 2021
Publication
The electrolysis of water for sustainable hydrogen producing is a crucial segment of various emerging clean-energy technologies. However pursuing an efficient and cheap alternative catalyst to substitute state-of-the-art platinum-group electrocatalysts remains a prerequisite for the commercialization of this technology. Typically precious-metal-free catalysts have always much lower activities towards hydrogen production than that of Pt-group catalysts. To explore high-performance catalysts maximally exposed active sites rapid charge transfer ability and desirable electronic configuration are essentially demanded. Herein the fundamentals of hydrogen evolution reaction will be briefly described and the main focus will be on the interfacial engineering strategies by means of constructing defect structure creating heterojunction phase engineering lattice strain control designing hierarchical architecture and doping heteroatoms to effectively proliferate the catalytic active sites facilitate the electron diffusion and regulate the electronic configuration of numerous transition metals and their nitrides carbides sulfides phosphides as well as oxides achieving a benchmark performance of platinum-free electrocatalysts for the hydrogen evolution reaction. This review unambiguously offers proof that the conventional cheap and earth-abundant transition metal-based substances can be translated into an active water splitting catalyst by the rational and controllable interfacial designing.
Warm Pre-Strain: Strengthening the Metastable 304L Austenitic Stainless Steel without Compromising Its Hydrogen Embrittlement Resistance
Nov 2017
Publication
Plastic pre-strains were applied to the metastable 304L austenitic stainless steel at both room temperature (20 °C) and higher temperatures (i.e. 50 80 and 100 °C) and then the hydrogen embrittlement (HE) susceptibility of the steel was evaluated by cathodically hydrogen-charging and tensile testing. The 20 °C pre-strain greatly strengthened the steel but simultaneously significantly increased the HE susceptibility of the steel since α′ martensite was induced by the pre-strain causing the pre-existence of α′ martensite which provided “highways” for hydrogen to transport deep into the steel during the hydrogen-charging. Although the warm pre-strains did not strengthen the steel as significantly as the 20 °C pre-strain they retained the HE resistance of the steel. This is because the higher temperatures particularly 80 and 100 °C suppressed the α′ martensite transformation during the pre-straining. Pre-strain at a temperature slightly higher than room temperature has a potential to strengthen the metastable 304L austenitic stainless steel without compromising its initial HE resistance.
Effects of Hot Stamping and Tempering on Hydrogen Embrittlement of a Low-Carbon Boron-Alloyed Steel
Dec 2018
Publication
The effects of hot stamping (HS) and tempering on the hydrogen embrittlement (HE) behavior of a low-carbon boron-alloyed steel were studied by using slow strain rate tensile (SSRT) tests on notched sheet specimens. It was found that an additional significant hydrogen desorption peak at round 65–80 °C appeared after hydrogen-charging the corresponding hydrogen concentration (CHr) of the HS specimen was higher than that of the directed quenched (DQ) specimen and subsequent low-temperature tempering gave rise to a decrease of CHr. The DQ specimen exhibited a comparatively high HE susceptibility while tempering treatment at 100 °C could notably alleviate it by a relative decrease of ~24% at no expanse of strength and ductility. The HS specimen demonstrated much lower HE susceptibility compared with the DQ specimen and tempering at 200 °C could further alleviate its HE susceptibility. SEM analysis of fractured SSRT surfaces revealed that the DQ specimen showed a mixed transgranular-intergranular fracture while the HS and low-temperature tempered specimens exhibited a predominant quasi-cleavage transgranular fracture. Based on the obtained results we propose that a modified HS process coupled with low-temperature tempering treatment is a promising and feasible approach to ensure a low HE susceptibility for high-strength automobile parts made of this type of steel.
Empowering Hydrogen Storage Properties of Haeckelite Monolayers via Metal Atom Functionalization
Mar 2021
Publication
Using hydrogen as an energy carrier requires new technological solutions for its onboard storage. The exploration of two-dimensional (2D) materials for hydrogen storage technologies has been motivated by their open structures which facilitates fast hydrogen kinetics. Herein the hydrogen storage properties of lightweight metal functionalized r57 haeckelite sheets are studied using density functional theory (DFT) calculations. H2 molecules are adsorbed on pristine r57 via physisorption. The hydrogen storage capacity of r57 is improved by decorating it with alkali and alkaline-earth metals. In addition the in-plane substitution of r57 carbons with boron atoms (B@r57) both prevents the clustering of metals on the surface of 2D material and increases the hydrogen storage capacity by improving the adsorption thermodynamics of hydrogen molecules. Among the studied compounds B@r57-Li4 with its 10.0 wt% H2 content and 0.16 eV/H2 hydrogen binding energy is a promising candidate for hydrogen storage applications. A further investigation as based on the calculated electron localization functions atomic charges and electronic density of states confirm the electrostatic nature of interactions between the H2 molecules and the protruding metal atoms on 2D haeckelite sheets. All in all this work contributes to a better understanding of pure carbon and B-doped haeckelites for hydrogen storage.
Hydrogen Storage Behavior of Mg-based Alloy Catalyzed by Carbon-cobalt Composites
Feb 2021
Publication
The composites comprised of Co nanoparticle and C nanosheet were prepared though a high-temperature carbonization reaction. The catalysis of Co@C composites on the hydrogen storage behavior of Mg90Ce5Y5 alloy was investigated in detail by XRD SEM TEM PCI and DSC method. Because of the synergistic catalytic function of C and Co in C@Co nanocomposites the Mg90Ce5Y5 alloy with 10 wt.% C@Co shows the excellent hydrogen absorption and desorption performances. Time for releasing hydrogen reduces from 150 min to 11 min with the addition of the C@Co composites at the temperature of 300 °C. Meanwhile the dehydrogenation activation energy also declines from 130.3 to 81.9 kJ mol−1 H2 after the addition of the C@Co composites. This positive effect attributes to the C layer with the high defect density and the Co nanoparticles which reduces the energy barriers for the nucleation of Mg/MgH2 phase and the recombination of hydrogen molecule. Besides the C@Co composites also improve the activation property of the Mg90Ce5Y5 alloy which was fully activated in the first cycle. Moreover the temperature for initial dehydrogenation and the endothermic peak of the alloy hydride were also decreased. Although the addition of the C@Co composites increases the plateau pressures and decreases the value of the decomposition enthalpy these differences are so small that the improvement on thermodynamics can hardly be seen.
Development of Renewable Energy Multi-energy Complementary Hydrogen Energy System (A Case Study in China): A Review
Aug 2020
Publication
The hydrogen energy system based on the multi-energy complementary of renewable energy can improve the consumption of renewable energy reduce the adverse impact on the power grid system and has the characteristics of green low carbon sustainable etc. which is currently a global research hotspot. Based on the basic principles of hydrogen production technology this paper introduces the current hydrogen energy system topology and summarizes the technical advantages of renewable energy complementary hydrogen production and the complementary system energy coordination forms. The problems that have been solved or reached consensus are summarized and the current status of hydrogen energy system research at home and abroad is introduced in detail. On this basis the key technologies of multi-energy complementation of hydrogen energy system are elaborated especially in-depth research and discussion on coordinated control strategies energy storage and capacity allocation energy management and electrolysis water hydrogen production technology. The development trend of the multi-energy complementary system and the hydrogen energy industry chain is also presented which provides a reference for the development of hydrogen production technology and hydrogen energy utilization of the renewable energy complementary system.
Construction of Natural Gas Energy-measuring System in China: A Discussion
Feb 2022
Publication
During the 13th Five-Year Plan China's natural gas industry developed rapidly and a diversified supply and marketing pattern was formed including domestic conventional gas unconventional gas (shale gas tight sandstone gas coalbed methane etc.) coal-based synthetic natural gas imported LNG and imported pipeline gas. The gross calorific value of gas sources ranged from 34 MJ/m3 to 43 MJ/m3 and the maximum difference of calorific value between different gas sources exceeded 20%. On May 24th 2019 the National Development and Reform Commission and other three ministries/commissions jointly issued the Supervision Regulation on the Fair Access of Oil and Gas Pipeline Network Facilities and required that a natural gas energy measuring and pricing system shall be established within 24 months from the implementation date of this Regulation. In order to speed up the construction of China's natural gas energy measuring system this paper summarizes domestic achievements in the construction of natural gas energy measuring system from the aspects of value traceability and energy measurement standard and analyzes natural gas flowrate measurement technology calorific value determination technology value traceability localization intelligentization and application technology of key energy measurement equipment natural gas pipeline network energy balancing technology based on big data analysis multi-source quality tracking and monitoring technology and energy measurement standard system the need of new energy detection and measurement technology and put forward strategy for the development of natural gas measuring in China. And the following research results are obtained. First China's natural gas energy measuring system can basically meet the requirements of implementing natural gas energy measurement but it still falls behind the international leading level in terms of calibration and application of high-level flowmeter (such as 0.5 class) high-accuracy gas reference material level of calorific value reference equipment and measurement standard system and needs to be further improved. Second it is necessary for China to speed up the research and application of the localization and intelligentization technologies of key energy measurement equipment. Third natural gas pipeline network shall be equipped with measurement check method energy balancing system based on big data analysis and multi-source quality tracking and monitoring system so that the energy transmission loss index of natural gas pipeline network can be superior to the international leading level (0.10%). Fourth to realize the large-scale application of hydrogen energy and bio-energy and the mixed transportation of hydrogen bio-methane and natural gas it is necessary to carry out research on new technology and standardization of hydrogen/bio-methane blended natural gas detection and measurement.
An Intelligent Site Selection Model for Hydrogen Refueling Stations Based on Fuzzy Comprehensive Evaluation and Artificial Neural Network—A Case Study of Shanghai
Feb 2022
Publication
With the gradual popularization of hydrogen fuel cell vehicles (HFCVs) the construction and planning of hydrogen refueling stations (HRSs) are increasingly important. Taking operational HRSs in China’s coastal and major cities as examples we consider the main factors affecting the site selection of HRSs in China from the three aspects of economy technology and society to establish a site selection evaluation system for hydrogen refueling stations and determine the weight of each index through the analytic hierarchy process (AHP). Then combined with fuzzy comprehensive evaluation (FCE) method and artificial neural network model (ANN) FCE method is used to evaluate HRS in operation in China's coastal areas and major cities and we used the resulting data obtained from the comprehensive evaluation as the training data to train the neural network. So an intelligent site selection model for HRSs based on fuzzy comprehensive evaluation and artificial neural network model (FCE-ANN) is proposed. The planned HRSs in Shanghai are evaluated and an optimal site selection of the HRS is obtained. The results show that the optimal HRSs site selected by the FCE-ANN model is consistent with the site selection obtained by the FCE method and the accuracy of the FCE-ANN model is verified. The findings of this study may provide some guidelines for policy makers in planning the hydrogen refueling stations
Synthesizing the High Surface Area g-C3N4 for Greatly Enhanced Hydrogen Production
Jul 2021
Publication
Adjusting the structure of g-C3N4 to significantly enhance its photocatalytic activity has attracted considerable attention. Herein a novel sponge-like g-C3N4 with a porous structure is prepared from the annealing of protonated melamine under N2/H2 atmosphere (PH-CN). Compared to bulk g-C3N4 via calcination of melamine under ambient atmosphere (B-CN) PH-CN displays thinner nanosheets and a higher surface area (150.1 m2/g) which is a benefit for shortening the diffusion distance of photoinduced carriers providing more active sites and finally favoring the enhancement of the photocatalytic activity. Moreover it can be clearly observed from the UV-vis spectrum that PH-CN displays better performance for harvesting light compared to B-CN. Additionally the PH-CN is prepared with a larger band gap of 2.88 eV with the Fermi level and conduction band potential increased and valence band potential decreased which could promote the water redox reaction. The application experiment results show that the hydrogen evolution rate on PH-CN was nearly 10 times higher than that of B-CN which was roughly 4104 μmol h−1 g−1. The method shown in this work provides an effective approach to adjust the structure of g-C3N4with considerable photocatalytic hydrogen evolution activity.
Hydrogen Production by Fluidized Bed Reactors: A Quantitative Perspective Using the Supervised Machine Learning Approach
Jul 2021
Publication
The current hydrogen generation technologies especially biomass gasification using fluidized bed reactors (FBRs) were rigorously reviewed. There are involute operational parameters in a fluidized bed gasifier that determine the anticipated outcomes for hydrogen production purposes. However limited reviews are present that link these parametric conditions with the corresponding performances based on experimental data collection. Using the constructed artificial neural networks (ANNs) as the supervised machine learning algorithm for data training the operational parameters from 52 literature reports were utilized to perform both the qualitative and quantitative assessments of the performance such as the hydrogen yield (HY) hydrogen content (HC) and carbon conversion efficiency (CCE). Seven types of operational parameters including the steam-to-biomass ratio (SBR) equivalent ratio (ER) temperature particle size of the feedstock residence time lower heating value (LHV) and carbon content (CC) were closely investigated. Six binary parameters have been identified to be statistically significant to the performance parameters (hydrogen yield (HY)) hydrogen content (HC) and carbon conversion efficiency (CCE) by analysis of variance (ANOVA). The optimal operational conditions derived from the machine leaning were recommended according to the needs of the outcomes. This review may provide helpful insights for researchers to comprehensively consider the operational conditions in order to achieve high hydrogen production using fluidized bed reactors during biomass gasification.
Graphitic Carbon Nitride Heterojunction Photocatalysts for Solar Hydrogen Production
Sep 2021
Publication
Photocatalytic hydrogen production is considered as an ideal approach to solve global energy crisis and environmental pollution. Graphitic carbon nitride (g-C3N4) has received extensive consideration due to its facile synthesis stable physicochemical properties and easy functionalization. However the pristine g-C3N4 usually shows unsatisfactory photocatalytic activity due to the limited separation efficiency of photogenerated charge carriers. Generally introducing semiconductors or co-catalysts to construct g–C3N4–based heterojunction photocatalysts is recognized as an effective method to solve this bottleneck. In this review the advantages and characteristics of various types of g–C3N4–based heterojunction are analyzed. Subsequently the recent progress of highly efficient g–C3N4–based heterojunction photocatalysts in the field of photocatalytic water splitting is emphatically introduced. Finally a vision of future perspectives and challenges of g–C3N4–based heterojunction photocatalysts in hydrogen production are presented. Predictably this timely review will provide valuable reference for the design of efficient heterojunctions towards photocatalytic water splitting and other photoredox reactions.
Hydrogen Fuel and Electricity Generation from a New Hybrid Energy System Based on Wind and Solar Energies and Alkaline Fuel Cell
Apr 2021
Publication
Excessive consumption of fossil fuels has led to depletion of reserves and environmental crises. Therefore turning to clean energy sources is essential. However these energy sources are intermittent in nature and have problems meeting long-term energy demand. The option suggested by the researchers is to use hybrid energy systems. The aim of this paper is provide the conceptual configuration of a novel energy cycle based on clean energy resources. The novel energy cycle is composed of a wind turbine solar photovoltaic field (PV) an alkaline fuel cell (AFC) a Stirling engine and an electrolyzer. Solar PV and wind turbine convert solar light energy and wind kinetic energy into electricity respectively. Then the generated electricity is fed to water electrolyzer. The electrolyzer decomposes water into oxygen and hydrogen gases by receiving electrical power. So the fuel cell inlets are provided. Next the AFC converts the chemical energy contained in hydrogen into electricity during electrochemical reactions with by-product (heat). The purpose of the introduced cycle is to generate electricity and hydrogen fuel. The relationships defined for the components of the proposed cycle are novel and is examined for the first time. Results showed that the output of the introduced cycle is 10.5 kW of electricity and its electrical efficiency is 56.9%. In addition the electrolyzer uses 9.9 kW of electricity to produce 221.3 grams per hour of hydrogen fuel. The share of the Stirling engine in the output power of the cycle is 9.85% (1033.7 W) which is obtained from the dissipated heat of the fuel cell. In addition wind turbine is capable of generating an average of 4.1 kW of electricity. However 238.6 kW of cycle exergy is destroyed. Two different scenarios are presented for solar field design.
Improvement of Temperature and Humidity Control of Proton Exchange Membrane Fuel Cells
Sep 2021
Publication
Temperature and humidity are two important interconnected factors in the performance of PEMFCs (Proton Exchange Membrane Fuel Cells). The fuel and oxidant humidity and stack temperature in a fuel cell were analyzed in this study. There are many factors that affect the temperature and humidity of the stack. We adopt the fuzzy control method of multi-input and multi-output to control the temperature and humidity of the stack. A model including a driver vehicle transmission motor air feeding electrical network stack hydrogen supply and cooling system was established to study the fuel cell performance. A fuzzy controller is proven to be better in improving the output power of fuel cells. The three control objectives are the fan speed control for regulating temperature the solenoid valve on/off control of the bubble humidifier for humidity variation and the speed of the pump for regulating temperature difference. In addition the results from the PID controller stack model and the fuzzy controller stack model are compared in this research. The fuel cell bench test has been built to validate the effectiveness of the proposed fuzzy control. The maximum temperature of the stack can be reduced by 5 ◦C with the fuzzy control in this paper so the fuel cell output voltage (power) increases by an average of approximately 5.8%.
Reversible Hydrogenation of AB2-type Zr–Mg–Ni–V Based Hydrogen Storage Alloys
Feb 2021
Publication
The development of hydrogen energy is hindered by the lack of high-efficiency hydrogen storage materials. To explore new high-capacity hydrogen storage alloys reversible hydrogen storage in AB2-type alloy is realized by using A or B-side elemental substitution. The substitution of small atomic-radius element Zr and Mg on A-side of YNi2 and partial substitution of large atomic-radius element V on B-side of YNi2 alloy was investigated in this study. The obtained ZrMgNi4 ZrMgNi3V and ZrMgNi2V2 alloys remained single Laves phase structure at as-annealed hydrogenated and dehydrogenated states indicating that the hydrogen-induced amorphization and disproportionation was eliminated. From ZrMgNi4 to ZrMgNi2V2 with the increase of the degree of vanadium substitution the reversible hydrogen storage capacity increased from 0.6 wt% (0.35H/M) to 1.8 wt% (1.0H/M) meanwhile the lattice stability gradually increased. The ZrMgNi2V2 alloy could absorb 1.8 wt% hydrogen in about 2 h at 300 K under 4 MPa H2 pressure and reversibly desorb the absorbed hydrogen in approximately 30 min at 473 K without complicated activation process. The prominent properties of ZrMgNi2V22 elucidate its high potential for hydrogen storage application.
Dynamic Model to Expand Energy Storage in Form of Battery and Hydrogen Production Using Solar Powered Water Electrolysis for Off Grid Communities
Feb 2022
Publication
In this model we used a 50 WP photovoltaic panel to produce electrical energy. This electricity production was used directly and stored in a battery. In this design we coupled batteries and hydrogen as a means of storing energy. In case of overcharging the battery it will be attached with water electrolysis to convert the excess amount of chemical energy of the battery into hydrogen energy storage. Hydrogen will be stored as a compacted gas and in chemical storage. We used PEM (proton exchange membrane) electrolysis technologies to breakdown water molecules into hydrogen and oxygen which were then stored in the designed tanks. Different supply voltages were used in our practical readings with an average gaining of 22.8 mL/min on a voltage supply of 2. While using Ansys simulation software we extrapolated hydrogen production until reaching 300 mL/min on 12 V of supply (which represents 220% higher production). By using the second phase of this model hydrogen energy was converted back into electrical energy with the help of a PEM (proton exchange membrane) fuel cell when needed. This model explores the feasibility of energy storage in the form of hydrogen and chemical energy for off-grid communities and remote areas comprising batteries water electrolysis and fuel cells. The main purpose of hydrogen storage in this system is to store and handle the extra energy of system produced through PV panel and utilize it for any desired requirements.
A Financial Model for Lithium-ion Storage in a Photovoltaic and Biogas Energy System
May 2019
Publication
Electrical energy storage (EES) such as lithium-ion (Li-ion) batteries can reduce curtailment of renewables maximizing renewable utilization by storing surplus electricity. Several techno-economic analyses have been performed on EES but few have investigated the financial performance. This paper presents a state-of-the-art financial model obtaining novel and significative financial and economics results when applied to Li-ion EES. This work is a significant step forward since traditional analysis on EES are based on oversimplified and unrealistic economic models. A discounted cash flow model for the Li-ion EES is introduced and applied to examine the financial performance of three EES operating scenarios. Real-life solar irradiance load and retail electricity price data from Kenya are used to develop a set of case studies. The EES is coupled with photovoltaics and an anaerobic digestion biogas power plant. The results show the impact of capital cost: the Li-ion project is unprofitable in Kenya with a capital cost of 1500 $/kWh but is profitable at 200 $/kWh. The study shows that the EES will generate a higher profit if it is cycled more frequently (hence a higher lifetime electricity output) although the lifetime is reduced due to degradation.
A Real-Time Load Prediction Control for Fuel Cell Hybrid Vehicle
May 2022
Publication
The development of hydrogen energy is an effective solution to the energy and environmental crisis. Hydrogen fuel cells and energy storage cells as hybrid power have broad application prospects in the field of vehicle power. Energy management strategies are key technologies for fuel cell hybrid systems. The traditional optimization strategy is generally based on optimization under the global operating conditions. The purpose of this project is to develop a power allocation optimization method based on real-time load forecasting for fuel cell/lithium battery hybrid electric vehicles which does not depend on specific working conditions or causal control methods. This paper presents an energy-management algorithm based on real-time load forecasting using GRU neural networks to predict load requirements in the short time domain and then the local optimization problem for each predictive domain is solved using a method based on Pontryagin’s minimum principle (PMP). The algorithm adopts the idea of model prediction control (MPC) to transform the global optimization problem into a series of local optimization problems. The simulation results show that the proposed strategy can achieve a good fuel-saving control effect. Compared with the rule-based strategy and equivalent hydrogen consumption strategy (ECMS) the fuel consumption is lower under two typical urban conditions. In the 1800 s driving cycle under WTCL conditions the fuel consumption under the MPC-PMP strategy is 22.4% lower than that based on the ECMS strategy and 10.3% lower than the rules-based strategy. Under CTLT conditions the fuel consumption of the MPC-PMP strategy is 13.12% lower than that of the rule-based strategy and 3.01% lower than the ECMS strategy.
Experimental Study and Thermodynamic Analysis of Hydrogen Production through a Two-Step Chemical Regenerative Coal Gasification
Jul 2019
Publication
Hydrogen as a strategy clean fuel is receiving more and more attention recently in China in addition to the policy emphasis on H2. In this work we conceive of a hydrogen production process based on a chemical regenerative coal gasification. Instead of using a lumped coal gasification as is traditional in the H2 production process herein we used a two-step gasification process that included coking and char-steam gasification. The sensible heat of syngas accounted for 15–20% of the total energy of coal and was recovered and converted into chemical energy of syngas through thermochemical reactions. Moreover the air separation unit was eliminated due to the adoption of steam as oxidant. As a result the efficiency of coal to H2 was enhanced from 58.9% in traditional plant to 71.6% in the novel process. Further the energy consumption decreased from 183.8 MJ/kg in the traditional plant to 151.2 MJ/kg in the novel process. The components of syngas H2 and efficiency of gasification are herein investigated through experiments in fixed bed reactors. Thermodynamic performance is presented for both traditional and novel coal to hydrogen plants.
Improved VSG Control Strategy Based on the Combined Power Generation System with Hydrogen Fuel Cells and Super Capacitors
Oct 2021
Publication
Due to their environmental protection and high power generation efficiency the control technology of hydrogen fuel cells (HFCs) connected to the microgrid has become a research hotspot. However when they encounter peak demand or transient events the lack of power cannot be compensated immediately by HFCs which results in sudden changes of the voltage and frequency. The improved virtual synchronous generator (VSG) control strategy based on HFCs and supercapacitors (SCs) combined power generation system is proposed to overcome this shortcoming in this paper. The small-signal model for designing the combined system parameters is provided which are in accordance with the system loop gain phase angle margin and adjustment time requirements. Besides the voltage and current double closed-loop based on sequence control is introduced in the VSG controller. The second-order generalized integrator (SOGI) is utilized to separate the positive and negative sequence components of the output voltage. At the same time a positive and negative sequence voltage outer loop is designed to suppress the negative sequence voltage under unbalanced conditions thereby reducing the unbalance of the output voltage. Finally simulation results in MATLAB/Simulink environment verify that the proposed method has better dynamic characteristics and higher steady-state accuracy compared with the traditional VSG control
Techno-Economic Analysis of Hydrogen and Electricity Production by Biomass Calcium Looping Gasification
Feb 2022
Publication
Combined cycle biomass calcium looping gasification is proposed for a hydrogen and electricity production (CLGCC–H) system. The process simulation Aspen Plus is used to conduct techno-economic analysis of the CLGCC–H system. The appropriate detailed models are set up for the proposed system. Furthermore a dual fluidized bed is optimized for hydrogen production at 700 °C and 12 bar. For comparison calcium looping gasification with the combined cycle for electricity (CLGCC) is selected with the same parameters. The system exergy and energy efficiency of CLGCC–H reached as high as 60.79% and 64.75% while the CLGCC system had 51.22% and 54.19%. The IRR and payback period of the CLGCC–H system based on economic data are calculated as 17.43% and 7.35 years respectively. However the CLGCC system has an IRR of 11.45% and a payback period of 9.99 years respectively. The results show that the calcium looping gasification-based hydrogen and electricity coproduction system has a promising market prospect in the near future.
Comparative Study of Battery Storage and Hydrogen Storage to Increase Photovoltaic Self-sufficiency in a Residential Building of Sweden
Dec 2016
Publication
Photovoltaic (PV) is promising to supply power for residential buildings. Battery is the most widely employed storage method to mitigate the intermittence of PV and to overcome the mismatch between production and load. Hydrogen storage is another promising method that it is suitable for long-term storage. This study focuses on the comparison of self-sufficiency ratio and cost performance between battery storage and hydrogen storage for a residential building in Sweden. The results show that battery storage is superior to the hydrogen storage in the studied case. Sensitivity study of the component cost within the hydrogen storage system is also carried out. Electrolyzer cost is the most sensitive factor for improving system performance. A hybrid battery and hydrogen storage system which can harness the advantages of both battery and hydrogen storages is proposed in the last place.
Efficient Renewable-to-Hydrogen Conversion via Decoupled Electrochemical Water Splitting
Aug 2020
Publication
Water electrolysis powered by renewables provides a green approach to hydrogen production to support the ‘‘hydrogen economy.’’ However the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) are tightly coupled in both time and space in traditional water electrolysis which brings inherent operational challenges such as the mixture of H2/O2 and the limited HER rate caused by the sluggish kinetics of OER. Against this background decoupling H2 and O2 production in water electrolysis by using the auxiliary redox mediator was first proposed in 2013 in which O2 and H2 are produced at different times rates and/or locations. The decoupling strategy offers not only a new way to facilitate renewables to H2 but it can also be applied in other chemical or electrochemical processes. This review describes recent efforts to develop high-performance redox mediators optimized strategies in decoupled water electrolysis the design of electrolyzer configuration the challenges faced and the prospective directions.
Research on Multi-Period Hydrogen Refueling Station Location Model in Jiading District
Sep 2021
Publication
The construction of hydrogen refueling stations is an important part of the promotion of fuel cell vehicles. In this paper a multi-period hydrogen refueling station location model is presented that can be applied to the planning and construction of hydrogen infrastructures. Based on the hydrogen demand of fuel cell passenger cars and commercial vehicles the model calculates the hydrogen demand of each zone by a weighting method according to population economic level and education level. Then the hydrogen demand of each period is calculated using the generalized Bass diffusion model. Finally the set covering model is improved to determine the locations of the stations. The new model is applied to the scientific planning of hydrogen refueling stations in Jiading District Shanghai; the construction location and sequence of hydrogen refueling stations in each period are given and the growth trend of hydrogen demand and the promoting effect of hydrogen refueling stations are analyzed. The model adopted in this model is then compared with the other two kinds of node-based hydrogen refueling station location models that have previously been proposed.
Recent Progress on the Key Materials and Components for Proton Exchange Membrane Fuel Cells in Vehicle Applications
Jul 2016
Publication
Fuel cells are the most clean and efficient power source for vehicles. In particular proton exchange membrane fuel cells (PEMFCs) are the most promising candidate for automobile applications due to their rapid start-up and low-temperature operation. Through extensive global research efforts in the latest decade the performance of PEMFCs including energy efficiency volumetric and mass power density and low temperature startup ability have achieved significant breakthroughs. In 2014 fuel cell powered vehicles were introduced into the market by several prominent vehicle companies. However the low durability and high cost of PEMFC systems are still the main obstacles for large-scale industrialization of this technology. The key materials and components used in PEMFCs greatly affect their durability and cost. In this review the technical progress of key materials and components for PEMFCs has been summarized and critically discussed including topics such as the membrane catalyst layer gas diffusion layer and bipolar plate. The development of high-durability processing technologies is also introduced. Finally this review is concluded with personal perspectives on the future research directions of this area.
Review on the Hydrogen Dispersion and the Burning Behavior of Fuel Cell Electric Vehicles
Oct 2022
Publication
The development of a hydrogen energy-based society is becoming the solution for more and more countries. Fuel cell electric vehicles are the best carriers for developing a hydrogen energy-based society. The current research on hydrogen leakage and the diffusion of fuel cell electric vehicles has been sufficient. However the study of hydrogen safety has not reduced the safety concerns for society and government management departments concerning the large-scale promotion of fuel cell electric vehicles. Hydrogen safety is both a technical and psychological issue. This paper aims to provide a comprehensive overview of fuel cell electric vehicles’ hydrogen dispersion and the burning behavior and introduce the relevant work of international standardization and global technical regulations. The CFD simulations in tunnels underground car parks and multistory car parks show that the hydrogen escape performance is excellent. At the same time the research verifies that the flow the direction of leakage and the vehicle itself are the most critical factors affecting hydrogen distribution. The impact of the leakage location and leakage pore size is much smaller. The relevant studies also show that the risk is still controllable even if the hydrogen leakage rate is increased ten times the limit of GTR 13 to 1000 NL/min and then ignited. Multi-vehicle combustion tests of fuel cell electric vehicles showed that adjacent vehicles were not ignited by the hydrogen. This shows that as long as the appropriate measures are taken the risk of a hydrogen leak or the combustion of fuel cell electric vehicles is controllable. The introduction of relevant standards and regulations also indirectly proves this point. This paper will provide product design guidelines for R&D personnel offer the latest knowledge and guidance to the regulatory agencies and increase the public’s acceptance of fuel cell electric vehicles.
Hydrogen-rich Fuel Combustion Characteristics of a Counter Dual-swirl Combustor at Fixed Power
Nov 2021
Publication
In order to reduce the emission of carbon dioxide gas turbine power station will expect to use more clean fuels in the future especially those like hydrogen. Hydrogen-rich fuel(syngas) combustion characteristics of the novel counter dual-swirl gas turbine combustor under fixed calorific value input were studied by experiment and numerical simulation. PIV and temperature rake were used respectively to obtain the velocity and temperature distribution in the combustion chamber. The turbulence model of Reynolds stress and the kinetic model of detailed chemical syngas combustion were used simultaneously in the computational simulations. Based on the obtained results it was found that there is a reasonable agreement between the numerical results and the experimental data. The analysis shows that the flow field and temperature field of the combustor were almost unaffected by the change of hydrogen content and shows a nearly identical distribution structure under all conditions with hydrogen content below 90%; but when the H2 content reaches 90% the above characteristic plots were significantly changed. As the H2 content in the fuel increases on the center line of the combustor the jet velocity of the fuel decreased the temperature of the gas flow increased the recovery coefficient of total pressure decreased and the temperature distribution at the combustor outlet became more uniform. In addition it is also found that the syngas turbine with the same output power consumed less fuel than the gas turbine with hydrocarbon fuel. This paper provides reference for the study of hydrogen-rich syngas turbine and the application of hydrogen-rich fuel in combustor of energy system.
Low-Carbon Transition Pathway Planning of Regional Power Systems with Electricity-Hydrogen Synergy
Nov 2022
Publication
Hydrogen energy leads us in an important direction in the development of clean energy and the comprehensive utilization of hydrogen energy is crucial for the low-carbon transformation of the power sector. In this paper the demand for hydrogen energy in various fields is predicted based on the support vector regression algorithm which can be converted into an equivalent electrical load when it is all produced from water electrolysis. Then the investment costs of power generators and hydrogen energy equipment are forecast considering uncertainty. Furthermore a planning model is established with the forecast data initial installed capacity and targets for carbon emission reduction as inputs and the installed capacity as well as share of various power supply and annual carbon emissions as outputs. Taking Gansu Province of China as an example the changes of power supply structure and carbon emissions under different scenarios are analysed. It can be found that hydrogen production through water electrolysis powered by renewable energy can reduce carbon emissions but will increase the demand for renewable energy generators. Appropriate planning of hydrogen storage can reduce the overall investment cost and promote a low carbon transition of the power system
A Review of Hydrogen Purification Technologies for Fuel Cell Vehicles
Mar 2021
Publication
Nowadays we face a series of global challenges including the growing depletion of fossil energy environmental pollution and global warming. The replacement of coal petroleum and natural gas by secondary energy resources is vital for sustainable development. Hydrogen (H2 ) energy is considered the ultimate energy in the 21st century because of its diverse sources cleanliness low carbon emission flexibility and high efficiency. H2 fuel cell vehicles are commonly the end-point application of H2 energy. Owing to their zero carbon emission they are gradually replacing traditional vehicles powered by fossil fuel. As the H2 fuel cell vehicle industry rapidly develops H2 fuel supply especially H2 quality attracts increasing attention. Compared with H2 for industrial use the H2 purity requirements for fuel cells are not high. Still the impurity content is strictly controlled since even a low amount of some impurities may irreversibly damage fuel cells’ performance and running life. This paper reviews different versions of current standards concerning H2 for fuel cell vehicles in China and abroad. Furthermore we analyze the causes and developing trends for the changes in these standards in detail. On the other hand according to characteristics of H2 for fuel cell vehicles standard H2 purification technologies such as pressure swing adsorption (PSA) membrane separation and metal hydride separation were analyzed and the latest research progress was reviewed.
Research on the Hydrogen Consumption of Fuel Cell Electric Vehicles Based on the Flowmeter and Short-cut Method
Sep 2022
Publication
Energy consumption is essential for evaluating the competitiveness of fuel cell electric vehicles. A critical step in energy consumption measurement is measuring hydrogen consumption including the mass method the P/T method and the flowmeter method. The flowmeter method has always been a research focus because of its simple operation low cost and solid real-time performance. Current research has shown the accuracy of the flowmeter method under specific conditions. However many factors in the real scenario will influence the test result such as unintended vibration environment temperature and onboard hydrogen capacity calibration. On the other hand the short-cut method is also researched to replace the run-out method to improve test efficiency. To evaluate whether the flowmeter method basing on the short-cut method can genuinely reflect the hydrogen consumption of an actual vehicle we research and test for New European Driving Cycle (NEDC) and China Light-Duty Vehicle Test Cycle (CLTC) using the same vehicle. The results show that the short-cut method can save at least 50% of the test time compared with the run-out method. The error of the short-cut method based on the flowmeter for the NEDC working condition is less than 0.1% and for the CLTC working conditions is 8.12%. After adding a throttle valve and a 4L buffer tank the error is reduced to 4.76% from 8.12%. The test results show that hydrogen consumption measurement based on the flowmeter and short-cut method should adopt corresponding solutions according to the scenarios.
On the Way to Utilizing Green Hydrogen as an Energy Carrier—A Case of Northern Sweden
Mar 2024
Publication
Low or even zero carbon dioxide emissions will be an essential requirement for energy supplies in the near future. Besides transport and electricity generation industry is another large carbon emitter. Hydrogen produced by renewable energy provides a flexible way of utilizing that energy. Hydrogen as an energy carrier could be stored in a large capacity compared to electricity. In Sweden hydrogen will be used to replace coal for steel production. This paper discusses how the need for electricity to produce hydrogen will affect the electricity supply and power flow in the Swedish power grid and whether it will result in increased emissions in other regions. Data of the Swedish system will be used to study the feasibility of implementing the hydrogen system from the power system viewpoint and discuss the electricity price and emission issues caused by the hydrogen production in different scenarios. This paper concludes that the Swedish power grid is feasible for accommodating the additional electricity capacity requirement of producing green hydrogen for the steel industry. The obtained results could be references for decision makers investors and power system operators.
Residual Tensile Properties of Carbon Fiber Reinforced Epoxy Resin Composites at Elevated Temperatures
Sep 2021
Publication
Carbon fiber reinforced epoxy resin composites have attracted great attention in high pressure hydrogen storage for its light weight and excellent mechanical properties. The degradation of residual mechanical properties at elevated temperature from 20 °C to 450 °C were studied experimentally. The effects of temperature on the tensile strength and failure mode of the composite specimens with stacking sequences of 0° 90° and ±45° (labeled as CF0 CF90 and CF 45) were systematically analyzed followed by the fracture surfaces examination. Results show that the tensile strength residual ratios of the three kinds of specimens decrease significantly with heating temperature increasing. In particular the decomposing temperature of the resin matrix exerts the largest effects on the degradation of tensile strength of CF0 specimen within 450 °C. While the loss of tensile strength of CF90 and CF45 specimens is dependent on the thermal softening of epoxy resin which has closely related to the glass transition temperature. Furthermore the debonding and fiber softening appeared in the CF0 specimens when the temperature reached 450 °C. For CF90 specimens the degradation of bonding strength of epoxy could be found at 150 °C and regarding CF45 specimens delamination cracking between plies occurred extensively when the temperature above 125 °C.
New Liquid Chemical Hydrogen Storage Technology
Aug 2022
Publication
The liquid chemical hydrogen storage technology has great potentials for high-density hydrogen storage and transportation at ambient temperature and pressure. However its commercial applications highly rely on the high-performance heterogeneous dehydrogenation catalysts owing to the dehydrogenation difficulty of chemical hydrogen storage materials. In recent years the chemists and materials scientists found that the supported metal nanoparticles (MNPs) can exhibit high catalytic activity selectivity and stability for the dehydrogenation of chemical hydrogen storage materials which will clear the way for the commercial application of liquid chemical hydrogen storage technology. This review has summarized the recent important research progress in the MNP-catalyzed liquid chemical hydrogen storage technology including formic acid dehydrogenation hydrazine hydrate dehydrogenation and ammonia borane dehydrogenation discussed the urgent challenges in the key field and pointed out the future research trends.
Multi-Time Scale Optimal Scheduling Model of Wind and Hydrogen Integrated Energy System Based on Carbon Trading
Jan 2023
Publication
In the context of carbon trading energy conservation and emissions reduction are the development directions of integrated energy systems. In order to meet the development requirements of energy conservation and emissions reduction in the power grid considering the different responses of the system in different time periods a wind-hydrogen integrated multi-time scale energy scheduling model was established to optimize the energy-consumption scheduling problem of the system. As the scheduling model is a multiobjective nonlinear problem the artificial fish swarm algorithm–shuffled frog leaping algorithm (AFS-SFLA) was used to solve the scheduling model to achieve system optimization. In the experimental test process the Griewank benchmark function and the Rosenbrock function were selected to test the performance of the proposed AFS-SFL algorithm. In the Griewank environment compared to the SFLA algorithm the AFS-SFL algorithm was able to find a feasible solution at an early stage and tended to converge after 110 iterations. The optimal solution was −4.83. In the test of total electric power deviation results at different time scales the maximum deviation of early dispatching was 14.58 MW and the minimum deviation was 0.56 MW. The overall deviation of real-time scheduling was the minimum and the minimum deviation was 0 and the maximum deviation was 1.89 WM. The integrated energy system adopted real-time scale dispatching with good system stability and low-energy consumption. Power system dispatching optimization belongs to the objective optimization problem. The artificial fish swarm algorithm and frog algorithm were innovatively combined to solve the dispatching model which improved the accuracy of power grid dispatching. The research content provides an effective reference for the efficient use of clean and renewable energy.
No more items...