China, People’s Republic
Utilization of Food Waste for Hydrogen-based Power Generation: Evidence from Four Cities in Ghana
Mar 2023
Publication
Hydrogen gas will be an essential energy carrier for global energy systems in the future. However non-renewable sources account for 96% of the production. Food wastes have high hydrogen generation potential which can positively influence global production and reduce greenhouse gas (GHG) emissions. The study evaluates the potential of food waste hydrogen-based power generation through biogas steam reforming and its environmental and economic impact in major Ghanaian cities. The results highlight that the annual hydrogen generation in Kumasi had the highest share of 40.73 kt followed by Accra with 31.62 kt while the least potential was in Tamale (3.41 kt). About 2073.38 kt was generated in all the major cities. Hydrogen output is predicted to increase from 54.61 kt in 2007 to 119.80 kt by 2030. Kumasi produced 977.54 kt of hydrogen throughout the 24-year period followed by Accra with 759.76 kt Secondi-Takoradi with 255.23 kt and Tamale with 81.85 kt. According to the current study Kumasi had the largest percentage contribution of hydrogen (47.15%) followed by Accra (36.60%) Secondi-Takoradi (12.31%) and Tamale (3.95%). The annual power generation potential in Kumasi and Accra was 73.24 GWh and 56.85 GWh. Kumasi and Accra could offset 8.19% and 6.36% of Ghana's electricity consumption. The total electricity potential of 3728.35 GWh could displace 17.37% of Ghana's power consumption. This electricity generated had a fossil diesel displacement capacity of 1125.90 ML and could reduce GHG emissions by 3060.20 kt CO2 eq. Based on the findings the total GHG savings could offset 8.13% of Ghana's carbon emissions. The cost of power generation from hydrogen is $ 0.074/kWh with an annual positive net present value of $ 658.80 million and a benefit-to-cost ratio of 3.43. The study lays the foundation and opens policy windows for sustainable hydrogen power generation in Ghana and other African countries.
A Bibliometric and Visualized Overview of Hydrogen Embrittlement from 1997 to 2022
Dec 2022
Publication
The mechanical properties of materials deteriorate when hydrogen embrittlement (HE) occurs seriously threatening the reliability and durability of the hydrogen system. Therefore it is important to summarize the status and development trends of research on HE. This study reviewed 6676 publications concerned with HE from 1997 to 2022 based on the Web of Science Core Collection. VOSviewer was used to conduct the bibliometric analysis and produce visualizations of the publications. The results showed that the number of publications on HE increased after 2007 especially between 2017 and 2019. Japan was the country with the highest numbers of productive authors and citations of publications and the total number of citations of Japanese publications was 24589. Kyushu University was the most influential university and the total number of citations of Kyushu University publications was 7999. Akiyama was the most prolific and influential author publishing 88 publications with a total of 2565 citations. The USA South Korea and some European countries are also leading in HE research; these countries have published more than 200 publications. It was also found that the HE publications generally covered five topics: “Hydrogen embrittlement in different materials” “Effect of hydrogen on mechanical properties of materials” “Effect of alloying elements or microstructure on hydrogen embrittlement” “Hydrogen transport” and “Characteristics and mechanisms of hydrogen related failures”. Research hotspots included “Fracture failure behavior and analysis” “Microstructure” “Hydrogen diffusion and transport” “Mechanical properties” “Hydrogen resistance” and so on. These covered the basic methods and purposes of HE research. Finally the distribution of the main subject categories of the publications was determined and these categories covered various topics and disciplines. This study establishes valuable reference information for the application and development of HE research and provides a convenient resource to help researchers and scholars understand the development trends and research directions in this field.
Optimization of High-Temperature Electrolysis System for Hydrogen Production Considering High-Temperature Degradation
Mar 2023
Publication
Solid oxide electrolysis cells (SOECs) have great application prospects because of their excellent performance but the long-term applications of the stacks are restricted by the structural degradation under the high-temperature conditions. Therefore an SOEC degradation model is developed and embedded in a process model of the high-temperature steam electrolysis (HTSE) system to investigate the influence of the stack degradation at the system level. The sensitivity analysis and optimization were carried out to study the influence factors of the stack degradation and system hydrogen production efficiency and search for the optimal operating conditions to improve the hydrogen production efficiency and mitigate the stack degradation. The analysis results show that the high temperature and large current density can accelerate the stack degradation but improve the hydrogen production efficiency while the high temperature gradually becomes unfavorable in the late stage. The low air-to-fuel feed ratio is beneficial to both the degradation rate and hydrogen production efficiency. The results show that the optimization method can improve the hydrogen production efficiency and inhibit the stack degradation effectively. Moreover part of the hydrogen production efficiency has to be sacrificed in order to obtain a lower stack degradation rate.
Hydrogen Fuel Cell Power System—Development Perspectives for Hybrid Topologies
Mar 2023
Publication
In recent years the problem of environmental pollution especially the emission of greenhouse gases has attracted people’s attention to energy infrastructure. At present the fuel consumed by transportation mainly comes from fossil energy and the strong traffic demand has a great impact on the environment and climate. Fuel cell electric vehicles (FCEVs) use hydrogen energy as a clean alternative to fossil fuels taking into account the dual needs of transportation and environmental protection. However due to the low power density and high manufacturing cost of hydrogen fuel cells their combination with other power supplies is necessary to form a hybrid power system that maximizes the utilization of hydrogen energy and prolongs the service life of hydrogen fuel cells. Therefore the hybrid power system control mode has become a key technology and a current research hotspot. This paper first briefly introduces hydrogen fuel cells then summarizes the existing hybrid power circuit topology categorizes the existing technical solutions and finally looks forward to the future for different scenarios of hydrogen fuel cell hybrid power systems. This paper provides reference and guidance for the future development of renewable hydrogen energy and hydrogen fuel cell hybrid electric vehicles.
Modeling of Hydrogen Production System for Photovoltaic Power Generation and Capacity Optimization of Energy Storage System
Sep 2022
Publication
Hydrogen production using solar energy is an important way to obtain hydrogen energy. However the inherent intermittent and random characteristics of solar energy reduce the efficiency of hydrogen production. Therefore it is necessary to add an energy storage system to the photovoltaic power hydrogen production system. This paper establishes a model of a photovoltaic power generation hydrogen system and optimizes the capacity configuration. Firstly the mathematical model is modeled and analyzed and the system is modeled using Matlab/Simulink; secondly the principle of optimal configuration of energy storage capacity is analyzed to determine the optimization strategy we propose the storage capacity configuration algorithm based on the low-pass filtering principle and optimal time constant selection; finally a case study is conducted whose photovoltaic installed capacity of 30 MW verifying the effectiveness of the proposed algorithm analyzing the relationship between energy storage capacity and smoothing effect. The results show that as the cut-off frequency decreases the energy storage capacity increases and the smoothing effect is more obvious. The proposed algorithm can effectively reduce the 1 h maximum power variation of PV power generation. In which the maximum power variation of PV generation 1 h before smoothing is 4.31 MW. We set four different sets of time constants the maximum power variation of PV generation 1 h after smoothing is reduced to 0.751 0.389 0.078 and 0.04 MW respectively.
Progress and Challenges in Multi-stack Fuel Cell System for High Power Applications: Architecture and Energy Management
Jan 2023
Publication
With the development of fuel cells multi-stack fuel cell system (MFCS) for high power application has shown tremendous development potential owing to their obvious advantages including high efficiency durability reliability and pollution-free. Accordingly the state-of-the-art of MFCS is summarized and analyzed to advance its research. Firstly the MFCS applications are presented in high-power scenarios especially in transportation applications. Then to further investigate the MFCS MFCS including hydrogen and air subsystem thermal and water subsystem multi-stack architecture and prognostics and health monitoring are reviewed. It is noted that prognostics and health monitoring are investigated rarely in MFCS compared with previous research. In addition the efficiency and durability of MFCS are not only related to the application field and design principle but also the energy management strategy (EMS). The reason is that the EMS is crucial for lifespan cost and efficiency in the multi-stack fuel cell system. Finally the challenge and development potential of MFCS is proposed to provide insights and guidelines for future research.
Analysis of Crash Characteristics of Hydrogen Storage Structure of Hydrogen Powered UAV
Nov 2022
Publication
In the context of green aviation as an internationally recognized solution hydrogen energy is lauded as the “ultimate energy source of the 21st century” with zero emissions at the source. Developed economies with aviation industries such as Europe and the United States have announced hydrogen energy aviation development plans successively. The study and development of high-energy hydrogen fuel cells and hydrogen energy power systems have become some of the future aviation research focal points. As a crucial component of hydrogen energy storage and delivery the design and development of a safe lightweight and efficient hydrogen storage structure have drawn increasing consideration. Using a hydrogen-powered Unmanned Aerial Vehicle (UAV) as the subject of this article the crash characteristics of the UAV’s hydrogen storage structure are investigated in detail. The main research findings are summarized as follows: (1) A series of crash characteristics analyses of the hydrogen storage structure of a hydrogen-powered UAV were conducted and the Finite Element Analysis (FEA) response of the structure under different impact angles internal pressures and impact speeds was obtained and analyzed. (2) When the deformation of the hydrogen storage structure exceeds 50 mm and the strain exceeds 0.8 an initial crack will appear at this part of the hydrogen storage structure. The emergency release valve should respond immediately to release the gas inside the tank to avoid further damage. (3) Impact angle and initial internal pressure are the main factors affecting the formation of initial cracks.
Research Progress, Trends, and Current State of Development on PEMFC-New Insights from a Bibliometric Analysis and Characteristics of Two Decades of Research Output
Nov 2022
Publication
The consumption of hydrogen could increase by sixfold in 2050 compared to 2020 levels reaching about 530 Mt. Against this backdrop the proton exchange membrane fuel cell (PEMFC) has been a major research area in the field of energy engineering. Several reviews have been provided in the existing corpus of literature on PEMFC but questions related to their evolutionary nuances and research hotspots remain largely unanswered. To fill this gap the current review uses bibliometric analysis to analyze PEMFC articles indexed in the Scopus database that were published between 2000–2021. It has been revealed that the research field is growing at an annual average growth rate of 19.35% with publications from 2016 to 2012 alone making up 46% of the total articles available since 2000. As the two most energy-consuming economies in the world the contributions made towards the progress of PEMFC research have largely been from China and the US. From the research trend found in this investigation it is clear that the focus of the researchers in the field has largely been to improve the performance and efficiency of PEMFC and its components which is evident from dominating keywords or phrases such as ‘oxygen reduction reaction’ ‘electrocatalysis’ ‘proton exchange membrane’ ‘gas diffusion layer’ ‘water management’ ‘polybenzimidazole’ ‘durability’ and ‘bipolar plate’. We anticipate that the provision of the research themes that have emerged in the PEMFC field in the last two decades from the scientific mapping technique will guide existing and prospective researchers in the field going forward.
Recent Advances of Metal Borohydrides for Hydrogen Storage
Aug 2022
Publication
Hydrogen energy is an excellent carrier for connecting various renewable energy sources and has many advantages. However hydrogen is flammable and explosive and its density is low and easy to escape which brings inconvenience to the storage and transportation of hydrogen. Therefore hydrogen storage technology has become one of the key steps in the application of hydrogen energy. Solid-state hydrogen storage method has a very high volumetric hydrogen density compared to the traditional compressed hydrogen method. The main issue of solid-state hydrogen storage method is the development of advanced hydrogen storage materials. Metal borohydrides have very high hydrogen density and have received much attention over the past two decades. However high hydrogen sorption temperature slow kinetics and poor reversibility still severely restrict its practical applications. This paper mainly discusses the research progress and problems to be solved of metal borohydride hydrogen storage materials for solid-state hydrogen storage.
Influence of Hydrogen Production in the CO2 Emissions Reduction of Hydrogen Mettalurgy Transformation in Iron and Steel Industry
Jan 2023
Publication
The transformation of hydrogen metallurgy is a principal means of promoting the iron and steel industry (ISI) in reaching peak and deep emissions reduction. However the environmental impact of different hydrogen production paths on hydrogen metallurgy has not been systemically discussed. To address this gap based on Long-range Energy Alternatives Planning System (LEAP) this paper constructs a bottom-up energy system model that includes hydrogen production iron and steel (IS) production and power generation. By setting three hydrogen production structure development paths namely the baseline scenario business-as-usual (BAU) scenario and clean power (CP) scenario the carbon dioxide (CO2) emissions impact of different hydrogen production paths on hydrogen metallurgy is carefully evaluated from the perspective of the whole industry and each IS production process. The results show that under the baseline scenario the hydrogen metallurgy transition will help the CO2 emissions of ISI peak at 2.19 billion tons in 2024 compared to 2.08 billion tons in 2020 and then gradually decrease to 0.78 billion tons in 2050. However different hydrogen production paths will contribute to the reduction or inhibit the reduction. In 2050 the development of electrolysis hydrogen production with renewable electricity will reduce CO2 emissions by an additional 48.76 million tons (under the CP scenario) while the hydrogen production mainly based on coal gasification and methane reforming will increase the additional 50.04 million tons CO2 emissions (under the BAU scenario). Moreover under the hydrogen production structure relying mainly on fossil and industrial by-products the technological transformation of blast furnace ironmaking with hydrogen injections will leak carbon emissions to the upstream energy processing and conversion process. Furthermore except for the 100% scrap based electric arc furnace (EAF) process the IS production process on hydrogen-rich shaft furnace direct reduced iron (hydrogen-rich DRI) have lower CO2 emissions than other processes. Therefore developing hydrogen-rich DRI will help the EAF steelmaking development to efficiently reduce CO2 emissions under scrap constraints.
Techno-economic Study of a 100-MW-class Multi-energy Vehicle Charging/Refueling Station: Using 100% Renewable, Liquid Hydrogen, and Superconductor Technologies
Dec 2022
Publication
Renewable energies such as the wind energy and solar energy generate low-carbon electricity which can directly charge battery electric vehicles (BEVs). Meanwhile the surplus electricity can be used to produce the “green hydrogen” which provides zero-emission hydrogen fuels to those fuel cell electric vehicles (FCEVs). In order to charge/refuel multi-energy vehicles we propose a novel scheme of hybrid hydrogen/electricity supply using cryogenic and superconducting technologies. In this scheme the green hydrogen is further liquefied into the high-density and low-pressure liquid hydrogen (LH2) for bulk energy storage and transmission. Taking the advantage of the cryogenic environment of LH2 (20 K) it can also be used as the cryogen to cool down super conducting cables to realize the virtually zero-loss power transmission from 100 % renewable sources to vehicle charging stations. This hybrid LH2/electricity energy pipeline can realize long-distance large-capacity and high efficiency clean energy transmission to fulfil the hybrid energy supply demand for BEVs and FCEVs. For the case of a 100 MW-class hybrid hydrogen/electricity supply station the system principle and energy management strategy are analyzed through 9 different operating sub-modes. The corresponding static and dynamic economic modeling are performed and the economic feasibility of the hybrid hydrogen/electricity supply is verified using life-cycle analysis. Taking an example of wind power capacity 1898 MWh and solar power capacity 1619 MWh per day the dynamic payback period is 15.06 years the profitability index is 1.17 the internal rate of return is 7.956 % and the accumulative NPV is 187.92 M$. The system design and techno-economic analysis can potentially offer a technically/economically superior solution for future multi-energy vehicle charging/refueling systems.
Experimental Investigation of Stress Corrosion on Supercritical CO2 Transportation Pipelines Against Leakage for CCUS Applications
Nov 2022
Publication
Carbon Capture Utilization and Storage (CCUS) is one of the key technologies that will determine how humans address global climate change. For captured CO2 in order to avoid the complications associated with two-phase flow most carbon steel pipelines are operated in the supercritical state on a large scale. A pipeline has clear Stress Corrosion Cracking (SCC) sensitivity under the action of stress and corrosion medium which will generally cause serious consequences. In this study X70 steel was selected to simulate an environment in the process of supercritical CO2 transportation by using high-temperature high-pressure Slow Strain Rate Tensile (SSRT) tests and high-temperature high-pressure electrochemical test devices with different O2 and SO2 contents. Studies have shown that 200 ppm SO2 shows a clear SCC sensitivity tendency which is obvious when the SO2 content reaches 600 ppm. The SCC sensitivity increases with the increase of SO2 concentration but the increase amplitude decreases. With the help of advanced microscopic characterization techniques such as scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) through the analysis of fracture and side morphology the stress corrosion mechanism of a supercritical CO2 pipeline containing SO2 and O2 impurities was obtained by hydrogen embrittlement fracture characteristics. With the increase of SO2 content the content of Fe element decreases and the corrosion increases demonstrating that SO2 plays a leading role in electrochemical corrosion. This study further strengthens the theoretical basis of stress corrosion of supercritical CO2 pipelines plays an important role in preventing leakage of supercritical CO2 pipelines and will provide guidance for the industrial application of CCUS.
Coordinated Planning and Operation of Inter Seasonal Heat Storage and P2G Devices Integrated to Urban Multi-energy System
Mar 2023
Publication
With the urbanization construction and the advancement of the carbon peaking and carbon neutrality goals urban energy systems are characterized by coupling multi-energy networks and a high proportion of renewable energy. Urban energy systems need to improve the quality of energy use as well as to achieve energy conservation and emission reduction. Inter-seasonal heat technology has satisfactory engineering application prospects in promoting renewable energy consumption and the energy supply of urban multi-energy systems. Considering inter-seasonal heat storage and electric hydrogen production a joint optimization method of planning and operation is proposed for the urban multi-energy flow system. First the operation framework of inter-seasonal heat storage and electric hydrogen production system is established which clarifies the energy flow of the urban multi-energy system. Secondly aiming at the goals of minimizing the equipment’s annual investment cost and the multi-energy system annual operation cost combined with the time series period division method a planning operation model has been established considering multi-objectives. Through case study it is shown that the proposed model can promote the renewable energy consumption and reduce the operation cost of the whole system.
Alternative Power Options for Improvement of the Environmental Friendliness of Fishing Trawlers
Dec 2022
Publication
The fishing sector is faced with emission problems arising from the extensive use of diesel engines as prime movers. Energy efficiency environmental performance and minimization of operative costs through the reduction of fuel consumption are key research topics across the whole maritime sector. Ship emissions can be determined at different levels of complexity and accuracy i.e. by analyzing ship technical data and assuming its operative profile or by direct measurements of key parameters. This paper deals with the analysis of the environmental footprint of a fishing trawler operating in the Adriatic Sea including three phases of the Life-Cycle Assessment (manufacturing Well-to-Pump (WTP) and Pump-to-Wake (PTW)). Based on the data on fuel consumption the viability of replacing the conventional diesel-powered system with alternative options is analyzed. The results showed that fuels such as LNG and B20 represent the easiest solution that would result in a reduction of harmful gases and have a positive impact on overall costs. Although electrification and hydrogen represent one of the cleanest forms of energy due to their high price and complex application in an obsolete fleet they do not present an optimal solution for the time being. The paper showed that the use of alternative fuels would have a positive effect on the reduction of harmful emissions but further work is needed to find an environmentally acceptable and economically profitable pathway for redesigning the ship power system of fishing trawlers.
Study on the Effect of Second Injection Timing on the Engine Performances of a Gasoline/Hydrogen SI Engine with Split Hydrogen Direct Injecting
Oct 2020
Publication
Split hydrogen direct injection (SHDI) has been proved capable of better efficiency and fewer emissions. Therefore to investigate SHDI deeply a numerical study on the effect of second injection timing was presented at a gasoline/hydrogen spark ignition (SI) engine with SHDI. With an excess air ratio of 1.5 five different second injection timings achieved five kinds of hydrogen mixture distribution (HMD) which was the main factor affecting the engine performances. With SHDI since the HMD is manageable the engine can achieve better efficiency and fewer emissions. When the second injection timing was 105◦ crank angle (CA) before top dead center (BTDC) the Pmax was the highest and the position of the Pmax was the earliest. Compared with the single hydrogen direct injection (HDI) the NOX CO and HC emissions with SHDI were reduced by 20% 40% and 72% respectively.
International Experience of Carbon Neutrality and Prospects of Key Technologies: Lessons for China
Feb 2023
Publication
Carbon neutrality (or climate neutrality) has been a global consensus and international experience exchange is essential. Given the differences in the degree of social development resource endowment and technological level each country should build a carbon-neutral plan based on its national conditions. Compared with other major developed countries (e.g. Germany the United States and Japan) China's carbon neutrality has much bigger challenges including a heavy and time-pressured carbon reduction task and the current energy structure that is over-dependent on fossil fuels. Here we provide a comprehensive review of the status and prospects of the key technologies for low-carbon near-zero carbon and negative carbon emissions. Technological innovations associated with coal oil-gas and hydrogen industries and their future potential in reducing carbon emissions are particularly explained and assessed. Based on integrated analysis of international experience from the world's major developed countries in-depth knowledge of the current and future technologies and China's energy and ecological resources potential five lessons for the implementation of China's carbon neutrality are proposed: (1) transformation of energy production pattern from a coal-dominated pattern to a diversified renewable energy pattern; (2) renewable power-to-X and large-scale underground energy storage; (3) integration of green hydrogen production storage transport and utilization; (4) construction of clean energy systems based on smart sector coupling (ENSYSCO); (5) improvement of ecosystem carbon sinks both in nationwide forest land and potential desert in Northwest China. This paper provides an international perspective for a better understanding of the challenges and opportunities of carbon neutrality in China and can serve as a theoretical foundation for medium-long term carbon neutral policy formulation.
An Analysis of Renewable Energy Sources for Developing a Sustainable and Low-Carbon Hydrogen Economy in China
Apr 2023
Publication
A significant effort is required to reduce China’s dependency on fossil fuels while also supporting worldwide efforts to reduce climate change and develop hydrogen energy systems. A hydrogen economy must include renewable energy sources (RESs) which can offer a clean and sustainable energy source for producing hydrogen. This study uses an integrated fuzzy AHP–fuzzy TOPSIS method to evaluate and rank renewable energy sources for developing a hydrogen economy in China. This is a novel approach because it can capture the uncertainty and vagueness in the decision-making process and provide a comprehensive and robust evaluation of the alternatives. Moreover it considers multiple criteria and sub-criteria that reflect the environmental economic technical social and political aspects of RESs from the perspective of a hydrogen economy. This study identified five major criteria fifteen sub-criteria and six RES alternatives for hydrogen production. This integrated approach uses fuzzy AHP to evaluate and rank the criteria and sub-criteria and fuzzy TOPSIS to identify the most suitable and feasible RES. The results show that environmental economic and technical criteria are the most important criteria. Solar wind and hydropower are the top three RES alternatives that are most suitable and feasible. Furthermore biomass geo-thermal and tidal energy were ranked lower which might be due to the limitations and challenges in their adoption and performance in the context of the criteria and sub-criteria used for the analysis. This study’s findings add to the literature on guidelines to strategize for renewable energy adoption for the hydrogen economy in China.
Efficient Combustion of Low Calorific Industrial Gases: Opportunities and Challenges
Dec 2022
Publication
It is becoming increasingly important to develop effective combustion technologies for low calorific industrial gases (LCIG) because of the rising energy demand and environmental issues caused by the extensive use of fossil fuels. In this review the prospect of these opportunity fuels in China is discussed. Then the recent fundamental and engineering studies of LCIG combustion are summarized. Specifically the differences between LCIG and traditional fuels in the composition and fundamental combustion characteristics are described. The state-of-the-art combustion strategies for burning LCIG are reviewed including porous media combustion flameless combustion oxy-fuel combustion and dual-fuel combustion. The technical challenges and further development needs for efficient LCIG combustion are also discussed.
Self-Sustaining Control Strategy for Proton-Exchange Membrane Electrolysis Devices Based on Gradient-Disturbance Observation Method
Mar 2023
Publication
This paper proposes a self-sustaining control model for proton-exchange membrane (PEM) electrolysis devices aiming to maintain the temperature of their internal operating environment and thus improve the electrolysis efficiency and hydrogen production rate. Based on the analysis of energy–substance balance and electrochemical reaction characteristics an electrothermal-coupling dynamic model for PEM electrolysis devices was constructed. Considering the influence of the input energy–substance and the output hydrogen and oxygen of PEM electrolysis devices on the whole dynamic equilibrium process the required electrical energy and water molar flow rate are dynamically adjusted so that the temperature of the cathode and the anode is maintained near 338.15 K. The analytical results show that the hydrogen production rate and electrolysis efficiency are increased by 0.275 mol/min and 3.9% respectively by linearly stacking 100 PEM electrolysis devices to form a hydrogen production system with constant cathode and anode operating temperatures around 338.15 K in the self-sustaining controlled mode
Recent Research in Solar-Driven Hydrogen Production
Mar 2024
Publication
Climate concerns require immediate actions to reduce the global average temperature increase. Renewable electricity and renewable energy-based fuels and chemicals are crucial for progressive de-fossilization. Hydrogen will be part of the solution. The main issues to be considered are the growing market for H2 and the “green” feedstock and energy that should be used to produce H2 . The electrolysis of water using surplus renewable energy is considered an important development. Alternative H2 production routes should be using “green” feedstock to replace fossil fuels. We firstly investigated these alternative routes through using bio-based methanol or ethanol or ammonia from digesting agro-industrial or domestic waste. The catalytic conversion of CH4 to C and H2 was examined as a possible option for decarbonizing the natural gas grid. Secondly water splitting by reversible redox reactions was examined but using a renewable energy supply was deemed necessary. The application of renewable heat or power was therefore investigated with a special focus on using concentrated solar tower (CST) technology. We finally assessed valorization data to provide a tentative view of the scale-up potential and economic aspects of the systems and determine the needs for future research and developments.
Low Carbon Economic Dispatch of Integrated Energy Systems Considering Utilization of Hydrogen and Oxygen Energy
Mar 2024
Publication
Power-to-gas (P2G) facilities use surplus electricity to convert to natural gas in integrated energy systems (IES) increasing the capacity of wind power to be consumed. However the capacity limitation of P2G and the antipeaking characteristic of wind power make the wind abandonment problem still exist. Meanwhile the oxygen generated by P2G electrolysis is not fully utilized. Therefore this study proposes a low-carbon economic dispatch model considering the utilization of hydrogen and oxygen energy. First the two-stage reaction model of P2G is established and the energy utilization paths of hydrogen blending and oxygen-rich deep peaking are proposed. Specifically hydrogen energy is blended into the gas grid to supply gas-fired units and oxygen assists oxygenrich units into deep peaking. Subsequently the stochastic optimization is used to deal with the uncertainty of the system and the objective function and constraints of the IES are given to establish a low-carbon dispatch model under the energy utilization model. Finally the effectiveness of the proposed method is verified based on the modified IEEE 39-node electric network 20-node gas network and 6-node heat network models.
An Analysis of the Potential of Hydrogen Energy Technology on Demand Side Based on a Carbon Tax: A Case Study in Japan
Dec 2022
Publication
Hydrogen energy is considered one of the main measures of zero carbonization in energy systems but high equipment and hydrogen costs hinder the development of hydrogen energy technology. The objectives of this study are to quantify the environmental advantages of hydrogen energy through a carbon tax and study the application potential of hydrogen energy technology in a regional distributed energy system (RDES). In this study various building types in the smart community covered by Japan’s first hydrogen energy pipeline are used as an example. First ten buildings of five types are selected as the research objectives. Subsequently two comparative system models of a regional distributed hydrogen energy system (RDHES) and an RDES were established. Then by studying the optimal RDHES and RDES configuration and combining the prediction of future downward trends of fuel cell (FC) costs and energy carbon emissions the application effect of FC and hydrogen storage (HS) technologies on the demand side was analyzed. Finally the adaptability of the demand-side hydrogen energy system was studied by analyzing the load characteristics of different types of buildings. The results show that when the FC price is reduced to 1.5 times that of the internal combustion engine (ICE) the existing carbon tax system can sufficiently support the RDHES in gaining economic advantages in some regions. Notably when the carbon emissions of the urban energy system are reduced the RDHES demonstrates stronger anti-risk ability and has greater suitability for promotion in museums and shopping malls. The conclusions obtained in this study provide quantitative support for hydrogen energy promotion policies on the regional demand side and serve as a theoretical reference for the design and adaptability research of RDHESs.
Hydrogen Production System Using Alkaline Water Electrolysis Adapting to Fast Fluctuating Photovoltaic Power
Apr 2023
Publication
Using photovoltaic (PV) energy to produce hydrogen through water electrolysis is an environmentally friendly approach that results in no contamination making hydrogen a completely clean energy source. Alkaline water electrolysis (AWE) is an excellent method of hydrogen production due to its long service life low cost and high reliability. However the fast fluctuations of photovoltaic power cannot integrate well with alkaline water electrolyzers. As a solution to the issues caused by the fluctuating power a hydrogen production system comprising a photovoltaic array a battery and an alkaline electrolyzer along with an electrical control strategy and energy management strategy is proposed. The energy management strategy takes into account the predicted PV power for the upcoming hour and determines the power flow accordingly. By analyzing the characteristics of PV panels and alkaline water electrolyzers and imposing the proposed strategy this system offers an effective means of producing hydrogen while minimizing energy consumption and reducing damage to the electrolyzer. The proposed strategy has been validated under various scenarios through simulations. In addition the system’s robustness was demonstrated by its ability to perform well despite inaccuracies in the predicted PV power.
Low Carbon Optimal Operation of Integrated Energy System Based on Concentrating Solar Power Plant and Power to Hydrogen
Mar 2023
Publication
A new integrated energy system (IES) framework is created in order to encourage the consumption of renewable energy which is represented by wind and solar energy and lower carbon emissions. The connection between the units in the composite system is examined in this research. In-depth analysis is done on how energy is transferred between electricity heat gas and hydrogen. The system model and constraints are used to build an objective function with the lowest total operating cost. The calculation of carbon trading includes the ladder carbon trading method. And set up 6 cases for analysis which verifies the effectiveness of the participation of the concentrated solar power plant (CSPP) in the heat supply and power to hydrogen system (P2HS) in reducing the total operating cost of the system reducing wind curtailment and light curtailment and reducing carbon emissions. Under the model considered in this paper reduces the total operating cost reduces by 27.04% when the concentrated solar power plant is involved in the supply of thermal load. And the carbon emission is reduced by 14.529%. Compared with the traditional power to gas considers the power to hydrogen system in this paper which reduces the total operating cost by 4.79%.
Comparison of Two Energy Management Strategies Considering Power System Durability for PEMFC-LIB Hybrid Logistics Vehicle
Jun 2021
Publication
For commercial applications the durability and economy of the fuel cell hybrid system have become obstacles to be overcome which are not only affected by the performance of core materials and components but also closely related to the energy management strategy (EMS). This paper takes the 7.9 t fuel cell logistics vehicle as the research object and designed the EMS from two levels of qualitative and quantitative analysis which are the composite fuzzy control strategy optimized by genetic algorithm and Pontryagin’s minimum principle (PMP) optimized by objective function respectively. The cost function was constructed and used as the optimization objective to prolong the life of the power system as much as possible on the premise of ensuring the fuel economy. The results indicate that the optimized PMP showed a comprehensive optimal performance the hydrogen consumption was 3.481 kg/100 km and the cost was 13.042 $/h. The major contribution lies in that this paper presents a method to evaluate the effect of different strategies on vehicle performance including fuel economy and durability of the fuel cell and battery. The comparison between the two totally different strategies helps to find a better and effective solution to reduce the lifetime cost.
A Study on the Joule-Thomson Effect of During Filling Hydrogen in High Pressure Tank
Dec 2022
Publication
With the development of the hydrogen fuel cell automobile industry higher requirements are put forward for the construction of hydrogen energy infrastructure the matching of parameters and the control strategy of hydrogen filling rate in the hydrogenation process of hydrogenation station. Fuel for hydrogen fuel cell vehicles comes from hydrogen refueling stations. At present the technological difficulty of hydrogenation is mainly reflected in the balanced treatment of reducing the temperature rise of hydrogen and shortening the filling time during the fast filling process. The Joule-Thomson (JT) effect occurs when high-pressure hydrogen gas passes through the valve assembly which may lead to an increase in hydrogen temperature. The JT effect is generally reflected by the JT coefficient. According to the high pressure hydrogen in the pressure reducing valve the corresponding JT coefficients were calculated by using the VDW equation RK equation SRK equation and PR equation and the expression of JT effect temperature rise was deduced which revealed the hydrogen temperature variation law in the process of reducing pressure. Make clear the relationship between charging parameters and temperature rise in the process of decompression; the flow and thermal characteristics of hydrogen in the process of decompression are revealed. This study provides basic support for experts to achieve throttling optimization of related pressure control system in hydrogen industry
A Review of Technical Advances, Barriers, and Solutions in the Power to Hydrogen Roadmap
Oct 2020
Publication
Power to hydrogen (P2H) provides a promising solution to the geographic mismatch between sources of renewable energy and the market due to its technological maturity flexibility and the availability of technical and economic data from a range of active demonstration projects. In this review we aim to provide an overview of the status of P2H analyze its technical barriers and solutions and propose potential opportunities for future research and industrial demonstrations. We specifically focus on the transport of hydrogen via natural gas pipeline networks and end-user purification. Strong evidence shows that an addition of about 10% hydrogen into natural gas pipelines has negligible effects on the pipelines and utilization appliances and may therefore extend the asset value of the pipelines after natural gas is depleted. To obtain pure hydrogen from hydrogen-enriched natural gas (HENG) mixtures end-user separation is inevitable and can be achieved through membranes adsorption and other promising separation technologies. However novel materials with high selectivity and capacity will be the key to the development of industrial processes and an integrated membrane-adsorption process may be considered in order to produce high-purity hydrogen from HENG. It is also worth investigating the feasibility of electrochemical separation (hydrogen pumping) at a large scale and its energy analysis. Cryogenics may only be feasible when liquefied natural gas (LNG) is one of the major products. A range of other technological and operational barriers and opportunities such as water availability byproduct (oxygen) utilization and environmental impacts are also discussed. This review will advance readers’ understanding of P2H and foster the development of the hydrogen economy.
Nickel Sulfides Supported by Carbon Spheres as Efficient Catalysts for Hydrogen Evolution Reaction
Jun 2021
Publication
Ni3S2 and NiS supported on carbon spheres are successfully synthesized by a facile hydrothermal method. And then a series of physical characterizations included XRD (X-ray diffraction) EDS (energy dispersive spectroscopy) FESEM (field emission scanning electron microscopy) and XPS (X-ray photo-electron spectroscopy) were used to analyze the samples. XRD was used to confirm that NiNi3S2 S2 and NiS were successfully fabricated. FESEM indicated that Ni3S2 and NiS disperse well on carbon spheres. Electrochemical tests showed that nickel sulfides supported by carbon spheres exhibited excellent hydrogen evolution performance. The excellent catalytic activity is attributed to the synergistic effect of carbon spheres and transition metal sulfides of which the carbon spheres act to enhance the electrical conductivity and the dispersion of Ni3S2 and NiS thus providing more active sites for the hydrogen evolution reaction.
In Situ Irradiated X-Ray Photoelectron Spectroscopy on Ag-WS2 Heterostructure For Hydrogen Production Enhancement
Oct 2020
Publication
The hot electron transition of noble materials to catalysis accelerated by localized surface plasmon resonances (LSPRs) was detected by in situ irradiated X-ray photoelectron spectroscopy (ISI-XPS) in this article. This paper synthesized an Ag Nanowire (AgNW) @ WS2 core-shell structure with an ultra-thin shell of WS2(3 ∼ 7 nm) and characterized its photocatalytic properties. The AgNW@WS2 core-shell structure exhibited different surface-enhanced Raman spectroscopy (SERS) effects by changing shell thickness indicating that the effect of AgNW could be controlled by WS2 shell. Furthermore the hydrogen production of AgNW@WS2 could reach to 356% of that of pure WS2. The hot electrons arising from the LSPRs effect broke through the Schottky barrier between WS2 and AgNW and transferred to the WS2 shell whose photocatalytic effect was thus enhanced. In addition when the LSPRs effect was intensified by reducing the shell thickness the hot electron transition of noble materials to catalysis was accelerated.
Physicochemical Properties of Proton-conducting SmNiO3 Epitaxial Films
Mar 2019
Publication
Proton conducting SmNiO3 (SNO) thin films were grown on (001) LaAlO3 substrates for systematically investigating the proton transport properties. X-ray Diffraction and Atomic Force Microscopy studies reveal that the as-grown SNO thin films have good single crystallinity and smooth surface morphology. The electrical conductivity measurements in air indicate a peak at 473 K in the temperature dependence of the resistance of the SNO films probably due to oxygen loss on heating. A Metal-Insulator-Transition occurs at 373 K for the films after annealing at 873 K in air. In a hydrogen atmosphere (3% H2/97% N2) an anomalous peak in the resistance is found at 685 K on the first heating cycle. Electrochemical Impedance Spectroscopy studies as a function of temperature indicate that the SNO films have a high ionic conductivity (0.030 S/cm at 773 K) in a hydrogen atmosphere. The activation energy for proton conductivity was determined to be 0.23 eV at 473–773 K and 0.37 eV at 773–973 K respectively. These findings demonstrate that SNO thin films have good proton conductivity and are good candidate electrolytes for low temperature proton-conducting Solid Oxide Fuel Cells.
The Path to Carbon Neutrality in China: A Paradigm Shift in Fossil Resource Utilization
Jan 2022
Publication
The Paris Agreement has set the goal of carbon neutrality to cope with global climate change. China has pledged to achieve carbon neutrality by 2060 which will strategically change everything in our society. As the main source of carbon emissions the consumption of fossil energy is the most profoundly affected by carbon neutrality. This work presents an analysis of how China can achieve its goal of carbon neutrality based on its status of fossil energy utilization. The significance of transforming fossils from energy to resource utilization in the future is addressed while the development direction and key technologies are discussed.
Microwave Absorption of Aluminum/Hydrogen Treated Titanium Dioxide Nanoparticles
Dec 2018
Publication
Interactions between incident electromagnetic energy and matter are of critical importance for numerous civil and military applications such as photocatalysis solar cells optics radar detection communications information processing and transport et al. Traditional mechanisms for such interactions in the microwave frequency mainly rely on dipole rotations and magnetic domain resonance. In this study we present the first report of the microwave absorption of Al/H2 treated TiO2 nanoparticles where the Al/H2 treatment not only induces structural and optical property changes but also largely improves the microwave absorption performance of TiO2 nanoparticles. Moreover the frequency of the microwave absorption can be finely controlled with the treatment temperature and the absorption efficiency can reach optimal values with a careful temperature tuning. A large reflection loss of −58.02 dB has been demonstrated with 3.1 mm TiO2 coating when the treating temperature is 700 °C. The high efficiency of microwave absorption is most likely linked to the disordering-induced property changes in the materials. Along with the increased microwave absorption properties are largely increased visible-light and IR absorptions and enhanced electrical conductivity and reduced skin-depth which is likely related to the interfacial defects within the TiO2 nanoparticles caused by the Al/H2 treatment.
Integral Sliding Mode Control for Maximum Power Point Tracking in DFIG Based Floating Offshore Wind Turbine and Power to Gas
Jun 2021
Publication
This paper proposes a current decoupling controller for a Doubly-fed Induction Generator (DFIG) based on floating offshore wind turbine and power to gas. The proposed controller realizes Maximum Power Point Tracking (MPPT) through integral sliding mode compensation. By using the internal model control strategy an open-loop controller is designed to ensure that the system has good dynamic performance. Furthermore using the integral Sliding Mode Control (SMC) strategy a compensator is designed to eliminate the parameter perturbation and external disturbance of the open-loop control. The parameters of the designed controller are designed through Grey Wolf Optimization (GWO). Simulation results show that the proposed control strategy has better response speed and smaller steady-state error than the traditional control strategy. This research is expected to be applied to the field of hydrogen production by floating offshore wind power.
What Is the Policy Effect of Coupling the Green Hydrogen Market, National Carbon Trading Market and Electricity Market?
Oct 2022
Publication
Green hydrogen has become the key to social low-carbon transformation and is fully linked to zero carbon emissions. The carbon emissions trading market is a policy tool used to control carbon emissions using a market-oriented mechanism. Building a modular carbon trading center for the hydrogen energy industry would greatly promote the meeting of climate targets. Based on this a “green hydrogen market—national carbon trading market–electricity market” coupling mechanism is designed. Then the “green hydrogen market—national carbon trading market–electricity market” mechanism is modeled and simulated using system dynamics. The results are as follows: First coupling between the green hydrogen market carbon trading market and electricity market can be realized through green hydrogen certification and carbon quota trading. It is found that the coupling model is feasible through simulation. Second simulation of the basic scenario finds that multiple-market coupling can stimulate an increase in carbon price the control of thermal power generation and an increase in green hydrogen production. Finally the proportion of the green hydrogen certification the elimination mechanism of outdated units and the quota auction mechanism will help to form a carbon pricing mechanism. This study enriches the green hydrogen trading model and establishes a multiple-market linkage mechanism.
Numerical Study of Combustion and Emission Characteristics for Hydrogen Mixed Fuel in the Methane-Fueled Gas Turbine Combustor
Jan 2023
Publication
The aeroderivative gas turbine is widely used as it demonstrates many advantages. Adding hydrogen to natural gas fuels can improve the performance of combustion. Following this the effects of hydrogen enrichment on combustion characteristics were analyzed in an aeroderivative gas turbine combustor using CFD simulations. The numerical model was validated with experimental results. The conditions of the constant mass flow rate and the constant energy input were studied. The results indicate that adding hydrogen reduced the fuel residues significantly (fuel mass at the combustion chamber outlet was reduced up to 60.9%). In addition the discharge of C2H2 and other pollutants was reduced. Increasing the volume fraction of hydrogen in the fuel also reduced CO emissions at the constant energy input while increasing CO emissions at the constant fuel mass flow rate. An excess in the volume fraction of added hydrogen changed the combustion mode in the combustion chamber resulting in fuel-rich combustion (at constant mass flow rate) and diffusion combustion (at constant input power). Hydrogen addition increased the pattern factor and NOx emissions at the outlet of the combustion chamber.
Performance Study on Methanol Steam Reforming Rib Micro-Reactor with Waste Heat Recovery
Mar 2020
Publication
Automobile exhaust heat recovery is considered to be an effective means to enhance fuel utilization. The catalytic production of hydrogen by methanol steam reforming is an attractive option for onboard mobile applications due to its many advantages. However the reformers of conventional packed bed type suffer from axial temperature gradients and cold spots resulting from severe limitations of mass and heat transfer. These disadvantages limit reformers to a low efficiency of catalyst utilization. A novel rib microreactor was designed for the hydrogen production from methanol steam reforming heated by automobile exhaust and the effect of inlet exhaust and methanol steam on reactor performance was numerically analyzed in detail with computational fluid dynamics. The results showed that the best operating parameters were the counter flow water-to-alcohol (W/A) of 1.3 exhaust inlet velocity of 1.1 m/s and exhaust inlet temperature of 773 K when the inlet velocity and inlet temperature of the reactant were 0.1 m/s and 493 K respectively. At this condition a methanol conversion of 99.4% and thermal efficiency of 28% were achieved together with a hydrogen content of 69.6%.
Powertrain Design and Energy Management Strategy Optimization for a Fuel Cell Electric Intercity Coach in an Extremely Cold Mountain Area
Sep 2022
Publication
Facing the challenge that the single-motor electric drive powertrain cannot meet the continuous uphill requirements in the cold mountainous area of the 2022 Beijing Winter Olympics the manuscript adopted a dual-motor coupling technology. Then according to the operating characteristics and performance indicators of the fuel cell (FC)–traction battery hybrid power system the structure design and parameter matching of the vehicle power system architecture were carried out to improve the vehicle’s dynamic performance. Furthermore considering the extremely cold conditions in the Winter Olympics competition area and the poor low-temperature tolerance of core components of fuel cell electric vehicles (FCEV) under extremely cold conditions such as the reduced capacity and service life of traction batteries caused by the rapid deterioration of charging and discharging characteristics the manuscript proposed a fuzzy logic control-based energy management strategy (EMS) optimization method for the proton exchange membrane fuel cell (PEMFC) to reduce the power fluctuation hydrogen consumption and battery charging/discharging times and at the same time to ensure the hybrid power system meets the varying demand under different conditions. In addition the performance of the proposed approach was investigated and validated in an intercity coach in real-world driving conditions. The experimental results show that the proposed powertrain with an optimal control strategy successfully alleviated the fluctuation of vehicle power demand reduced the battery charging/discharging times of traction battery and improved the energy efficiency by 20.7%. The research results of this manuscript are of great significance for the future promotion and application of fuel cell electric coaches in all climate environments especially in an extremely cold mountain area.
Hydrogen Permeation Behavior of QP1180 High Strength Steel in Simulated Coastal Atmosphere
Mar 2022
Publication
The hydrogen permeation behavior of QP1180 high strength steel for automobile was studied in simulate coastal atmosphere environment by using Devanathan-Stachurski dual electrolytic cell the cyclic corrosion test (CCT) thermal desorption spectrometry (TDS) and electrochemical measurement methods. The current density of hydrogen permeation generally increases with reducing the relative humidity from 95% to 50% and periodically changes in the CCT process. These mainly result from the evolution of corrosion and rust layer on the specimen surface with the atmospheric humidity and intermittent salt spraying. The contents of diffusible hydrogen and non-diffusible hydrogen in the steel enlarge slightly in the CCT process. The plastic deformation about 11.3% results in much higher diffusible hydrogen content in steel but noticeably reduces the hydrogen permeation current and almost has no influence on the non-diffusible hydrogen content. The combination of double electrolytic cell and standard cyclic corrosion test can effectively characterize the hydrogen permeation of high strength steel in atmospheric service environments.
Coupling Combustion Simulation and Primary Evaluation of an Asymmetric Motion Diesel Pilot Hydrogen Engine
Jul 2022
Publication
The thermal efficiency and combustion of conventional hydrogen engines cannot be optimized and improved by its symmetric reciprocating. This article introduces an asymmetric motion hydrogen engine (AHE) and investigates its combustion characteristics using diesel pilot ignition. A dynamic model is firstly proposed to describe the asymmetric motion of the AHE and then it is coupled into a multidimensional model for combustion simulation. The effect of asymmetric motion on the AHE combustion is also analyzed by comparing with a corresponding conventional symmetric hydrogen engine (SHE). The results show that the AHE moves slower in compression and faster in expansion than the SHE which brings about higher hydrogen-air mixing level for combustion. The asymmetric motion delays diesel injection to ignite the AHE and its combustion appears later than the SHE which leads to lower pressure and temperature for reducing NO formation. However the AHE faster expansion has a more severe post-combustion effect to reduce isovolumetric heat release level and decrease the energy efficiency.
High Proton-Conductive and Temperature-Tolerant PVC-P4VP Membranes towards Medium-Temperature Water Electrolysis
Mar 2022
Publication
Water electrolysis (WE) is a highly promising approach to producing clean hydrogen. Medium-temperature WE (100–350 ◦C) can improve the energy efficiency and utilize the low-grade water vapor. Therefore a high-temperature proton-conductive membrane is desirable to realize the medium-temperature WE. Here we present a polyvinyl chloride (PVC)-poly(4vinylpyridine) (P4VP) hybrid membrane by a simple cross-linking of PVC and P4VP. The pyridine groups of P4VP promote the loading rate of phosphoric acid which delivers the proton conductivity of the PVC-P4VP membrane. The optimized PVC-P4VP membrane with a 1:2 content ratio offers the maximum proton conductivity of 4.3 × 10−2 S cm−1 at 180 ◦C and a reliable conductivity stability in 200 h at 160 ◦C. The PVC-P4VP membrane electrode is covered by an IrO2 anode and a Pt/C cathode delivers not only the high water electrolytic reactivity at 100–180 ◦C but also the stable WE stability at 180 ◦C.
Cost-Economic Analysis of Hydrogen for China’s Fuel Cell Transportation Field
Dec 2020
Publication
China has become a major market for hydrogen used in fuel cells in the transportation field. It is key to control the cost of hydrogen to open up the Chinese market. The development status and trends of China’s hydrogen fuel industry chain were researched. A hydrogen energy cost model was established in this paper from five aspects: raw material cost fixed cost of production hydrogen purification cost carbon trading cost and transportation cost. The economic analysis of hydrogen was applied to hydrogen transported in the form of high-pressure hydrogen gas or cryogenic liquid hydrogen and produced by natural gas coal and electrolysis of water. It was found that the cost of hydrogen from natural gas and coal is currently lower while it is greatly affected by the hydrogen purification cost and the carbon trading price. Considering the impact of future production technologies raw material costs and rising requirements for sustainable energy development on the hydrogen energy cost it is recommended to use renewable energy curtailment as a source of electricity and multi-stack system electrolyzers as large-scale electrolysis equipment in combination with cryogenic liquid hydrogen transportation or on-site hydrogen production. Furthermore participation in electricity market-oriented transactions cross-regional transactions and carbon trading can reduce the cost of hydrogen. These approaches represent the optimal method for obtaining inexpensive hydrogen.
Modeling of Unintended Hydrogen Releases from a Fuel Cell Tram
Sep 2021
Publication
Hydrogen is a promising alternative energy carrier that has been increasingly used in industry especially the transportation sector to fuel vehicles through fuel cells. Hydrogen fuel cell vehicles usually have high pressure on-board storage tanks which take up large spaces to provide comparable ranges as current fossil fuel vehicles because of the low volumetric energy density of hydrogen. Therefore hydrogen is also appropriate for large heavy-duty vehicles that have more space than passenger vehicles.
Hydrogen Inhibition as Explosion Prevention in Wet Metal Dust Removal Systems
Mar 2022
Publication
Hydrogen energy attracts an amount of attention as an environmentally friendly and sustainable energy source. However hydrogen is also flammable. Hydrogen fires and explosions might occur in wet-dust-removal systems if accumulated aluminum dust reacts with water. Hydrogen inhibition is a safe method to address these issues. For this purpose we used sodium citrate a renewable and nontoxic raw material to inhibit H2 formation. Specifically hydrogen inhibition experiments with sodium citrate were carried out using custom-built equipment developed by our research group. When the concentration of sodium citrate solution was in the range of 0.4–4.0 g/L a protective coating was formed on the surface of the Al particles which prevented them from contacting with water. The inhibitory effect was achieved when the concentration of sodium citrate was in a certain range and too much or too little addition may reduce the inhibitory effect. In this paper we also discuss the economic aspects of H2 inhibition with this method because it offers excellent safety advantages and could be incorporated on a large scale. Such an intrinsic safety design of H2 inhibition to control explosions in wet-dust-removal systems could be applied to ensure the safety of other systems such as nuclear reactors.
Numerical Simulation on Hydrogen Leakage and Dispersion Behavior in Hydrogen Energy Infrastructures
Sep 2021
Publication
Unexpected hydrogen leakage may occur in the production storage transportation and utilization of hydrogen. The lower flammability limit (LFL) for the hydrogen is 4% in air. The combustion and explosion of hydrogen-air mixture poses potential hazards to personnel and property. In this study unintended release of hydrogen from a hydrogen fuel cell forklift vehicle inside a enclosed warehouse is simulated by fireFoam which is an LES Navier-Stokes CFD solver. The simulation results are verified by experimental data. The variation of hydrogen concentration with time and the isosurface of hydrogen concentration of 4% vol. are given. Furthermore the leakage of hydrogen from a storage tanks in a hydrogen refueling station is simulated and the evolution of the isosurface of hydrogen concentration of 4% vol. is given which provides a quantitative guidence for determination the hazardous area after the leakage of hydrogen.
Hydrogen Fuel Cell Vehicle Development in China: An Industry Chain Perspective
Jun 2020
Publication
Hydrogen fuel cell vehicle (FCV) technology has significant implications on energy security and environmental protection. In the past decade China has made great progress in the hydrogen and FCV industry considering both the government’s policy issuances and enterprises’ production. However there are still some technological and cost challenges obstructing the commercialization of FCVs. Herein the status of China’s hydrogen FCV industry is analyzed comprehensively from three perspectives: policy support market application and technology readiness level. The unique characteristics and key issues in each part of the industry chain are emphasized. Furthermore the energy environmental and economic performances of FCV in the life-cycle perspective are reviewed and summarized based on pre-existing literature and reports. The life-cycle analysis of hydrogen and FCV indicates that the energy and environmental impacts of FCVs are highly related to the sources of hydrogen. With the combination of industry status and technology performances it is highlighted that technology advancements in hydrogen production and fuel cells and the optimization of the manufacturing processes for fuel cell systems are equally essential in the development of hydrogen FCVs.
Recent Development of Biomass Gasification for H2 Rich Gas Production
Mar 2022
Publication
Biomass gasification for hydrogen (H2) production provides outstanding advantages in terms of renewable energy resources carbon neutral high efficiency and environmental benefits. However the factors influencing H2 production from biomass gasification are complex which makes determining the optimal operating conditions challenging. Biomass gasification also poses challenges owing to the high associated tar content and low gas yield which need to be overcome. This review summarizes the influence of the gasification parameters on H2 production. Catalytic gasification technology and some of the latest catalysts such as composites and special structure catalysts are also summarized herein based on the requirements of high-purity H2 production. Moreover novel technologies such as staged gasification chemical looping gasification and adsorption-enhanced reforming for producing H2 rich gas are introduced. Finally the challenges and prospects associated with biomass gasification for H2 production are presented.
A Numerical Investigation on De-NOx Technology and Abnormal Combustion Control for a Hydrogen Engine with EGR System
Sep 2020
Publication
The combustion emissions of the hydrogen-fueled engines are very clean but the problems of abnormal combustion and high NOx emissions limit their applications. Nowadays hydrogen engines use exhaust gas recirculation (EGR) technology to control the intensity of premixed combustion and reduce the NOx emissions. This study aims at improving the abnormal combustion and decreasing the NOx emissions of the hydrogen engine by applying a three-dimensional (3D) computational fluid dynamics (CFD) model of a single-cylinder hydrogen-fueled engine equipped with an EGR system. The results indicated that peak in-cylinder pressure continuously increased with the increase of the ignition advance angle and was closer to the top dead center (TDC). In addition the mixture was burned violently near the theoretical air–fuel ratio and the combustion duration was shortened. Moreover the NOx emissions the average pressure and the in-cylinder temperature decreased as the EGR ratio increased. Furthermore increasing the EGR ratio led to an increase in the combustion duration and a decrease in the peak heat release rate. EGR system could delay the spontaneous combustion reaction of the end-gas and reduce the probability of knocking. The pressure rise rate was controlled and the in-cylinder hot spots were reduced by the EGR system which could suppress the occurrence of the pre-ignition in the hydrogen engine.
Fundamentals, Materials, and Machine Learning of Polymer Electrolyte Membrane Fuel Cell Technology
Jun 2020
Publication
Polymer electrolyte membrane (PEM) fuel cells are electrochemical devices that directly convert the chemical energy stored in fuel into electrical energy with a practical conversion efficiency as high as 65%. In the past years significant progress has been made in PEM fuel cell commercialization. By 2019 there were over 19000 fuel cell electric vehicles (FCEV) and 340 hydrogen refueling stations (HRF) in the U.S. (~8000 and 44 respectively) Japan (~3600 and 112 respectively) South Korea (~5000 and 34 respectively) Europe (~2500 and 140 respectively) and China (~110 and 12 respectively). Japan South Korea and China plan to build approximately 3000 HRF stations by 2030. In 2019 Hyundai Nexo and Toyota Mirai accounted for approximately 63% and 32% of the total sales with a driving range of 380 and 312 miles and a mile per gallon (MPGe) of 65 and 67 respectively. Fundamentals of PEM fuel cells play a crucial role in the technological advancement to improve fuel cell performance/durability and reduce cost. Several key aspects for fuel cell design operational control and material development such as durability electrocatalyst materials water and thermal management dynamic operation and cold start are briefly explained in this work. Machine learning and artificial intelligence (AI) have received increasing attention in material/energy development. This review also discusses their applications and potential in the development of fundamental knowledge and correlations material selection and improvement cell design and optimization system control power management and monitoring of operation health for PEM fuel cells along with main physics in PEM fuel cells for physics-informed machine learning. The objective of this review is three fold: (1) to present the most recent status of PEM fuel cell applications in the portable stationary and transportation sectors; (2) to describe the important fundamentals for the further advancement of fuel cell technology in terms of design and control optimization cost reduction and durability improvement; and (3) to explain machine learning physics-informed deep learning and AI methods and describe their significant potentials in PEM fuel cell research and development (R&D).
Optimized Configuration and Operating Plan for Hydrogen Refueling Station with On-Site Electrolytic Production
Mar 2022
Publication
Hydrogen refueling stations (HRSs) are critical for the popularity of hydrogen vehicles (fuel cell electric vehicles—FCEVs). However due to high installation investment and operating costs the proliferation of HRSs is difficult. This paper studies HRSs with on-site electrolytic production and hydrogen storage devices and proposes an optimization method to minimize the total costs including both installation investment and operating costs (OPT-ISL method). Moreover to acquire the optimization constraints of hydrogen demand this paper creatively develops a refueling behavior simulation method for different kinds of FCEVs and proposes a hydrogen-demand estimation model to forecast the demand with hourly intervals for HRS. The Jensen–Shannon divergence is applied to verify the accuracy of the hydrogen-demand estimation. The result: 0.029 is much smaller than that of the estimation method in reference. Based on the estimation results and peak-valley prices of electricity from the grid a daily hydrogen generation plan is obtained as well as the optimal capacities of electrolyzers and storage devices. As for the whole costs compared with previous configuration methods that only consider investment costs or operating costs the proposed OPT-ISL method has the least 8.1 and 10.5% less respectively. Moreover the proposed OPT-ISL method shortens the break-even time for HRS from 11.1 years to 7.8 years a decrease of 29.7% so that the HRS could recover its costs in less time.
Numerical Simulation on Heating Effects during Hydrogen Absorption in Metal Hydride Systems for Hydrogen Storage
Apr 2022
Publication
A 2-D numerical simulation model was established based on a small-sized metal hydride storage tank and the model was validated by the existing experiments. An external cooling bath was equipped to simulate the heating effects of hydrogen absorption reactions. Furthermore both the type and the flow rate of the cooling fluids in the cooling bath were altered so that changes in temperature and hydrogen storage capacity in the hydrogen storage model could be analyzed. It is demonstrated that the reaction rate in the center of the hydrogen storage tank gradually becomes lower than that at the wall surface. When the flow rate of the fluid is small significant differences can be found in the cooling liquid temperature at the inlet and the outlet cooling bath. In areas adjacent to its inlet the reaction rate is higher than that at the outlet and a better cooling effect is produced by water. As the flow rate increases the total time consumed by hydrogen adsorption reaction is gradually reduced to a constant value. At the same flow rate the wall surface of the tank shows a reaction rate insignificantly different from that in its center provided that cooling water or oil coolant is replaced with air.
Overview of Biomass Conversion to Electricity and Hydrogen and Recent Developments in Low-Temperature Electrochemical Approaches
Nov 2020
Publication
Biomass is plant or animal material that stores both chemical and solar energies and that is widely used for heat production and various industrial processes. Biomass contains a large amount of the element hydrogen so it is an excellent source for hydrogen production. Therefore biomass is a sustainable source for electricity or hydrogen production. Although biomass power plants and reforming plants have been commercialized it remains a difficult challenge to develop more effective and economic technologies to further improve the conversion efficiency and reduce the environmental impacts in the conversion process. The use of biomass-based flow fuel cell technology to directly convert biomass to electricity and the use of electrolysis technology to convert biomass into hydrogen at a low temperature are two new research areas that have recently attracted interest. This paper first briefly introduces traditional technologies related to the conversion of biomass to electricity and hydrogen and then reviews the new developments in flow biomass fuel cells (FBFCs) and biomass electrolysis for hydrogen production (BEHP) in detail. Further challenges in these areas are discussed.
Catalyst Engineering for Electrochemical Energy Conversion from Water to Water: Water Electrolysis and the Hydrogen Fuel Cell
May 2020
Publication
In the context of the current serious problems related to energy demand and climate change substantial progress has been made in developing a sustainable energy system. Electrochemical hydrogen–water conversion is an ideal energy system that can produce fuels via sustainable fossil-free pathways. However the energy conversion efficiency of two functioning technologies in this energy system—namely water electrolysis and the fuel cell—still has great scope for improvement. This review analyzes the energy dissipation of water electrolysis and the fuel cell in the hydrogen–water energy system and discusses the key barriers in the hydrogen- and oxygen-involving reactions that occur on the catalyst surface. By means of the scaling relations between reactive intermediates and their apparent catalytic performance this article summarizes the frameworks of the catalytic activity trends providing insights into the design of highly active electrocatalysts for the involved reactions. A series of structural engineering methodologies (including nanoarchitecture facet engineering polymorph engineering amorphization defect engineering element doping interface engineering and alloying) and their applications based on catalytic performance are then introduced with an emphasis on the rational guidance from previous theoretical and experimental studies. The key scientific problems in the electrochemical hydrogen–water conversion system are outlined and future directions are proposed for developing advanced catalysts for technologies with high energy-conversion efficiency.
Self-Supported High-Entropy Alloy Electrocatalyst for Highly Efficient H2 Evolution in Acid Condition
Jul 2020
Publication
Developing non-precious catalysts as Pt substitutes for electrochemical hydrogen evolution reaction (HER) with superior stability in acidic electrolyte is of critical importance for large-scale low-cost hydrogen production from water. Herein we report a CoCrFeNiAl high-entropy alloy (HEA) electrocatalyst with self-supported structure synthesized by mechanical alloying and spark plasma sintering (SPS) consolidation. The HEA after HF treatment and in situ electrochemical activation for 4000 cycles of cyclic voltammetry (HF-HEAa2) presents favourable activity with overpotential of 73 mV to reach a current density of 10 mA cm−2 and a Tafel slope of 39.7 mV dec−1. The alloy effect of Al/Cr with Co/Fe/Ni at atomic level high-temperature crystallization as well as consolidation by SPS endow CoCrFeNiAl HEA with high stability in 0.5 M H2SO4 solution. The superior performance of HF-HEAa2 is related with the presence of metal hydroxides/oxides groups on HEA.
Dual Z-scheme Charge Transfer in TiO2–Ag–Cu2O Composite for Enhanced Photocatalytic Hydrogen Generation
Apr 2015
Publication
Photocatalytic hydrogen generation is one of the most promising solutions to convert solar power into green chemical energy. In this work a multi-component TiO2–Ag–Cu2O composite was obtained through simple impregnation-calcination of Cu2O and subsequent photodeposition of Ag onto electrospun TiO2 nanotubes. The resulting TiO2–Ag–Cu2O photocatalyst exhibits excellent photocatalytic H2 evolution activity due to the synergetic effect of Ag and Cu2O on electrospun TiO2nanotubes. A dual Z-scheme charge transfer pathway for photocatalytic reactions over TiO2–Ag–Cu2O composite was proposed and discussed. This work provides a prototype for designing Z-scheme photocatalyst with Ag as an electron mediator.
Modeling and Statistical Analysis of the Three-side Membrane Reactor for the Optimization of Hydrocarbon Production from CO2 Hydrogenation
Feb 2020
Publication
Direct CO2 hydrogenation to hydrocarbons is a promising method of reducing CO2 emissions along with producing value-added products. However reactor design and performance have remained a challenging issue because of low olefin efficiency and high water production as a by-product. Accordingly a one-dimensional non-isothermal mathematical model is proposed to predict the membrane reactor performance and statistical analysis is used to assess the effects of important variables such as temperatures of reactor (Tr:A) shell (Ts:B) and tube (Tt:C) as well as sweep ratio (θ:D) and pressure ratio (φ:E) and their interactions on the products yields. In addition the optimized operating conditions are also obtained to achieve maximum olefin yields. Results reveal that interacting effects comprising AB (TrTs) AC (TrTt) AE (Trφ) BC (TsTt) CE (Ttφ) CD (Ttθ) and DE (θφ) play important roles on the product yields. It is concluded that higher temperatures at low sweep and pressure ratios can maximize the yields of olefins while simultaneously the yields of paraffins are minimized. In this regard optimized values for Tr Ts Tt θ and φ are determined as 325 °C 306.96 °C 325 °C 1 and 1 respectively.
Materials for Hydrogen-based Energy Storage - Past, Recent Progress and Future Outlook
Dec 2019
Publication
Michael Hirscher,
Volodymyr A. Yartys,
Marcello Baricco,
José Bellosta von Colbe,
Didier Blanchard,
Robert C. Bowman Jr.,
Darren P. Broom,
Craig Buckley,
Fei Chang,
Ping Chen,
Young Whan Cho,
Jean-Claude Crivello,
Fermin Cuevas,
William I. F. David,
Petra E. de Jongh,
Roman V. Denys,
Martin Dornheim,
Michael Felderhoff,
Yaroslav Filinchuk,
George E. Froudakis,
David M. Grant,
Evan MacA. Gray,
Bjørn Christian Hauback,
Teng He,
Terry D. Humphries,
Torben R. Jensen,
Sangryun Kim,
Yoshitsugu Kojima,
Michel Latroche,
Hai-wen Li,
Mykhaylo V. Lototskyy,
Joshua W. Makepeace,
Kasper T. Møller,
Lubna Naheed,
Peter Ngene,
Dag Noreus,
Magnus Moe Nygård,
Shin-ichi Orimo,
Mark Paskevicius,
Luca Pasquini,
Dorthe B. Ravnsbæk,
M. Veronica Sofianos,
Terrence J. Udovic,
Tejs Vegge,
Gavin Walker,
Colin Webb,
Claudia Weidenthaler and
Claudia Zlotea
Globally the accelerating use of renewable energy sources enabled by increased efficiencies and reduced costs and driven by the need to mitigate the effects of climate change has significantly increased research in the areas of renewable energy production storage distribution and end-use. Central to this discussion is the use of hydrogen as a clean efficient energy vector for energy storage. This review by experts of Task 32 “Hydrogen-based Energy Storage” of the International Energy Agency Hydrogen TCP reports on the development over the last 6 years of hydrogen storage materials methods and techniques including electrochemical and thermal storage systems. An overview is given on the background to the various methods the current state of development and the future prospects. The following areas are covered; porous materials liquid hydrogen carriers complex hydrides intermetallic hydrides electro-chemical storage of energy thermal energy storage hydrogen energy systems and an outlook is presented for future prospects and research on hydrogen-based energy storage
Sustainable Offshore Oil and Gas Fields Development: Techno-economic Feasibility Analysis of Wind–hydrogen–natural Gas Nexus
Jul 2021
Publication
Offshore oil and gas field development consumes quantities of electricity which is usually provided by gas turbines. In order to alleviate the emission reduction pressure and the increasing pressure of energy saving governments of the world have been promoting the reform of oil and gas fields for years. Nowadays environmentally friendly alternatives to provide electricity are hotspots such as the integration of traditional energy and renewable energy. However the determination of system with great environmental and economic benefits is still controversial. This paper proposed a wind– hydrogen–natural gas nexus (WHNGN) system for sustainable offshore oil and gas fields development. Combining the optimization model with the techno-economic evaluation model a comprehensive evaluation framework is established for techno-economic feasibility analysis. In addition to WHNGN system another two systems are designed for comparison including the traditional energy supply (TES) system and wind–natural gas nexus (WNGN) system. An offshore production platforms in Bohai Bay in China is taken as a case and the results indicate that: (i) WNGN and WHNGN systems have significant economic benefits total investment is decreased by 5190 and 5020 million $ respectively and the WHNGN system increases 4174 million $ profit; (ii) WNGN and WHNGN systems have significant environmental benefits annual carbon emission is decreased by 15 and 40.2 million kg respectively; (iii) the system can be ranked by economic benefits as follows: WHNGN >WNGN > TES; and (iV) the WHNGN system is more advantageous in areas with high hydrogen and natural gas sales prices such as China Kazakhstan Turkey India Malaysia and Indonesia.
Optimization of Geothermal- and Solar-driven Clean Electricity and Hydrogen Production Multi-generation Systems to Address the Energy Nexus
Jan 2022
Publication
Given the limited sources of fossil fuels mankind should find new ways to meet its energy demands. In this regard geothermal and solar energy are acknowledged as reliable safe promising and clean means for this purpose. In this research study a comparative analysis is applied on geothermal and solar-driven multi-generation systems for clean electricity and hydrogen production through energy and exergy assessments. The system consists of an organic Rankine cycle a proton electrolyte membrane electrolyzer and a thermoelectric generator subsystem. The Engineering Equation Solver software has been utilized in order to model the system and obtain the output contours sensitivity analysis and exergy destruction. The results were calculated considering the ambient temperature of Bandar Abbas city as a case study considering the geothermal system due to better performance in comparison to the solar system. According to the sensitivity analysis the turbine efficiency evaporator inlet temperature thermoelectric generator suitability criterion pump efficiency and evaporator inlet mass flow rate are the most influential parameters. Also the exergy analysis showed that the utmost system's exergy destruction is pertinent to the evaporator and the least is related to the pump. In addition the system produces 352816 kWh and 174.913 kg of electrical power and hydrogen during one year.
Novel Fuzzy Control Energy Management Strategy for Fuel Cell Hybrid Electric Vehicles Considering State of Health
Oct 2021
Publication
Due to the low efficiency and high pollution of conventional internal combustion engine vehicles the fuel cell hybrid electric vehicles are expected to play a key role in the future of clean energy transportation attributed to the long driving range short hydrogen refueling time and environmental advantages. The development of energy management strategies has an important impact on the economy and durability but most strategies ignore the aging of fuel cells and the corresponding impact on hydrogen consumption. In this paper a rule-based fuzzy control strategy is proposed based on the constructed data-driven online estimation model of fuel cell health. Then a genetic algorithm is used to optimize this fuzzy controller where the objective function is designed to consider both the economy and durability by combining the hydrogen consumption cost and the degradation cost characterized by the fuel cell health status. Considering that the rule-based strategy is more sensitive to operating conditions this paper uses an artificial neural network for predictive control. The results are compared with those obtained from the genetic algorithm optimized fuzzy controller and are found to be very similar where the prediction accuracy is assessed using MAPE RMSE and 10-fold cross-validation. Experiments show that the developed strategy has a good generalization capability for variable driving cycles.
Research on Economic and Operating Characteristics of Hydrogen Fuel Cell Cars Based on Real Vehicle Tests
Nov 2021
Publication
With the increase of the requirement for the economy of vehicles and the strengthening of the concept of environmental protection the development of future vehicles will develop in the direction of high efficiency and cleanliness and the current power system of vehicles based on traditional fossil fuels will gradually transition to hybrid power. As an essential technological direction for new energy vehicles the development of fuel cell passenger vehicles is of great significance in reducing transportation carbon emissions stabilizing energy supply and maintaining the sustainable development of the automotive industry. To study the fuel economy of a passenger car with the proton exchange membrane fuel cell (PEMFC) during the operating phase two typical PEMFC passenger cars test vehicles A and B were compared and analyzed. The hydrogen consumption and hydrogen emission under two operating conditions namely the different steady-state power and the Chinese Vehicle Driving Conditions-Passenger Car cycle were tested. The test results show the actual hydrogen consumption rates of vehicle A and vehicle B are 9.77 g/kM and 8.28 g/kM respectively. The average hydrogen emission rates for vehicle A and vehicle B are 1.56 g/(kW·h) and 5.40 g/(kW·h) respectively. By comparing the hydrogen purge valve opening time ratio the differences between test vehicles A and B in control strategy hydrogen consumption and emission rate are analyzed. This study will provide reference data for China to study the economics of the operational phase of PEMFC vehicles.
Hydrogen Production by Water Electrolysis with Low Power and High Efficiency Based on Pre‐Magnetic Polarization
Mar 2022
Publication
In this paper a method of efficient hydrogen production using low‐power electrolysis based on pre‐magnetic polarization was proposed in order to improve the rate of hydrogen produc‐ tion by water electrolysis with reduced energy consumption molecular polarity and stress–strain characteristics of distilled water under the condition of a pre‐magnetic field. By constructing a mi‐ crophysical model of hydrogen proton energy‐level transition and a macroscopic mathematical model corresponding to magnetization vector‐polarization hydrogen proton concentration in the pre‐magnetic field the ionic conductivity electrolyte current density interelectrode voltage and hydrogen production efficiency under a varying magnetic field were qualitatively and quantita‐ tively analyzed. In addition an adjustable pre‐magnetic polarization hydrolyzing hydrogen pro‐ duction test platform was set up to verify the effectiveness of the proposed method. The repeated test results within a magnetic field strength range of 0–10000 GS showed that the conductivity of distilled water after pre‐magnetic polarization treatment increased by 2–3 times the electrolytic current density of the PEM (Proton Exchange Membrane) increased with increasing magnetic field strength the voltage between the poles continuously decreased and the hydrogen production rate was significantly improved. When the magnetic field strength reached 10000 GS the rate of hydro‐ gen production by the electrolysis of distilled water increased by 15%–20% within a certain period of time.
Temperature Effect on the Mechanical Properties of Liner Materials used for Type IV Hydrogen Storage Tanks
Sep 2021
Publication
Type IV hydrogen storage tanks play an important role in hydrogen fuel cell vehicles (HFCVs) due to their superiority of lightweight good corrosion and fatigue resistance. It is planned to be used between -40℃ and 85℃ at which the polymer liner may have a degradation of mechanical properties and buckling collapse. This demand a good performance of liner materials in that temperature range. In this article the temperature effect on mechanical properties of polyamide 6 (PA6) liner material including specimens with weld seam was investigated via the stress-strain curve (S-S curve) macroscopic and microscopic morphology. Considering that the mechanical properties will change after the liner molding process this test takes samples directly from the liner. Results show that the tensile strength and tensile modulus increased by 2.46 times and 10.6 times respectively with the decrease of temperature especially in the range from 50℃ to -90℃. For the elongation at break and work of fracture they do not monotonously increase with the temperature up. Both of them reduce when the temperature rises from 20°C to 50°C especially for the work of fracture decreasing by 63%. The weld seam weakens the mechanical properties and the elongation at break and work of fracture are more obvious which are greater than 40% at each temperature. In addition the SEM images indicate that the morphology of fracture surface at -90°C is different from that at other temperatures which is a sufficient evidence of toughness reducing in low temperature.
Optimization of Operating Hydrogen Storage System for Coal–Wind–Solar Power Generation
Jul 2022
Publication
To address the severity of the wind and light abandonment problem and the economics of hydrogen energy production and operation this paper explores the problem of multi-cycle resource allocation optimization of hydrogen storage systems for coal–wind–solar power generation. In view of the seriousness of the problem of abandoning wind and photovoltaic power and the economy of hydrogen production and operation the node selection and scale setting issues for hydrogen production and storage as well as decision-making problems such as the capacity of new transmission lines and new pipelines and route planning are studied. This research takes the satisfaction of energy supply as the basic constraint and constructs a multi-cycle resource allocation optimization model for an integrated energy system aiming to achieve the maximum benefit of the whole system. Using data from Inner Mongolia where wind abandonment and power limitation are severe and Beijing and Shanxi provinces where hydrogen demand is high this paper analyzes the benefits of the hydrogen storage system for coal–wind–solar power generation and explores the impact of national subsidy policies and technological advances on system economics.
Two-stage Optimization of Hydrogen and Storage Coordination for a Multi-region Flexible Intermodal Multi-energy Port System
Jan 2024
Publication
To address the issue of imbalanced electricity and hydrogen supply and demand in the flexible multi-energy port area system a multi-regional operational optimization and energy storage capacity allocation strategy considering the working status of flexible multi-status switches is proposed. Firstly based on the characteristics of the port area system models for system operating costs generation equipment energy storage devices flexible multi-status switches and others are established. Secondly the system is subjected to a first-stage optimization where different regions are optimized individually. The working periods of flexible multi-status switches are determined based on the results of this first-stage optimization targeting the minimization of the overall daily operating costs while ensuring 100% integration of renewable energy in periods with electricity supply-demand imbalances. Subsequently additional constraints are imposed based on the results of the first-stage optimization to optimize the entire system obtaining power allocation during system operation as well as power and capacity requirements for energy storage devices and flexible multi-status switches. Finally the proposed approach is validated through simulation examples demonstrating its advantages in terms of economic efficiency reduced power and capacity requirements for energy storage devices and carbon reduction.
Operational Optimization of Regional Integrated Energy Systems with Heat Pumps and Hydrogen Renewable Energy under Integrated Demand Response
Jan 2024
Publication
A regional integrated energy system (RIES) synergizing multiple energy forms is pivotal for enhancing renewable energy use and mitigating the greenhouse effect. Considering that the equipment of the current regional comprehensive energy system is relatively simple there is a coupling relationship linking power generation refrigeration and heating in the cogeneration system which is complex and cannot directly meet various load demands. This article proposes a RIES optimization model for bottom-source heat pumps and hydrogen storage systems in the context of comprehensive demand response. First P2G electric hydrogen production technology was introduced into RIES to give full play to the high efficiency advantages of hydrogen energy storage system and the adjustable thermoelectric ratio of the HFC was considered. The HFC could adjust its own thermoelectric ratio according to the system load and unit output. Second through the groundsource heat pump’s cleaning efficiency function further separation and cooling could be achieved. The heat and electrical output of RIES improved the operating efficiency of the system. Thirdly a comprehensive demand response model for heating cooling and electricity was established to enable users to reasonably adjust their own energy use strategies to promote the rational distribution of energy in the system. The model integrates power-to-gas (P2G) technology leveraging the tunable thermoelectric ratio of a hydrogen fuel cell (HFC) to optimize the generation of electricity and heat while maximizing the efficiency of the hydrogen storage system. Empirical analysis substantiated the proposed RIES model’s effectiveness and economic benefits when integrating ground-source HP and electric hydrogen production with IDR. Compared with the original model the daily operating cost of the proposed model was reduced by RMB 1884.16.
Optimal Multi-layer Economical Schedule for Coordinated Multiple Mode Operation of Wind-solar Microgrids with Hybrid Energy Storage Systems
Nov 2023
Publication
The aim of this paper is the design and implementation of an advanced model predictive control (MPC) strategy for the management of a wind–solar microgrid (MG) both in the islanded and grid-connected modes. The MG includes energy storage systems (ESSs) and interacts with external hydrogen and electricity consumers as an extra feature. The system participates in two different electricity markets i.e. the daily and real-time markets characterized by different time-scales. Thus a high-layer control (HLC) and a low-layer control (LLC) are developed for the daily market and the real-time market respectively. The sporadic characteristics of renewable energy sources and the variations in load demand are also briefly discussed by proposing a controller based on the stochastic MPC approach. Numerical simulations with real wind and solar generation profiles and spot prices show that the proposed controller optimally manages the ESSs even when there is a deviation between the predicted scenario determined at the HLC and the real-time one managed by the LLC. Finally the strategy is tested on a lab-scale MG set up at Khalifa University Abu Dhabi UAE.
Optimization of Emergency Alternatives for Hydrogen Leakage and Explosion Accidents Based on Improved VIKOR
Nov 2023
Publication
Hydrogen leakage and explosion accidents have obvious dangers ambiguity of accident information and urgency of decision-making time. These characteristics bring challenges to the optimization of emergency alternatives for such accidents. Effective emergency decision making is crucial to mitigating the consequences of accidents and minimizing losses and can provide a vital reference for emergency management in the field of hydrogen energy. An improved VIKOR emergency alternatives optimization method is proposed based on the combination of hesitant triangular fuzzy set (HTFS) and the cumulative prospect theory (CPT) termed the HTFS-CPT-VIKOR method. This method adopts the hesitant triangular fuzzy number to represent the decision information on the alternatives under the influence of multi-attributes constructs alternatives evaluation indicators and solves the indicator weights by using the deviation method. Based on CPT positive and negative ideal points were used as reference points to construct the prospect matrix which then utilized the VIKOR method to optimize the emergency alternatives for hydrogen leakage and explosion accidents. Taking an accident at a hydrogen refueling station as an example the effectiveness and rationality of the HTFS-CPT-VIKOR method were verified by comparing with the existing three methods and conducting parameter sensitivity analysis. Research results show that the HTFS-CPT-VIKOR method effectively captures the limited psychological behavior characteristics of decision makers and enhances their ability to identify filter and judge ambiguous information making the decisionmaking alternatives more in line with the actual environment which provided strong support for the optimization of emergency alternatives for hydrogen leakage and explosion accidents.
Multi-Objective Robust Optimization of Integrated Energy System with Hydrogen Energy Storage
Feb 2024
Publication
A novel multi-objective robust optimization model of an integrated energy system with hydrogen storage (HIES) considering source–load uncertainty is proposed to promote the low-carbon economy operation of the integrated energy system of a park. Firstly the lowest total system cost and carbon emissions are selected as the multi-objective optimization functions. The Pareto front solution set of the objective function is applied by compromise planning and the optimal solution among them is obtained by the maximum–minimum fuzzy method. Furthermore the robust optimization (RO) approach is introduced to cope with the source–load uncertainty effectively. Finally it is demonstrated that the illustrated HIES can significantly reduce the total system cost carbon emissions and abandoned wind and solar power. Meanwhile the effectiveness of the proposed model and solution method is verified by analyzing the influence of multi-objective solutions and a robust coefficient on the Chongli Demonstration Project in Hebei Province.
A Review of the Research Progress and Application of Key Components in the Hydrogen Fuel Cell System
Jan 2024
Publication
The hydrogen cycle system one of the main systems used for hydrogen fuel cells has many advantages. It can improve the efficiency the water capacity and the management of thermal fuel cells. It can also enhance the safety of the system. Therefore it is widely used in hydrogen fuel cell vehicles. We introduce the structure and principles of hydrogen cycle pumps ejectors and steam separators and analyze and summarize the advantages of the components as well as reviewing the latest research progress and industrialization status of hydrogen cycle pumps and ejectors. The technical challenges in hydrogen circulation systems and the development direction of key technologies in the future are discussed. This paper aims to provide a reference for research concerning hydrogen energy storage application technology in hydrogen fuel cell systems.
Numerical Simulation of the Transport and the Thermodynamic Properties of Imported Natural Gas Inected with Hydrogen in the Manifold
Nov 2023
Publication
Blending hydrogen with natural gas (NG) is an efficient method for transporting hydrogen on a large scale at a low cost. The manifold at the NG initial station is an important piece of equipment that enables the blending of hydrogen with NG. However there are differences in the components and component contents of imported NG from different countries. The components of hydrogen-blended NG can affect the safety and efficiency of transportation through pipeline systems. Therefore numerical simulations were performed to investigate the blending process and changes in the thermodynamic properties of four imported NGs and hydrogen in the manifold. The higher the heavy hydrocarbon content in the imported NG the longer the distance required for the gas to mix uniformly with hydrogen in the pipeline. Hydrogen blending reduces the temperature and density of NG. The gas composition is the main factor affecting the molar calorific value of a gas mixture and hydrogen blending reduces the molar calorific value of NG. The larger the content of high-molar calorific components in the imported NG the higher the molar calorific value of the gas after hydrogen blending. Increasing both the temperature and hydrogen mixing ratio reduces the Joule-Thomson coefficient of the hydrogen-blended NG. The results of this study provide technical references for the transport of hydrogen-blended NG.
Green Hydrogen Credit Subsidized Renewable Energy-hydrogen Business Models for Achieving the Carbon Netural Future
Feb 2024
Publication
The global resurgence of hydrogen as a clean energy source particularly green hydrogen derived from renewable energy is pivotal for achieving a carbon-neutral future. However scalability poses a significant challenge. This research proposes innovative business models leveraging the low-emission property of green hydrogen to reduce its financial costs thereby fostering its widespread adoption. Key components of the business workflow are elaborated mathematical formulations of market parameters are derived and case studies are presented to demonstrate the feasibility and efficiency of these models. Results demonstrate that the substantial costs associated with the current hydrogen industry can be effectively subsidized via the implementation of proposed business models. When the carbon emission price falls within the range of approximately 86–105 USD/ton free access to hydrogen becomes a viable option for end-users. This highlights the significance and promising potential of the proposed business models within the green hydrogen credit framework.
Optimal Siting and Sizing of Hydrogen Production Modules in Distribution Networks with Photovoltaic Uncertainties
Nov 2023
Publication
Hydrogen production modules (HPMs) play a crucial role in harnessing abundant photovoltaic power by producing and supplying hydrogen to factories resulting in significant operational cost reductions and efficient utilization of the photovoltaic panel output. However the output of photovoltaic power is stochastic which will affect the revenue of investing in an HPM. This paper presents a comprehensive analysis of HPMs starting with the modeling of their operational process and investigating their influence on distribution system operations. Building upon these discussions a deterministic optimization model is established to address the corresponding challenges. Furthermore a two-stage stochastic planning model is proposed to determine optimal locations and sizes of HPMs in distribution systems accounting for uncertainties. The objective of the twostage stochastic planning model is to minimize the distribution system’s operational costs plus the investment costs of the HPM subject to power flow constraints. To tackle the stochastic nature of photovoltaic power a data-driven algorithm is introduced to cluster historical data into representative scenarios effectively reducing the planning model’s scale. To ensure an efficient solution a Benders’ decomposition-based algorithm is proposed which is an iterative method with a fast convergence speed. The proposed model and algorithms are validated using a widely utilized IEEE 33-bus system through numerical experiments demonstrating the optimality of the HPM plan generated by the algorithm. The proposed model and algorithms offer an effective approach for decision-makers in managing uncertainties and optimizing HPM deployment paving the way for sustainable and efficient energy solutions in distribution systems. Sensitivity analysis verifies the optimality of the HPM’s siting and sizing obtained by the proposed algorithm which also reveals immense economic and environmental benefits.
Research on Hydrogen Production System Technology Based on Photovoltaic-Photothermal Coupling Electrolyzer
Dec 2023
Publication
Solar hydrogen production technology is a key technology for building a clean low-carbon safe and efficient energy system. At present the intermittency and volatility of renewable energy have caused a lot of “wind and light.” By combining renewable energy with electrolytic water technology to produce high-purity hydrogen and oxygen which can be converted into electricity the utilization rate of renewable energy can be effectively improved while helping to improve the solar hydrogen production system. This paper summarizes and analyzes the research status and development direction of solar hydrogen production technology from three aspects. Energy supply mode: the role of solar PV systems and PT systems in this technology is analyzed. System control: the key technology and system structure of different types of electrolytic cells are introduced in detail. System economy: the economy and improvement measures of electrolytic cells are analyzed from the perspectives of cost consumption efficiency and durability. Finally the development prospects of solar hydrogen production systems in China are summarized and anticipated. This article reviews the current research status of photovoltaic-photothermal coupled electrolysis cell systems fills the current research gap and provides theoretical reference for the further development of solar hydrogen production systems.
Safety Risk and Strategy Analysis of On-Board Hydrogen System of Hydrogen Fuel Cell Vehicles in China
Nov 2023
Publication
Hydrogen fuel cell vehicles (HFCVs) represent an important breakthrough in the hydrogen energy industry. The safe utilization of hydrogen is critical for the sustainable and healthy development of hydrogen fuel cell vehicles. In this study risk factors and preventive measures are proposed for on-board hydrogen systems during the process of transportation storage and use of fuel cell vehicles. The relevant hydrogen safety standards in China are also analyzed and suggestions involving four safety strategies and three safety standards are proposed.
Research on Energy Management Method of Fuel Cell/Supercapacitor Hybrid Trams Based on Optimal Hydrogen Consumption
Jul 2023
Publication
In this paper based on the operating states and characteristics of fuel cell/supercapacitor hybrid trams an optimal hydrogen energy management method is proposed. This method divides the operating states into two parts: traction state and non-traction state. In the traction state the real-time loss function of the hybrid power system which is used to obtain the fuel cell optimal output power under the different demand powers and supercapacitor voltage is established. In the non-traction state the constant-power charging method which is obtained by solving the power-voltage charging model is used to ensure the supercapacitor voltage of the beginning-state and the end-state in an entire operation cycle are the same. The RT-LAB simulation platform is used to verify that the proposed method has the ability to control the hybrid real-time system. Using the comparative experiment between the proposed method and power-follow method the results show that the proposed method offers a significant improvement in both fuel cell output stability and hydrogen consumption in a full operation cycle.
Evaluation of Hydrogen Addition on Combustion and Emission Characteristics of Dual-Fuel Diesel Engines with Different Compression Ratios
Sep 2023
Publication
In this paper a computational fluid dynamics (CFD) model was established and verified on the basis of experimental results and then the effect of hydrogenation addition on combustion and emission characteristics of a diesel–hydrogen dual-fuel engine fueled with hydrogenation addition (0% 5% and 10%) under different hydrogenation energy shares (HESs) and compression ratios (CRs) were investigated using CONVERGE3.0 software. And this work assumed that the hydrogen and air were premixed uniformly. The correctness of the simulation model was verified by experimental data. The values of HES are in the range of 0% 5% 10% and 15%. And the values of CR are in the range of 14 16 18 and 20. The results of this study showed that the addition of hydrogen to diesel fuel has a significant effect on the combustion characteristics and the emission characteristics of diesel engines. When the HES was 15% the in-cylinder pressure increased by 10.54%. The in-cylinder temperature increased by 15.11%. When the CR was 20 the in-cylinder pressure and the in-cylinder temperature increased by 66.10% and 13.09% respectively. In all cases HC CO CO2 and soot emissions decreased as the HES increased. But NOx emission increased.
Distributionally Robust Optimal Scheduling of Integrated Energy Systems Including Hydrogen Fuel Cells Considering Uncertainties
Aug 2023
Publication
The economic operation of the integrated energy system faces the problems of coupling between energy production and conversion equipment in the system and the imbalance of various energy demands. Therefore taking system safety as the constraint and minimum economic cost as the objective function including fuel cost operation and maintenance cost this paper proposes the operation dispatching model of the integrated energy system based on hydrogen fuel cell (HFC) including HFC photovoltaic wind turbine electric boiler electric chiller absorption chiller electric energy storage and thermal energy storage equipment. On this basis a distributionally robust optimization (DRO) model is introduced to deal with the uncertainty of wind power and photovoltaic output. In the distributionally robust optimization model Kullback–Leibler (KL) divergence is used to construct an ambiguity set which is mainly used to describe the prediction errors of renewable energy output. Finally the DRO economic dispatching model of the HFC integrated energy system (HFCIES) is established. Besides based on the same load scenario the economic benefits of hybrid energy storage equipment are discussed. The dispatching results show that compared with the scenario of only electric energy storage and only thermal energy storage the economic cost of the scenario of hybrid electric and thermal storage can be reduced by 3.92% and 7.55% respectively and the use of energy supply equipment can be reduced and the stability of the energy storage equipment can be improved.
Off-grid Wind/Hydrogen Systems with Multi-electrolyzers: Optimized Operational Strategies
Sep 2023
Publication
Optimized operation of wind/hydrogen systems can increase the system efficiency and further reduce the hydrogen production cost. In this regard extensive research has been done but there is a lack of detailed electrolyzer models and effective management of multiple electrolyzers considering their physical restrictions. This work proposes electrolyzer models that integrate the efficiency variation caused by load level change start–stop cycle (including hot and cold start) thermal management and degradation caused by frequent starts. Based on the proposed models three operational strategies are considered in this paper: two traditionally utilized methods simple start–stop and cycle rotation strategies and a newly proposed rolling optimizationbased strategy. The results from daily operation show that the new strategy results in a more balanced load level among the electrolyzers and a more stable temperature. Besides from a yearly operation perspective it is found that the proposed rolling optimization method results in more hydrogen production higher system efficiency and lower LCOH. The new method leads to hydrogen production of 311297 kg compared to 289278 kg and 303758 kg for simple start–stop and cycle rotation methods. Correspondingly the system efficiencies for the new simple start–stop and cycle rotation methods are 0.613 0.572 and 0.587. The resulting LCOH from the new method is 3.89 e/kg decreasing by 0.35 e/kg and 0.21 e/kg compared to the simple start–stop and cycle rotation methods. Finally the proposed model is compared with two conventional models to show its effectiveness in revealing more operational details and reliable results.
Real-Time Energy Management Strategy of Hydrogen Fuel Cell Hybrid Electric Vehicles Based on Power Following Strategy–Fuzzy Logic Control Strategy Hybrid Control
Nov 2023
Publication
Fuel cell hybrid electric vehicles have the advantages of zero emission high efficiency and fast refuelling etc. and are one of the key directions for vehicle development. The energy management problem of fuel cell hybrid electric vehicles is the key technology for power distribution. The traditional power following strategy has the advantage of a real-time operation but the power correction is usually based only on the state of charge of a lithium battery which causes the operating point of the fuel cell to be in the region of a low efficiency. To solve this problem this paper proposes a hybrid power-following-fuzzy control strategy where a fuzzy logic control strategy is used to optimise the correction module based on the power following strategy which regulates the state of charge while correcting the output power of the fuel cell towards the efficient operating point. The results of the joint simulation with Matlab + Advisor under the Globally Harmonised Light Vehicle Test Cycle Conditions show that the proposed strategy still ensures the advantages of real-time energy management and for the hydrogen fuel cell the hydrogen consumption is reduced by 13.5% and 4.1% compared with the power following strategy and the fuzzy logic control strategy and the average output power variability is reduced by 14.6% and 5.1% respectively which is important for improving the economy of the whole vehicle and prolonging the lifetime of fuel cell.
Capacity Configuration Optimization for Green Hydrogen Generation by Solar-wind Hybrid Power Based on Comprehensive Performance Criteria
Aug 2023
Publication
Green hydrogen generation driven by solar-wind hybrid power is a key strategy for obtaining the low-carbon energy while by considering the fluctuation natures of solar-wind energy resource the system capacity configuration of power generation hydrogen production and essential storage devices need to be comprehensively optimized. In this work a solar-wind hybrid green hydrogen production system is developed by combining the hydrogen storage equipment with the power grid the coordinated operation strategy of solar-wind hybrid hydrogen production is proposed furthermore the NSGA-III algorithm is used to optimize the system capacity configuration with the comprehensive performance criteria of economy environment and energy efficiency. Through the implemented case study with the hydrogen production capacity of 20000 tons/year the abandoned energy power rate will be reduced to 3.32% with the electrolytic cell average load factor of 64.77% and the system achieves the remarkable carbon emission reduction. In addition with the advantage of connect to the power grid the generated surplus solar/wind power can be readily transmitted with addition income when the sale price of produced hydrogen is suggested to 27.80 CNY/kgH2 the internal rate of return of the system reaches to 8% which present the reasonable economic potential. The research provides technical and methodological suggestions and guidance for the development of solar-wind hybrid hydrogen production schemes with favorable comprehensive performance.
Optimized Scheduling of Integrated Energy Systems Accounting for Hydrogen Energy Multi-Utilization Models
Jan 2024
Publication
To cope with the growing penetration rate of renewable energy and to enhance the absorption capacity of wind power this paper investigates the applications of an Integrated Energy System (IES) Hydrogen Compressed Natural Gas (HCNG) and power-to-hydrogen (P2H) devices within the IES. It employs power-to-gas and gas blending with hydrogen to construct an efficient electricity–gas–electricity energy flow loop establishing a Natural Gas–Electricity Coupling System (NGECS) model. On this basis a coordinated scheduling method for gas–electric coupling systems using gas blended with hydrogen is proposed. A carbon trading mechanism is introduced to constrain carbon emissions further reducing the system’s carbon footprint. Multiple scenarios are set up for a comparative analysis in order to validate the effectiveness of the proposed model. This study also analyzes the impact of different hydrogen blending ratios and methods on the low-carbon and economic performance of IES.
An Experimental Study on the Large-Volume Liquid Hydrogen Release in an Open Space
Apr 2024
Publication
Liquid hydrogen is one of the high-quality energy carriers but a large leak of liquid hydrogen can pose significant safety risks. Understanding its diffusion law after accidental leakage is an important issue for the safe utilization of hydrogen energy. In this paper a series of open-space large-volume liquid hydrogen release experiments are performed to observe the evolution of visible clouds during the release and an array of hydrogen concentration sensors is set up to monitor the fluctuation in hydrogen concentration at different locations. Based on the experimental conditions the diffusion of hydrogen clouds in the atmosphere under different release hole diameters and different ground materials is compared. The results show that with the release of liquid hydrogen the white visible cloud formed by air condensation or solidification is generated rapidly and spread widely and the visible cloud is most obvious near the ground. With the termination of liquid hydrogen release solid air is deposited on the ground and the visible clouds gradually shrink from the far field to the release source. Hydrogen concentration fluctuations in the far field in the case of the cobblestone ground are more dependent on spontaneous diffusion by the hydrogen concentration gradient. In addition compared with the concrete ground the cobblestone ground has greater resistance to liquid hydrogen extension; the diffusion of hydrogen clouds to the far field lags. The rapid increase stage of hydrogen concentration at N8 in Test 7 lags about 3 s behind N12 in Test 6 N3 lags about 7.5 s behind N1 and N16 lags about 8.25 s behind N14. The near-source space is prone to high-concentration hydrogen clouds. The duration of the high-concentration hydrogen cloud at N12 is about 15 s which is twice as long as the duration at N8 increasing the safety risk of the near-source space.
Knock Mitigation and Power Enhancement of Hydrogen Spark-Ignition Engine through Ammonia Blending
Jun 2023
Publication
Hydrogen and ammonia are primary carbon-free fuels that have massive production potential. In regard to their flame properties these two fuels largely represent the two extremes among all fuels. The extremely fast flame speed of hydrogen can lead to an easy deflagration-to-detonation transition and cause detonation-type engine knock that limits the global equivalence ratio and consequently the engine power. The very low flame speed and reactivity of ammonia can lead to a low heat release rate and cause difficulty in ignition and ammonia slip. Adding ammonia into hydrogen can effectively modulate flame speed and hence the heat release rate which in turn mitigates engine knock and retains the zero-carbon nature of the system. However a key issue that remains unclear is the blending ratio of NH3 that provides the desired heat release rate emission level and engine power. In the present work a 3D computational combustion study is conducted to search for the optimal hydrogen/ammonia mixture that is knock-free and meanwhile allows sufficient power in a typical spark-ignition engine configuration. Parametric studies with varying global equivalence ratios and hydrogen/ammonia blends are conducted. The results show that with added ammonia engine knock can be avoided even under stoichiometric operating conditions. Due to the increased global equivalence ratio and added ammonia the energy content of trapped charge as well as work output per cycle is increased. About 90% of the work output of a pure gasoline engine under the same conditions can be reached by hydrogen/ammonia blends. The work shows great potential of blended fuel or hydrogen/ammonia dual fuel in high-speed SI engines.
Hydrogen as a Transition Tool in a Fossil Fuel Resource Region: Taking China’s Coal Capital Shanxi as an Example
Aug 2023
Publication
Because of the pressure to meet carbon neutrality targets carbon reduction has become a challenge for fossil fuel resource-based regions. Even though China has become the most active country in carbon reduction its extensive energy supply and security demand make it difficult to turn away from its dependence on coal-based fossil energy. This paper analyzes the Chinese coal capital—Shanxi Province—to determine whether the green low-carbon energy transition should be focused on coal resource areas. In these locations the selection and effect of transition tools are key to ensuring that China meets its carbon reduction goal. Due to the time window of clean coal utilization the pressure of local governments and the survival demands of local high energy consuming enterprises Shanxi Province chose hydrogen as its important transition tool. A path for developing hydrogen resources has been established through lobbying and corporative influence on local and provincial governments. Based on such policy guidance Shanxi has realized hydrogen applications in large-scale industrial parks regional public transport and the iron and steel industry. This paper distinguishes between the development strategies of gray and green hydrogen. It shows that hydrogen can be an effective development model for resource-based regions as it balances economic stability and energy transition.
Electrocatalysts for the Generation of Hydrogen, Oxygen and Synthesis Gas
Sep 2016
Publication
Water electrolysis is the most promising method for efficient production of high purity hydrogen (and oxygen) while the required power input for the electrolysis process can be provided by renewable sources (e.g. solar or wind). The thus produced hydrogen can be used either directly as a fuel or as a reducing agent in chemical processes such as in Fischer–Tropsch synthesis. Water splitting can be realized both at low temperatures (typically below 100 °C) and at high temperatures (steam water electrolysis at 500– 1000 °C) while different ionic agents can be electrochemically transferred during the electrolysis process (OH− H+ O2− ). Singular requirements apply in each of the electrolysis technologies (alkaline polymer electrolyte membrane and solid oxide electrolysis) for ensuring high electrocatalytic activity and long-term stability. The aim of the present article is to provide a brief overview on the effect of the nature and structure of the catalyst–electrode materials on the electrolyzer’s performance. Past findings and recent progress in the development of efficient anode and cathode materials appropriate for large-scale water electrolysis are presented. The current trends limitations and perspectives for future developments are summarized for the diverse electrolysis technologies of water splitting while the case of CO2/H2O co-electrolysis (for synthesis gas production) is also discussed.
Collaborative Optimization Scheduling of Multi-Microgrids Incorporating Hydrogen-Doped Natural Gas and P2G–CCS Coupling under Carbon Trading and Carbon Emission Constraints
Apr 2024
Publication
In the context of “dual carbon” restrictions on carbon emissions have aĴracted widespread aĴention from researchers. In order to solve the issue of the insufficient exploration of the synergistic emission reduction effects of various low-carbon policies and technologies applied to multiple microgrids we propose a multi-microgrid electricity cooperation optimization scheduling strategy based on stepped carbon trading a hydrogen-doped natural gas system and P2G–CCS coupled operation. Firstly a multi-energy microgrid model is developed coupled with hydrogendoped natural gas system and P2G–CCS and then carbon trading and a carbon emission restriction mechanism are introduced. Based on this a model for multi-microgrid electricity cooperation is established. Secondly design optimization strategies for solving the model are divided into the dayahead stage and the intraday stage. In the day-ahead stage an improved alternating direction multiplier method is used to distribute the model to minimize the cooperative costs of multiple microgrids. In the intraday stage based on the day-ahead scheduling results an intraday scheduling model is established and a rolling optimization strategy to adjust the output of microgrid equipment and energy purchases is adopted which reduces the impact of uncertainties in new energy output and load forecasting and improves the economic and low-carbon operation of multiple microgrids. SeĴing up different scenarios for experimental validation demonstrates the effectiveness of the introduced low-carbon policies and technologies as well as the effectiveness of their synergistic interaction
Optimal Capacity Configuration of Wind–Solar Hydrogen Storage Microgrid Based on IDW-PSO
Aug 2023
Publication
Because the new energy is intermittent and uncertain it has an influence on the system’s output power stability. A hydrogen energy storage system is added to the system to create a wind light and hydrogen integrated energy system which increases the utilization rate of renewable energy while encouraging the consumption of renewable energy and lowering the rate of abandoning wind and light. Considering the system’s comprehensive operation cost economy power fluctuation and power shortage as the goal considering the relationship between power generation and load assigning charging and discharging commands to storage batteries and hydrogen energy storage and constructing a model for optimal capacity allocation of wind–hydrogen microgrid system. The optimal configuration model of the wind solar and hydrogen microgrid system capacity is constructed. A particle swarm optimization with dynamic adjustment of inertial weight (IDW-PSO) is proposed to solve the optimal allocation scheme of the model in order to achieve the optimal allocation of energy storage capacity in a wind–hydrogen storage microgrid. Finally a microgrid system in Beijing is taken as an example for simulation and solution and the results demonstrate that the proposed approach has the characteristics to optimize the economy and improve the capacity of renewable energy consumption realize the inhibition of the fluctuations of power reduce system power shortage and accelerate the convergence speed.
Inter-Zone Optimal Scheduling of Rural Wind–Biomass-Hydrogen Integrated Energy System
Aug 2023
Publication
To solve the problems of low utilization of biomass and uncertainty and intermittency of wind power (WP) in rural winter an interval optimization model of a rural integrated energy system with biogas fermentation and electrolytic hydrogen production is constructed in this paper. Firstly a biogas fermentation kinetic model and a biogas hydrogen blending model are developed. Secondly the interval number is used to describe the uncertainty of WP and an interval optimization scheduling model is developed to minimize daily operating cost. Finally a rural integrated energy system in Northeast China is taken as an example and a sensitivity analysis of electricity price gas production and biomass price is conducted. The simulation results show that the proposed strategy can significantly reduce the wind abandonment rate and improve the economy by 3.8–22.3% compared with conventional energy storage under optimal dispatch.
Low-carbon Economy Dispatching of Integrated Energy System with P2G-HGT Coupling Wind Power Absorption Based on Stepped Carbon Emission Trading
Aug 2023
Publication
To improve the renewable energy consumption capacity of integrated energy system (IES) and reduce the carbon emission level of the system a low-carbon economic dispatch model of IES with coupled power-to-gas (P2G) and hydrogen-doped gas units (HGT) under the stepped carbon trading mechanism is proposed. On the premise of wind power output uncertainty the operating characteristics of the coupled electricity-to-gas equipment in the system are used to improve the wind abandonment problem of IES and increase its renewable energy consumption capacity; HGT is introduced to replace the traditional combustion engine for energy supply and on the basis of refined P2G a part of the volume fraction of hydrogen obtained from the production is extracted and mixed with methane to form a gas mixture for HGT combustion so as to improve the low-carbon economy of the system. The ladder type carbon trading mechanism is introduced into IES to guide the system to control carbon emission behavior and reduce the carbon emission level of IES. Based on this an optimal dispatching strategy is constructed with the economic goal of minimizing the sum of system operation cost wind abandonment cost carbon trading cost and energy purchase cost. After linearization of the established model and comparison analysis by setting different scenarios the wind power utilization rate of the proposed model is increased by 24.5% and the wind abandonment cost and CO2 emission are reduced by 86.3% and 10.5% respectively compared with the traditional IES system which achieves the improvement of renewable energy consumption level and low carbon economy.
Study on the Dynamic Optimal Control Strategy of an Electric-Hydrogen Hybrid Energy Storage System for a Direct Drive Wave Power Generation System
Jul 2023
Publication
A direct drive wave power generation system (DDWPGS) has the advantages of a simple structure and easy deployment and is the first choice to provide electricity for islands and operation platforms in the deep sea. However due to the off-grid the source and load cannot be matched so accommodation is an important issue. Hydrogen storage is the optimal choice for offshore wave energy accommodation. Therefore aiming at the source-load mismatch problem of the DDWPGS an electric-hydrogen hybrid energy storage system (HESS) for the DDWPGS is designed in this paper. Based on the characteristics of the devices in the electric-hydrogen HESS a new dynamic power allocation strategy and its control strategy are proposed. Firstly empirical mode decomposition (EMD) is utilized to allocate the power fluctuations that need to be stabilized. Secondly with the state of charge (SOC) of the battery and the operating characteristics of the alkaline electrolyzer being considered the power assignments of the battery and the electrolyzer are determined using the rule-based method. In addition model predictive control (MPC) with good tracking performance is used to adjust the output power of the battery and electrolyzer. Finally the supercapacitor (SC) is controlled to maintain the DC bus voltage while also balancing the system’s power. A simulation was established to verify the feasibility of the designed system. The results show that the electric-hydrogen HESS can stabilize the power fluctuations dynamically when the DDWPGS captures instantaneous power. Moreover its control strategy can not only reduce the start-stop times of the alkaline electrolyzer but also help the energy storage devices to maintain a good state and extend the service life.
Design and Optimization of a Type-C Tank for Liquid Hydrogen Marine Transport
May 2023
Publication
As one of the most promising renewable energy sources hydrogen has the excellent environmental benefit of producing zero emissions. A key technical challenge in using hydrogen across sectors is placed on its storage technology. The storage temperature of liquid hydrogen (20 K or 253 C) is close to absolute zero so the storage materials and the insulation layers are subjected to extremely stringent requirements against the cryogenic behaviour of the medium. In this context this research proposed to design a large liquid hydrogen type-C tank with AISI (American Iron and Steel Institution) type 316 L stainless steel as the metal barrier using Vapor-Cooled Shield (VCS) and Rigid Polyurethane Foams (RPF) as the insulation layer. A parametric study on the design of the insulation layer was carried out by establishing a thermodynamic model. The effects of VCS location on heat ingress to the liquid hydrogen transport tank and insulation temperature distribution were investigated and the optimal location of the VCS in the insulation was identified. Research outcomes finally suggest two optimal design schemes: (1) when the thickness of the insulation layer is determined Self-evaporation Vapor-Cooled Shield (SVCS) and Forcedevaporation Vapor-Cooled Shield (FVCS) can reduce heat transfer by 47.84% and 85.86% respectively; (2) when the liquid hydrogen evaporation capacity is determined SVCS and FVCS can reduce the thickness of the insulation layer by 50% and 67.93% respectively.
Research on Capacity Optimization Configuration of Renewable Energy Off Grid Hydrogen Production System Considering Collaborative Electrolysis
Apr 2024
Publication
This study proposes a multitype electrolytic collaborative hydrogen production model for optimizing the capacity configuration of renewable energy off grid hydrogen production systems. The electrolytic hydrogen production process utilizes the synergistic electrolysis of an alkaline electrolyzer (AEL) and proton exchange membrane electrolyzer (PEMEL) fully leveraging the advantages of the low cost of the AEL and strong regulation characteristics of the PEMEL. For the convenience of the optimization solution the article constructs a mixed linear optimization model that considers the constraints during system operation with the objective function of minimizing total costs while meeting industrial production requirements. Gurobi is used for the optimal solution to obtain the optimal configuration of a renewable energy off grid hydrogen production system. By comparing and analyzing the optimal configuration under conventional load and high-load conditions it is concluded that collaborative electrolysis has advantages in improving resource consumption and reducing hydrogen production costs. This is of great significance for optimizing the capacity configuration of off grid hydrogen production systems and improving the overall economic benefits of the system.
Leakage and Diffusion Characteristics of Underground Hydrogen Pipeline
Jun 2023
Publication
Soil corrosion and hydrogen embrittlement are the main factors of hydrogen pipeline failure. The gas escapes diffuses and accumulating in the soil and entering the atmosphere when leak occurs. The mechanism of gas diffusion in buried pipelines is very complicated. Mastering the evolution law of hydrogen leakage diffusion is conducive to quickly locating the leakage point and reducing the loss. The leakage model of the underground hydrogen pipeline is established in this paper. Effect of leakage hole soil type pipeline pressure pipeline diameter on hydrogen leakage diffusion were investigated. The results show that when the hydrogen pipeline leaks the hydrogen concentration increases with the increase of leakage time showing a symmetrical distribution trend. With the pipeline pressure increase hydrogen leakage speed is accelerated and longitudinal diffusion gradually becomes the dominant direction. With the leakage diameter increases hydrogen leakage per unit of time increases sharply. Hydrogen diffuses more easily in sandy soil and diffusion speed concentration and range are higher than that in clay soil. The research content provides a reference and basis for the detection and evaluation of buried hydrogen pipeline leakage.
Optimal Capacity Planning of Green Electricity-Based Industrial Electricity-Hydrogen Multi-Energy System Considering Variable Unit Cost Sequence
Apr 2024
Publication
Utilizing renewable energy sources (RESs) such as wind and solar to convert electrical energy into hydrogen energy can promote the accommodation of green electricity. This paper proposes an optimal capacity planning approach for an industrial electricity-hydrogen multi-energy system (EHMES) aimed to achieve the local utilization of RES and facilitate the transition to carbon reduction in industrial settings. The proposed approach models the EHMES equipment in detail and divides the system’s investment and operation into producer and consumer sides with energy trading for effective integration. Through this effort the specialized management for different operators and seamless incorporation of RES into industrial users can be achieved. In addition the variations in investment and operating costs of equipment across different installed capacities are considered to ensure a practical alignment with real-world scenarios. By conducting a detailed case study the influence of various factors on the capacity configuration outcomes within an EHMES is analyzed. The results demonstrate that the proposed method can effectively address the capacity configuration of equipment within EHMES based on the local accommodation of RES and variable unit cost sequence. Wind power serves as the primary source of green electricity in the system. Energy storage acts as crucial equipment for enhancing the utilization rate of RES.
Advantages and Technological Progress of Hydrogen Fuel Cell Vehicles
Jun 2023
Publication
The automotive industry is undergoing a profound transformation driven by the need for sustainable and environmentally friendly transportation solutions [1]. In this context fuel cell technology has emerged as a promising alternative offering clean efficient and high-performance power sources for vehicles [2]. Fuel cell vehicles are electric vehicles that use fuel cell systems as a single power source or as a hybrid power source in combination with rechargeable energy storage systems. A typical fuel cell system for electric vehicle is exhibited in Figure 1 which provides a comprehensive demonstration of this kind of complex system. Hydrogen energy is a crucial field in the new energy revolution and will become a key pillar in building a green efficient and secure new energy system. As a critical field for hydrogen utilization fuel cell vehicles will play an important role in the transformation and development of the automotive industry. The development of fuel cell vehicles offers numerous advantages such as strong power outputs safety reliability and economic energy savings [3]. However improvements must urgently be made in existing technologies such as fuel cell stacks (including proton exchange membranes catalysts gas diffusion layers and bipolar plates) compressors and onboard hydrogen storage systems [4]. The advantages and current technological status are analyzed here.
The Necessity and Feasibility of Hydrogen Storage for Large-Scale, Long-Term Energy Storage in the New Power System in China
Jun 2023
Publication
In the process of building a new power system with new energy sources as the mainstay wind power and photovoltaic energy enter the multiplication stage with randomness and uncertainty and the foundation and support role of large-scale long-time energy storage is highlighted. Considering the advantages of hydrogen energy storage in large-scale cross-seasonal and cross-regional aspects the necessity feasibility and economy of hydrogen energy participation in long-time energy storage under the new power system are discussed. Firstly power supply and demand production simulations were carried out based on the characteristics of new energy generation in China. When the penetration of new energy sources in the new power system reaches 45% long-term energy storage becomes an essential regulation tool. Secondly by comparing the storage duration storage scale and application scenarios of various energy storage technologies it was determined that hydrogen storage is the most preferable choice to participate in large-scale and long-term energy storage. Three long-time hydrogen storage methods are screened out from numerous hydrogen storage technologies including salt-cavern hydrogen storage natural gas blending and solid-state hydrogen storage. Finally by analyzing the development status and economy of the above three types of hydrogen storage technologies and based on the geographical characteristics and resource endowment of China it is pointed out that China will form a hydrogen storage system of “solid state hydrogen storage above ground and salt cavern storage underground” in the future.
Comparative Techno-economic Analysis of Large-scale Renewable Energy Storage Technologies
Jun 2023
Publication
Energy storage is an effective way to address the instability of renewable energy generation modes such as wind and solar which are projected to play an important role in the sustainable and low-carbon society. Economics and carbon emissions are important indicators that should be thoroughly considered for evaluating the feasibility of energy storage technologies (ESTs). In this study we study two promising routes for large-scale renewable energy storage electrochemical energy storage (EES) and hydrogen energy storage (HES) via technical analysis of the ESTs. The levelized cost of storage (LCOS) carbon emissions and uncertainty assessments for EESs and HESs over the life cycle are conducted with full consideration of the critical links for these routes. In order to reduce the evaluation error we use the Monte Carlo method to derive a large number of data for estimating the economy and carbon emission level of ESTs based on the collected data. The results show that lithium ion (Li-ion) batteries show the lowest LCOS and carbon emissions at 0.314 US$ kWh-1 and 72.76 gCO2e kWh-1 compared with other batteries for EES. Different HES routes meaning different combinations of hydrogen production delivery and refueling methods show substantial differences in economics and the lowest LCOS and carbon emissions at 0.227 US$ kWh-1 and 61.63 gCO2e kWh-1 are achieved using HES routes that involve hydrogen production by alkaline electrolyzer (AE) delivery by hydrogen pipeline and corresponding refueling. The findings of this study suggest that HES and EES have comparable levels of economics and carbon emissions that should be both considered for large-scale renewable energy storage to achieve future decarbonization goals.
Design of a Multi-inlet Solar Thermochemical Reactor for Steam Methane Reforming with Improved Performance
Feb 2023
Publication
Reactor structure design plays an important role in the performance of solar-thermal methane reforming reactors. Based on a conventional preheating reactor this study proposed a cylindrical solar methane reforming reactor with multiple inlets to vary the temperature field distribution which improved the temperature of the reaction region in the reactor thereby improving the reactor performance. A multi-physical model that considers mass momentum species and energy conservation as well as thermochemical reaction kinetics of methane reforming was applied to numerically investigate the reactor performance and analyze the factors that affect performance improvement. It was found that compared with a conventional preheating reactor the proposed cylindrical reactor with inner and external inlets for gas feeding enhanced heat recovery from the exhausted gas and provided a more suitable temperature field for the reaction in the reactor. Under different operating conditions the methane conversion in the cylindrical reactor with multi-inlet increased by 9.5% to 19.1% and the hydrogen production was enhanced by 12.1% to 40.3% in comparison with the conventional design even though the total reaction catalyst volume was reduced.
Potential of Salt Caverns for Hydrogen Storage in Southern Ontario, Canada
Jul 2023
Publication
Salt caverns produced by solution mining in Southern Ontario provide ideal spaces for gas storage due to their low permeability. Underground hydrogen storage (UHS) is an important part of the future renewable energy market in Ontario in order to achieve global carbon neutrality and to fill the gap left by retiring nuclear power plants. However large-scale hydrogen storage is still restricted by limited storage space on the ground’s surface. In this study hydrogen’s physical and chemical properties are first introduced and characterized by low molecular weight high diffusivity low solubility and low density. Then the geological conditions of the underground reservoirs are analyzed especially salt caverns. Salt caverns with their inert cavity environments and stable physical properties offer the most promising options for future hydrogen storage. The scales heights and thicknesses of the roof and floor salt layers and the internal temperatures and pressures conditions of salt caverns can affect stabilities and storage capacities. Finally several potential problems that may affect the safe storage of hydrogen in salt caverns are discussed. Through the comprehensive analysis of the influencing factors of hydrogen storage in salt caverns this study puts forward the most appropriate development strategy for salt caverns which provides theoretical guidance for UHS in the future and helps to reduce the risk of large-scale storage design.
Economic Analysis of a Photovoltaic Hydrogen Refueling Station Based on Hydrogen Load
Sep 2023
Publication
With the goal of achieving “carbon peak in 2030 and carbon neutrality in 2060” as clearly proposed by China the transportation sector will face long–term pressure on carbon emissions and the application of hydrogen fuel cell vehicles will usher in a rapid growth period. However true “zero carbon” emissions cannot be separated from “green hydrogen”. Therefore it is of practical significance to explore the feasibility of renewable energy hydrogen production in the context of hydrogen refueling stations especially photovoltaic hydrogen production which is applied to hydrogen refueling stations (hereinafter referred to “photovoltaic hydrogen refueling stations”). This paper takes a hydrogen refueling station in Shanghai with a supply capacity of 500 kg/day as the research object. Based on a characteristic analysis of the hydrogen demand of the hydrogen refueling station throughout the day this paper studies and analyzes the system configuration operation strategy environmental effects and economics of the photovoltaic hydrogen refueling station. It is estimated that when the hydrogen price is no less than 6.23 USD the photovoltaic hydrogen refueling station has good economic benefits. Additionally compared with the conventional hydrogen refueling station it can reduce carbon emissions by approximately 1237.28 tons per year with good environmental benefits.
No more items...