China, People’s Republic
Influence of Air Distribution on Combustion Characteristics of a Micro Gas Turbine Fuelled by Hydrogen-doped Methane
Nov 2021
Publication
Adding hydrogen to the fuel can change the combustion characteristics and greatly improve the pollutants emission for the gas turbine. The numerical method was adopted to study the combustion process in a counter-flow combustor of a 100 kW micro gas turbine using methane doped by hydrogen and various distribution schemes of air flow. The combustion characteristics and pollutant emissions were explored to ascertain the influence of air dis Read More
The Influence of Grain Boundary and Hydrogen on the Indetation of Bi-crystal Nickel
Sep 2021
Publication
Three different types of symmetrical tilt grain boundaries Ȉ3 Ȉ11 and Ȉ27 were constructed to study the dislocation behavior under the indentation on bi-crystal nickel. After hydrogen charging the number of hydrogen atoms in the Ȉ3 sample is the smallest and gradually increases in Ȉ11 and Ȉ27 samples. The force-displacement curve of indentation shows that the deformation resistance of the Ȉ3 sample is significantly higher than that of Ȉ11 and Ȉ27 samples. Read More
Research on High-Pressure Hydrogen Pre-Cooling Based on CFD Technology in Fast Filling Process
Dec 2021
Publication
In the fast filling process in order to control the temperature of the vehicle-mounted storage tank not to exceed the upper limit of 85 ◦C it is an effective method to add a hydrogen pre-cooling system upstream of the hydrogenation machine. In this paper Fluent is used to simulate the heat transfer process of high-pressure hydrogen in a shell-and-tube heat exchanger and the phase change process of refrigerant R23. The accuracy of the model is prove Read More
Comprehensive Performance Evaluation of Densified Liquid Hydrogen/Liquid Oxygen as Propulsion Fuel
Jan 2022
Publication
Densified liquid hydrogen/liquid oxygen is a promising propulsion fuel in the future. In order to systematically demonstrate the benefits and challenges of densified liquid hydrogen/liquid oxygen a transient thermodynamical model considering the heat leakage temperature rise engine thrust pressurization pressure of the tank and wall thickness of tank is developed in the present paper and the performance of densified liquid hydrogen/liquid oxygen a Read More
Improved Hydrogen Separation Performance of Asymmetric Oxygen Transport Membranes by Grooving in the Porous Support Layer
Nov 2020
Publication
Hydrogen separation through oxygen transport membranes (OTMs) has attracted much attention. Asymmetric membranes with thin dense layers provide low bulk diffusion resistances and high overall hydrogen separation performances. However the resistance in the porous support layer (PSL) limits the overall separation performance significantly. Engineering the structure of the PSL is an appropriate way to enable fast gas transport and increase the sep Read More
Research Progress of Cryogenic Materials for Storage and Transportation of Liquid Hydrogen
Jul 2021
Publication
Liquid hydrogen is the main fuel of large-scale low-temperature heavy-duty rockets and has become the key direction of energy development in China in recent years. As an important application carrier in the large-scale storage and transportation of liquid hydrogen liquid hydrogen cryogenic storage and transportation containers are the key equipment related to the national defense security of China’s aerospace and energy fields. Due to the low te Read More
Design and Performance Assessment of a Solar-to-hydrogen System Thermally Assisted by Recovered Heat from a Molten Carbonate Fuel Cell
Mar 2022
Publication
Solar-to-hydrogen plants are predominantly based on steam electrolysis. Steam electrolysis requires water electricity and heat. The excess electric energy is generally converted into hydrogen via an electrolyser. The use of waste heat in hydrogen generation process promises energy efficiency improvement and production fluctuation reductions. This work investigates the techno-economic performance of the proposed system which recovers the waste he Read More
Converting Sewage Water into H2 Fuel Gas Using Cu/CuO Nanoporous Photocatalytic Electrodes
Feb 2022
Publication
This work reports on H2 fuel generation from sewage water using Cu/CuO nanoporous (NP) electrodes. This is a novel concept for converting contaminated water into H2 fuel. The preparation of Cu/CuO NP was achieved using a simple thermal combustion process of Cu metallic foil at 550 ◦C for 1 h. The Cu/CuO surface consists of island-like structures with an inter-distance of 100 nm. Each island has a highly porous surface with a pore diameter of about 2 Read More
Extreme Energetic Materials at Ultrahigh Pressures
Jul 2020
Publication
Owing to their extremely high energy density single-bonded polymeric nitrogen and atomic metallic hydrogen are generally regarded as the ultimate energetic materials. Although their syntheses normally require ultrahigh pressures of several hundred gigapascals (GPa) which prohibit direct materials application research on their stability metastability and fundamental properties are valuable for seeking extreme energetic materials through alte Read More
A Financial Model for Lithium-ion Storage in a Photovoltaic and Biogas Energy System
May 2019
Publication
Electrical energy storage (EES) such as lithium-ion (Li-ion) batteries can reduce curtailment of renewables maximizing renewable utilization by storing surplus electricity. Several techno-economic analyses have been performed on EES but few have investigated the financial performance. This paper presents a state-of-the-art financial model obtaining novel and significative financial and economics results when applied to Li-ion EES. This work is a significant ste Read More
Graphitic Carbon Nitride Heterojunction Photocatalysts for Solar Hydrogen Production
Sep 2021
Publication
Photocatalytic hydrogen production is considered as an ideal approach to solve global energy crisis and environmental pollution. Graphitic carbon nitride (g-C3N4) has received extensive consideration due to its facile synthesis stable physicochemical properties and easy functionalization. However the pristine g-C3N4 usually shows unsatisfactory photocatalytic activity due to the limited separation efficiency of photogenerated charge carriers. Generally intr Read More
Numerical Simulation of Hydrogen Leakage from Fuel Cell Vehicle in an Outdoor Parking Garage
Aug 2021
Publication
It is significant to assess the hydrogen safety of fuel cell vehicles (FCVs) in parking garages with a rapidly increased number of FCVs. In the present work a Flame Acceleration Simulator (FLACS) a computational fluid dynamics (CFD) module using finite element calculation was utilized to predict the dispersion process of flammable hydrogen clouds which was performed by hydrogen leakage from a fuel cell vehicle in an outdoor parking garage. The effec Read More
Current Research Progress in Magnesium Borohydride for Hydrogen Storage (A review)
Nov 2021
Publication
Hydrogen storage in solid-state materials is believed to be a most promising hydrogen-storage technology for high efficiency low risk and low cost. Mg(BH4)2 is regarded as one of most potential materials in hydrogen storage areas in view of its high hydrogen capacities (14.9 wt% and 145–147 kg cm3 ). However the drawbacks of Mg(BH4)2 including high desorption temperatures (about 250 C–580 C) sluggish kinetics and poor reversibility make it difficult to Read More
Oxygen Carriers for Chemical-looping Water Splitting to Hydrogen Production: A Critical Review
Oct 2021
Publication
Chemical looping water splitting (CLWS) process using metal oxides or perovskites as oxygen carriers (OCs) is capable of producing pure H2 in an efficient simple and flexible way. The OCs are first reduced by hydrocarbon fuels and then oxidized by steam in a cyclic way. After the condensation of the gaseous mixture of steam and H2 from the oxidation step pure H2 is obtained. In recent years great efforts for CLWS have been made to improve the redo Read More
Hydrogen Diffusion and Its Effect on Hydrogen Embrittlement in DP Steels with Different Martensite Content
Dec 2020
Publication
The hydrogen diffusion behavior and hydrogen embrittlement susceptibility of dual phase (DP) steels with different martensite content were investigated using the slow strain-rate tensile test and hydrogen permeation measurement. Results showed that a logarithmic relationship was established between the hydrogen embrittlement index (IHE) and the effective hydrogen diffusion coefficient (Deff). When the martensite content is low ferrite/ martensite Read More
Numerical Study of Combustion and Emission Characteristics for Hydrogen Mixed Fuel in the Methane-Fueled Gas Turbine Combustor
Jan 2023
Publication
The aeroderivative gas turbine is widely used as it demonstrates many advantages. Adding hydrogen to natural gas fuels can improve the performance of combustion. Following this the effects of hydrogen enrichment on combustion characteristics were analyzed in an aeroderivative gas turbine combustor using CFD simulations. The numerical model was validated with experimental results. The conditions of the constant mass flow rate and the constant en Read More
Thermodynamics and Kinetics of Hydriding and Dehydriding Reactions in Mg-based Hydrogen Storage Materials
Oct 2021
Publication
Mg-based materials are one of the most promising hydrogen storage candidates due to their high hydrogen storage capacity environmental benignity and high Clarke number characteristics. However the limited thermodynamics and kinetic properties pose major challenges for their engineering applications. Herein we review the recent progress in improving their thermodynamics and kinetics with an emphasis on the models and the influence of variou Read More
Hydrogen Inhibition as Explosion Prevention in Wet Metal Dust Removal Systems
Mar 2022
Publication
Hydrogen energy attracts an amount of attention as an environmentally friendly and sustainable energy source. However hydrogen is also flammable. Hydrogen fires and explosions might occur in wet-dust-removal systems if accumulated aluminum dust reacts with water. Hydrogen inhibition is a safe method to address these issues. For this purpose we used sodium citrate a renewable and nontoxic raw material to inhibit H2 formation. Specifical Read More
A Real-Time Load Prediction Control for Fuel Cell Hybrid Vehicle
May 2022
Publication
The development of hydrogen energy is an effective solution to the energy and environmental crisis. Hydrogen fuel cells and energy storage cells as hybrid power have broad application prospects in the field of vehicle power. Energy management strategies are key technologies for fuel cell hybrid systems. The traditional optimization strategy is generally based on optimization under the global operating conditions. The purpose of this project is to develop Read More
Synthesizing the High Surface Area g-C3N4 for Greatly Enhanced Hydrogen Production
Jul 2021
Publication
Adjusting the structure of g-C3N4 to significantly enhance its photocatalytic activity has attracted considerable attention. Herein a novel sponge-like g-C3N4 with a porous structure is prepared from the annealing of protonated melamine under N2/H2 atmosphere (PH-CN). Compared to bulk g-C3N4 via calcination of melamine under ambient atmosphere (B-CN) PH-CN displays thinner nanosheets and a higher surface area (150.1 m2/g) which is a Read More
No more items...