China, People’s Republic
Study on the Effects of the Hydrogen Substitution Rate on the Performance of a Hydrogen–Diesel Dual-Fuel Engine under Different Loads
Aug 2023
Publication
Due to having zero carbon emissions and renewable advantages hydrogen has great prospects as a renewable form of alternate energy. Engine load and hydrogen substitution rate have a considerable influence on a hydrogen–diesel dual-fuel engine’s efficiency. This experiment’s objective is to study the influence of hydrogen substitution rate on engine combustion and emission under different loads and to study the impact of exhaust gas recirculation (EGR) technology or main injection timing on the engine’s capability under high load and high hydrogen substitution rate. The range of the maximum hydrogen substitution rate was determined under different loads (30%~90%) at 1800 rpm and then the effects of the EGR rate (0%~15%) and main injection timing (−8 ◦CA ATDC~0 ◦CA ATDC) on the engine performance under 90% high load were studied. The research results show that the larger the load the smaller the maximum hydrogen substitution rate that can be added to the dual-fuel engine. Under each load with the increase of the hydrogen substitution rate the cylinder pressure and the peak heat release rate (HRR) increase the equivalent brake-specific fuel consumption (BSFCequ) decreases the thermal efficiency increases the maximum thermal efficiency is 43.1% the carbon dioxide (CO2 ) emission is effectively reduced by 35.2% and the nitrogen oxide (NOx) emission decreases at medium and low loads and the maximum increase rate is 20.1% at 90% load. Under high load with the increase of EGR rate or the delay of main injection timing the problem of NOx emission increases after hydrogen doping can be effectively solved. As the EGR rate rises from 0% to 15% the maximum reduction of NOx is 63.1% and with the delay of main injection timing from −8 ◦CA ATDC to 0 ◦CA ATDC the maximum reduction of NOx is 44.5%.
Greenhouse Gas Reduction Potential and Economics of Green Hydrogen via Water Electrolysis: A Systematic Review of Value-Chain-Wide Decarbonization
May 2024
Publication
Green hydrogen generated via water electrolysis has become an essential energy carrier for achieving carbon neutrality globally because of its versatility in renewable energy consumption and decarbonization applications in hard-to-abate sectors; however there is a lack of systematic analyses of its abatement potential and economics as an alternative to traditional technological decarbonization pathways. Based on bibliometric analysis and systematic evaluation methods this study characterizes and analyzes the literature on the Web of Science from 1996 to 2023 identifying research hotspots methodological models and research trends in green hydrogen for mitigating climate change across total value chain systems. Our review shows that this research theme has entered a rapid development phase since 2016 with developed countries possessing more scientific results and closer partnerships. Difficult-to-abate sectoral applications and cleaner production are the most famous value chain links and research hotspots focus on three major influencing factors: the environment; techno-economics; and energy. Green hydrogen applications which include carbon avoidance and embedding to realize carbon recycling have considerable carbon reduction potential; however uncertainty limits the influence of carbon reduction cost assessment indicators based on financial analysis methods for policy guidance. The abatement costs in the decarbonization sector vary widely across value chains electricity sources baseline scenarios technology mixes and time scenarios. This review shows that thematic research trends are focused on improving and optimizing solutions to uncertainties as well as studying multisectoral synergies and the application of abatement assessment metrics.
Review of the Status and Prospects of Fiber Optic Hydrogen Sensing Technology
Aug 2023
Publication
With the unprecedented development of green and renewable energy sources the proportion of clean hydrogen (H2 ) applications grows rapidly. Since H2 has physicochemical properties of being highly permeable and combustible high-performance H2 sensors to detect and monitor hydrogen concentration are essential. This review discusses a variety of fiber-optic-based H2 sensor technologies since the year 1984 including: interferometer technology fiber grating technology surface plasma resonance (SPR) technology micro lens technology evanescent field technology integrated optical waveguide technology direct transmission/reflection detection technology etc. These technologies have been evolving from simply pursuing high sensitivity and low detection limits (LDL) to focusing on multiple performance parameters to match various application demands such as: high temperature resistance fast response speed fast recovery speed large concentration range low cross sensitivity excellent long-term stability etc. On the basis of palladium (Pd)-sensitive material alloy metals catalysts or nanoparticles are proposed to improve the performance of fiberoptic-based H2 sensors including gold (Au) silver (Ag) platinum (Pt) zinc oxide (ZnO) titanium oxide (TiO2 ) tungsten oxide (WO3 ) Mg70Ti30 polydimethylsiloxane (PDMS) graphene oxide (GO) etc. Various microstructure processes of the side and end of optical fiber H2 sensors are also discussed in this review.
An Integrated Demand Response Dispatch Strategy for Low-carbon Energy Supply Park Considering Electricity-Hydrogen-Carbon Coordination
Apr 2023
Publication
Driven by the goal of ‘carbon peak carbon neutrality’ an integrated demand response strategy for integrated electricity– hydrogen energy systems is proposed for low-carbon energy supply parks considering the multi-level and multi-energy characteristics of campus-based microgrids. Firstly considering the spatial and temporal complementary nature of wind and photovoltaic generation and energy utilization the energy flow framework of the park is built based on the electricity and hydrogen energy carriers. Clean energy is employed as the main energy supply and power heat cooling and gas loads are considered energy consumption. Secondly the operation mechanism of coupled hydrogen storage hydrogen fuel cell and carbon capture equipment is analyzed in the two-stage power-to-gas conversion process. Thirdly considering the operating costs and environmental costs of the park an integrated demand response dispatch model is constructed for the coupled electricity– hydrogen–carbon system while satisfying the system equipment constraints network constraints and energy balance constraints of the park system. Finally Case study in an energy supply park system is implemented. The dispatch results of the integrated demand response with customer participation in the conventional electricity–hydrogen and electricity–hydrogen–carbon modes are compared to verify the effectiveness of the proposed strategy in renewable accommodation environmental protection and economic benefits.
PEM Water Electrolysis for Hydrogen Production: Fundamentals, Advances, and Prospects
Jun 2022
Publication
Hydrogen as a clean energy carrier is of great potential to be an alternative fuel in the future. Proton exchange membrane (PEM) water electrolysis is hailed as the most desired technology for high purity hydrogen production and self-consistent with volatility of renewable energies has ignited much attention in the past decades based on the high current density greater energy efficiency small mass-volume characteristic easy handling and maintenance. To date substantial efforts have been devoted to the development of advanced electrocatalysts to improve electrolytic efficiency and reduce the cost of PEM electrolyser. In this review we firstly compare the alkaline water electrolysis (AWE) solid oxide electrolysis (SOE) and PEM water electrolysis and highlight the advantages of PEM water electrolysis. Furthermore we summarize the recent progress in PEM water electrolysis including hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) electrocatalysts in the acidic electrolyte. We also introduce other PEM cell components (including membrane electrode assembly current collector and bipolar plate). Finally the current challenges and an outlook for the future development of PEM water electrolysis technology for application in future hydrogen production are provided.
Small-Scale High-Pressure Hydrogen Storage Vessels: A Review
Feb 2024
Publication
Nowadays high-pressure hydrogen storage is the most commercially used technology owing to its high hydrogen purity rapid charging/discharging of hydrogen and low-cost manufacturing. Despite numerous reviews on hydrogen storage technologies there is a relative scarcity of comprehensive examinations specifically focused on high-pressure gaseous hydrogen storage and its associated materials. This article systematically presents the manufacturing processes and materials used for a variety of high-pressure hydrogen storage containers including metal cylinders carbon fiber composite cylinders and emerging glass material-based hydrogen storage containers. Furthermore it introduces the relevant principles and theoretical studies showcasing their advantages and disadvantages compared to conventional high-pressure hydrogen storage containers. Finally this article provides an outlook on the future development of high-pressure hydrogen storage containers.
Storage Integrity During Underground Hydrogen Storage in Depleted Gas Reservoirs
Nov 2023
Publication
The transition from fossil fuels to renewable energy sources particularly hydrogen has emerged as a central strategy for decarbonization and the pursuit of net-zero carbon emissions. Meeting the demand for large-scale hydrogen storage a crucial component of the hydrogen supply chain has led to the exploration of underground hydrogen storage as an economically viable solution to global energy needs. In contrast to other subsurface storage options such as salt caverns and aquifers which are geographically limited depleted gas reservoirs have garnered increasing attention due to their broader distribution and higher storage capacity. However the safe storage and cycling of hydrogen in depleted gas reservoirs require the preservation of high stability and integrity in the caprock reservoir and wellbore. Nevertheless there exists a significant gap in the current research concerning storage integrity in underground hydrogen storage within depleted gas reservoirs and a systematic approach is lacking. This paper aims to address this gap by reviewing the primary challenges associated with storage integrity including geochemical reactions microbial activities faults and fractures and perspectives on hydrogen cycling. The study comprehensively reviews the processes and impacts such as abiotic and biotic mineral dissolution/precipitation reactivation and propagation of faults and fractures in caprock and host-rock wellbore instability due to cement degradation and casing corrosion and stress changes during hydrogen cycling. To provide a practical solution a technical screening tool has been developed considering controlling variables risks and consequences affecting storage integrity. Finally this paper highlights knowledge gaps and suggests feasible methods and pathways to mitigate these risks facilitating the development of large-scale underground hydrogen storage in depleted gas reservoirs.
Hydrogen Supply Chain for Future Hydrogen-fuelled Railway in the UK: Transport Sector Focused
Aug 2024
Publication
Though being attractive on railway decarbonisation for regional lines excessive cost caused by immature hydrogen supply chain is one of the significant hurdles for promoting hydrogen traction to rolling stocks. Therefore we conduct bespoke research on the UK’s hydrogen supply chain for railway concentrating on hydrogen transportation. Firstly a map for the planned hydrogen production plants and potential hydrogen lines is developed with the location capacity and usage. A spatially explicit model for the hydrogen supply chain is then introduced which optimises the existing grid-based methodology on accuracy and applicability. Compressed hydrogen at three pressures and liquid hydrogen are considered as the mediums incorporating by road and rail transport. Furthermore three scenarios for hydrogen rail penetration are simulated respectively to discuss the levelised cost and the most suitable national transport network. The results show that the developed model with mix-integer linear programming (MILP) can well design the UK’s hydrogen distribution for railway traction. Moreover the hydrogen transport medium and vehicle should adjust to suit for different era where the penetration of hydrogen traction varies. The levelised cost of hydrogen (LCOH) decreases from 6.13 £/kg to 5.13 £/kg on average from the conservative scenario to the radical scenario. Applying different transport combinations according to the specific situation can satisfy the demand while reducing cost for multi-supplier and multitargeting hydrogen transport.
Research on Energy Management in Hydrogen–Electric Coupled Microgrids Based on Deep Reinforcement Learning
Aug 2024
Publication
Hydrogen energy represents an ideal medium for energy storage. By integrating hydrogen power conversion utilization and storage technologies with distributed wind and photovoltaic power generation techniques it is possible to achieve complementary utilization and synergistic operation of multiple energy sources in the form of microgrids. However the diverse operational mechanisms varying capacities and distinct forms of distributed energy sources within hydrogen-coupled microgrids complicate their operational conditions making fine-tuned scheduling management and economic operation challenging. In response this paper proposes an energy management method for hydrogen-coupled microgrids based on the deep deterministic policy gradient (DDPG). This method leverages predictive information on photovoltaic power generation load power and other factors to simulate energy management strategies for hydrogen-coupled microgrids using deep neural networks and obtains the optimal strategy through reinforcement learning ultimately achieving optimized operation of hydrogen-coupled microgrids under complex conditions and uncertainties. The paper includes analysis using typical case studies and compares the optimization effects of the deep deterministic policy gradient and deep Q networks validating the effectiveness and robustness of the proposed method.
A 500 kW Hydrogen Fuel Cell-powered Vessel: From Concept to Sailing
Sep 2024
Publication
This paper presents the “Three Gorges Hydrogen Boat No. 1” a novel green hydrogen-powered vessel that has been successfully delivered and is currently sailing. This vessel integrated with a hydrogen production and bunkering station at its dedicated dock achieves zero-carbon emissions. It stores 240 kg of 35 MPa gaseous hydrogen and has a fuel cell system rated at 500 kW. We analysed the engineering details of the marine hydrogen system including hydrogen bunkering storage supply fuel cell and the hybrid power system with lithium-ion batteries. In the first bunkering trial the vessel was safely refuelled with 200 kg of gaseous hydrogen in 156 min via a bunkering station 13 m above the water surface. The maximum hydrogen pressure and temperature recorded during bunkering were 35.05 MPa and 39.04 ◦C respectively demonstrating safe and reliable shore-toship bunkering. For the sea trial the marine hydrogen system operated successfully during a 3-h voyage achieving a maximum speed of 28.15 km/h (15.2 knots) at rated propulsion power. The vessel exhibited minimal noise and vibration and its dynamic response met load change requirements. To prevent rapid load changes to the fuel cells 68 s were used to reach 483 kW from startup and 62 s from 480 kW to zero. The successful bunkering and operation of this hydrogen-powered vessel demonstrates the feasibility of zero-carbon emission maritime transport. However four lessons were identified concerning bunkering speed hydrogen cylinder leakage hydrogen pressure regulator malfunctions and fuel cell room space. The novelty of this work lies in the practical demonstration of a fully operational hydrogen-powered maritime vessel achieving zero emissions encompassing its design building operation and lessons learned. These parameters and findings can be used as a baseline for further engineering research.
Pressure Dependence of CO2 Effect on Hydrogen-assisted Fatigue Crack Growth in Two Pipeline Steels
Oct 2024
Publication
This study investigated the pressure-dependent CO2 effect on the hydrogen embrittlement of X80 and GB20# pipeline steels by combining experiments and first-principles calculations. Results revealed that the CO2 effect enhanced the fatigue crack growth for GB20# steel in 10 MPa CO₂-enriched hydrogen mixtures. However the improved degree by the CO₂ effect at 10 MPa was less pronounced than at 0.4 MPa which was found for the first time. This was attributed to the decreased adsorption rate of CO₂ on iron as hydrogen pressure increased. Therefore in high-pressure CO₂-enriched hydrogen mixtures CO2 could not significantly accelerate the inherent rapid hydrogen uptake at high pressure.
Economic Analysis of Hydrogen Energy Systems: A Global Perspective
Aug 2024
Publication
In the realm of renewable energy the integration of wind power and hydrogen energy systems represents a promising avenue towards environmental sustainability. However the development of cost-effective hydrogen energy storage solutions is crucial to fully realize the potential of hydrogen as a renewable energy source. By combining wind power generation with hydrogen storage a comprehensive hydrogen energy system can be established. This study aims to devise a physiologically inspired optimization approach for designing a standalone wind power producer that incorporates a hydrogen energy system on a global scale. The optimization process considers both total cost and capacity loss to determine the optimal configuration for the system. The optimal setup for an off-grid solution involves the utilization of eight distinct types of compact horizontal-axis wind turbines. Additionally a sensitivity analysis is conducted by varying component capital costs to assess their impact on overall cost and load loss. Simulation results indicate that at a 15% loss the cost of energy (COE) is $1.3772 while at 0% loss it stands at $1.6908. Capital expenses associated with wind turbines and hydrogen storage systems significantly contribute to the overall cost. Consequently the wind turbine-hydrogen storage system emerges as the most cost-effective and reliable option due to its low cost of energy.
Effect of Gas Composition and Initial Turbulence on the Propagation Dynamics of Premixed Flames of Hydrogen-blended Natural Gas Fuel
Jul 2024
Publication
In order to reduce carbon emissions the effects of gas composition and initial turbulence on the premixed flame dynamics of hydrogen-blended natural gas were investigated. The results show that an increase in hydrogen content leads to earlier formation of flame wrinkles. When the equivalence ratio is 1 and hydrogen blending ratio is below 20% Tulip flames appear approximately 2.25 m away from the ignition point. When hydrogen blending ratio exceeds 20% Tulip flames appear approximately 1.3 m away from the ignition point and twisted Tulip flames appear approximately 2.5 m away from the ignition position. During the 0.05 m process of flame propagation downstream from ignition point flame propagation velocity increases by about 2 m/s for every 10% increase in hydrogen content. The increase in hydrogen content has the most significant impact on the flame propagation velocity during the ignition stage. The average flame propagation velocity increases with the increase of hydrogen blending ratio. The greater the initial turbulence the more obvious the stretching deformation of flame front structure. With the increase of wind speed the flame propagation velocity first increases and then decreases. At a wind speed of 3 m/s the flame propagation velocity reaches its maximum value.
Multi-Objective Parameter Configuration Optimization of Hydrogen Fuel Cell Hybrid Power System for Locomotives
Sep 2024
Publication
Conventional methods of parameterizing fuel cell hybrid power systems (FCHPS) often rely on engineering experience which leads to problems such as increased economic costs and excessive weight of the system. These shortcomings limit the performance of FCHPS in real-world applications. To address these issues this paper proposes a novel method for optimizing the parameter configuration of FCHPS. First the power and energy requirements of the vehicle are determined through traction calculations and a real-time energy management strategy is used to ensure efficient power distribution. On this basis a multi-objective parameter configuration optimization model is developed which comprehensively considers economic cost and system weight and uses a particle swarm optimization (PSO) algorithm to determine the optimal configuration of each power source. The optimization results show that the system economic cost is reduced by 8.76% and 18.05% and the weight is reduced by 11.47% and 9.13% respectively compared with the initial configuration. These results verify the effectiveness of the proposed optimization strategy and demonstrate its potential to improve the overall performance of the FCHPS.
Research on the Dynamic Energy Conversion and Transmission Model of Renewable Energy DC Off-grid Hydrogen System
Sep 2024
Publication
The dynamic response characteristics between the multiple energy flows of electricity-hydrogen-heat in the renewable energy DC off-grid hydrogen production system are highly coupled and nonlinear which leads to the complexity of its energy conversion and transmission law. This study proposes a model to describe the dynamic nonlinear energy conversion and transmission laws specific to such systems. The model develops a nonlinear admittance framework and a conversion characteristic matrix for multi-heterogeneous energy flow subsystems based on the operational characteristics of each subsystem within the DC off-grid hydrogen production system. Building upon this foundation an energy hub model for the hydrogen production system is established yielding the electrical thermal and hydrogen energy outputs along with their respective conversion efficiencies for each subsystem. By discretizing time the energy flow at each time node within the hydrogen production system is computed revealing the system’s dynamic energy transfer patterns. Experiments were conducted using measured wind speed and irradiance data from a specific location in eastern China. Results from selected typical days were analyzed and discussed revealing that subsystem characteristics exhibit nonlinear variation patterns. This highlights the limitations of traditional models in accurately capturing these dynamics. Finally a simulation platform incorporating practical control methods was constructed to validate the model’s accuracy. Validation results demonstrate that the model possesses high accuracy providing a solid theoretical foundation for further in-depth analysis of DC off-grid hydrogen production systems.
Prospects for Long-Distance Cascaded Liquid—Gaseous Hydrogen Delivery: An Economic and Environmental Assessment
Oct 2024
Publication
As an important energy source to achieve carbon neutrality green hydrogen has always faced the problems of high use cost and unsatisfactory environmental benefits due to its remote production areas. Therefore a liquid-gaseous cascade green hydrogen delivery scheme is proposed in this article. In this scheme green hydrogen is liquefied into high-density and low-pressure liquid hydrogen to enable the transport of large quantities of green hydrogen over long distances. After longdistance transport the liquid hydrogen is stored and then gasified at transfer stations and converted into high-pressure hydrogen for distribution to the nearby hydrogen facilities in cities. In addition this study conducted a detailed model evaluation of the scheme around the actual case of hydrogen energy demand in Chengdu City in China and compared it with conventional hydrogen delivery methods. The results show that the unit hydrogen cost of the liquid-gaseous cascade green hydrogen delivery scheme is only 51.58 CNY/kgH2 and the dynamic payback periods of long- and short-distance transportation stages are 13.61 years and 7.02 years respectively. In terms of carbon emissions this scheme only generates indirect carbon emissions of 2.98 kgCO2/kgH2 without using utility electricity. In sum both the economic and carbon emission analyses demonstrate the advantages of the liquidgaseous cascade green hydrogen delivery scheme. With further reductions in electricity prices and liquefication costs this scheme has the potential to provide an economically/environmentally superior solution for future large-scale green hydrogen applications.
Exploring Decarbonization Priorities for Sustainable Shipping: A Natural Language Processing-based Experiment
Oct 2024
Publication
The shipping industry is currently the sixth largest contributor to global emissions responsible for one billion tons of greenhouse gas emissions. Urgent action is needed to achieve carbon neutrality in the shipping industry for sustainability. In this paper we use natural language processing techniques to analyze policies announcements and position papers from national and international organizations related to the decarbonization of shipping. In particular we perform the analysis using a novel matrix-based corpus and a fine-tuned machine learning model BERTopic. Our research suggests that the top four priorities for decarbonizing shipping are preventing emissions from methane leaks promoting non-carbon-based hydrogen implementing reusable modular containers to reduce packaging waste in container shipping and protecting Arctic biodiversity while promoting the Arctic shipping route to reduce costs. Our study highlights the validity of NLP techniques in quantitatively extracting critical information related to the decarbonization of the shipping industry.
Comparative Study and Optimization of Energy Management Strategies for Hydrogen Fuel Cell Vehicles
Sep 2024
Publication
Fuel cell hybrid systems due to their combination of the high energy density of fuel cells and the rapid response capability of power batteries have become an important category of new energy vehicles. This paper discusses energy management strategies in hydrogen fuel cell vehicles. Firstly a detailed comparative analysis of existing PID control strategies and Adaptive Equivalent Consumption Minimization Strategies (A-ECMSs) is conducted. It was found that although A-ECMS can balance the energy utilization of the fuel cell and power battery well the power fluctuations of the fuel cell are significant leading to increased hydrogen consumption. Therefore this paper proposes an improved Adaptive Low-Pass Filter Equivalent Consumption Minimization Strategy (A-LPF-ECMS). By introducing low-pass filtering technology transient changes in fuel cell power are smoothed effectively reducing fuel consumption. Simulation results show that under the 6*FTP75 cycle the energy loss of A-LPF-ECMS is reduced by 10.89% (compared to the PID strategy) and the equivalent hydrogen consumption is reduced by 7.1%; under the 5*WLTC cycle energy loss is reduced by 5.58% and equivalent hydrogen consumption is reduced by 3.18%. The research results indicate that A-LPF-ECMS performs excellently in suppressing fuel cell power fluctuations under idling conditions significantly enhancing the operational efficiency of the fuel cell and showing high application value.
Current Status of Green Hydrogen Production Technology: A Review
Oct 2024
Publication
As a clean energy source hydrogen not only helps to reduce the use of fossil fuels but also promotes the transformation of energy structure and sustainable development. This paper firstly introduces the development status of green hydrogen at home and abroad and then focuses on several advanced green hydrogen production technologies. Then the advantages and shortcomings of different green hydrogen production technologies are compared. Among them the future source of hydrogen tends to be electrolysis water hydrogen production. Finally the challenges and application prospects of the development process of green hydrogen technology are discussed and green hydrogen is expected to become an important part of realizing sustainable global energy development.
Considering Carbon–Hydrogen Coupled Integrated Energy Systems: A Pathway to Sustainable Energy Transition in China Under Uncertainty
Oct 2024
Publication
The low-carbon construction of integrated energy systems is a crucial path to achieving dual carbon goals with the power-generation side having the greatest potential for emissions reduction and the most direct means of reduction which is a current research focus. However existing studies lack the precise modeling of carbon capture devices and the cascaded utilization of hydrogen energy. Therefore this paper establishes a carbon capture power plant model based on a comprehensive flexible operational mode and a coupled model of a two-stage P2G (Power-to-Gas) device exploring the “energy time-shift” characteristics of the coupled system. IGDT (Information Gap Decision Theory) is used to discuss the impact of uncertainties on the power generation side system. The results show that by promoting the consumption of clean energy and utilizing the high energy efficiency of hydrogen while reducing reliance on fossil fuels the proposed system not only meets current energy demands but also achieves a more efficient emission reduction laying a solid foundation for a sustainable future. By considering the impact of uncertainties the system ensures resilience and adaptability under fluctuating renewable energy supply conditions making a significant contribution to the field of sustainable energy transition.
Optimization of Hydrogen Production System Performance Using Photovoltaic/Thermal-Coupled PEM
Oct 2024
Publication
A proton exchange membrane electrolyzer can effectively utilize the electricity generated by intermittent solar power. Different methods of generating electricity may have different efficiencies and hydrogen production rates. Two coupled systems namely PV/T- and CPV/T-coupling PEMEC respectively are presented and compared in this study. A maximum power point tracking algorithm for the photovoltaic system is employed and simulations are conducted based on the solar irradiation intensity and ambient temperature of a specific location on a particular day. The simulation results indicate that the hydrogen production is relatively high between 11:00 and 16:00 with a peak between 12:00 and 13:00. The maximum hydrogen production rate is 99.11 g/s and 29.02 g/s for the CPV/T-PEM and PV/T-PEM systems. The maximum energy efficiency of hydrogen production in CPV/T-PEM and PV/T-PEM systems is 66.7% and 70.6%. Under conditions of high solar irradiation intensity and ambient temperature the system demonstrates higher total efficiency and greater hydrogen production. The CPV/T-PEM system achieves a maximum hydrogen production rate of 2240.41 kg/d with a standard coal saving rate of 15.5 tons/day and a CO2 reduction rate of 38.0 tons/day. Compared to the PV/T-PEM system the CPV/T-PEM system exhibits a higher hydrogen production rate. These findings provide valuable insights into the engineering application of photovoltaic/thermal-coupled hydrogen production technology and contribute to the advancement of this field.
Spatial Optimization Strategies for China's Hydrogen Infrastructure Industry Chain
Oct 2024
Publication
Promoting the development of China’s hydrogen energy industry is crucial for achieving green energy transition. However existing research lacks systematic studies on the spatial layout of the hydrogen industry chain. This study constructed a comprehensive theoretical framework encompassing hardware infrastructure software systems and soft power. Using multi-source heterogeneous data GIS analysis and NVivo text coding methods the current regional layout and challenges of China’s hydrogen infrastructure industry chain were systematically evaluated. The findings determined that economically developed eastern regions lead in infrastructure and soft power while central and western regions leverage their resource and manufacturing advantages. Major challenges include regional imbalances in hardware infrastructure uneven distribution of soft power and misalignment between software systems and actual needs. Analysis of the “14th Five-Year Plan” of various regions elucidated deep insights into the diversity of local hydrogen energy development strategies identifying five types of hydrogen cities: resource-advantaged market-oriented regionally collaborative innovation-driven and policy-supported. Accordingly strategies to enhance industry chain synergy clarify city roles and optimize regional ecosystems were proposed. It is recommended to integrate hydrogen infrastructure with urban planning and incorporate environmental impact assessments into spatial optimization decisions. This study provides a systematic analytical framework and progressive policy recommendations for the efficient and green layout of China’s hydrogen infrastructure offering important implications for the sustainable development of the hydrogen industry and other rapidly developing economies.
The Role of Hydrogen in the Energy Transition of the Oil and Gas Industry
May 2024
Publication
Hydrogen primarily produced from steam methane reforming plays a crucial role in oil refining and provides a solution for the oil and gas industry's long-term energy transition by reducing CO2 emissions. This paper examines hydrogen’s role in this transition. Firstly experiences from oil and gas exploration including in-situ gasification can be leveraged for hydrogen production from subsurface natural hydrogen reservoirs. The produced hydrogen can serve as fuel for generating steam and heat for thermal oil recovery. Secondly hydrogen can be blended into gas for pipeline transportation and used as an alternative fuel for oil and gas hauling trucks. Additionally hydrogen can be stored underground in depleted gas fields. Lastly oilfield water can be utilized for hydrogen production using geothermal energy from subsurface oil and gas fields. Scaling up hydrogen production faces challenges such as shared use of oil and gas infrastructures increased carbon tax for promoting blue hydrogen and the introduction of financial incentives for hydrogen production and consumption hydrogen leakage prevention and detection.
Optimizing Alkaline Water Electrolysis: A Dual-Model Approach for Enhanced Hydrogen Production Efficiency
Nov 2024
Publication
This study develops a semi-empirical model of an alkaline water electrolyzer (AWE) based on thermodynamic and electrochemical principles to investigate cell voltage behavior during electrolysis. By importing polarization curve test data under specific operational conditions eight undefined parameters are precisely fitted demonstrating the model’s high accuracy in describing the voltage characteristics of alkaline electrolyzers. Additionally an AWE system model is introduced to examine the influence of various operational parameters on system efficiency. This innovative approach not only provides detailed insights into the operational dynamics of AWE systems but also offers a valuable tool for optimizing performance and enhancing efficiency advancing the understanding and optimization of AWE technologies.
Mathematical Optimization Modeling for Scenario Analysis of Integrated Steelworks Transitioning Towards Hydrogen-based Reduction
Jul 2024
Publication
To reduce carbon dioxide emissions from the steel industry efforts are made to introduce a steelmaking route based on hydrogen reduction of iron ore instead of the commonly used cokebased reduction in a blast furnace. Changing fundamental pieces of steelworks affects the functions of most every system unit involved and thus warrants the question of how such a transition could optimally take place over time and no rigorous attempts have until now been made to tackle this problem mathematically. This article presents a steel plant optimization model written as a mixed-integer non-linear programming problem where aging blast furnaces and basic oxygen furnaces could potentially be replaced with shaft furnaces and electric arc furnaces minimizing costs or emissions over a long-term time horizon to identify possible transition pathways. Example cases show how various parameters affect optimal investment pathways stressing the necessity of appropriate planning tools for analyzing diverse cases.
Feasibility of Scaling Up the Cost-Competitive and Clean Electrolytic Hydrogen Supply in China
May 2024
Publication
Scaling up clean hydrogen supply in the near future is critical to achieving China’s hydrogen development target. This study established an electrolytic hydrogen development mechanism considering the generation mix and operation optimization of power systems with access to hydrogen. Based on the incremental cost principle we quantified the provincial and national clean hydrogen production cost performance levels in 2030. The results indicated that this mechanism could effectively reduce the production cost of clean hydrogen in most provinces with a national average value of less than 2 USD·kg−1 at the 40-megaton hydrogen supply scale. Provincial cooperation via power transmission lines could further reduce the production cost to 1.72 USD·kg−1. However performance is affected by the potential distribution of hydrogen demand. From the supply side competitiveness of the mechanism is limited to clean hydrogen production while from the demand side it could help electrolytic hydrogen fulfil a more significant role. This study could provide a solution for the ambitious development of renewables and the hydrogen economy in China.
A Review of Hydrogen Production via Seawater Electrolysis: Current Status and Challenges
Oct 2024
Publication
Seawater electrolysis represents a promising green energy technology with significant potential for efficient energy conversion. This study provides an in-depth examination of the key scientific challenges inherent in the seawater-electrolysis process and their potential solutions. Initially it analyzes the potential issues of precipitation and aggregation at the cathode during hydrogen evolution proposing strategies such as self-cleaning cathodes and precipitate removal to ensure cathode stability in seawater electrolysis. Subsequently it addresses the corrosion challenges faced by anode catalysts in seawater introducing several anti-corrosion strategies to enhance anode stability including substrate treatments such as sulfidation phosphidation selenidation and LDH (layered double hydroxide) anion intercalation. Additionally this study explores the role of regulating the electrode surface microenvironment and forming unique coordination environments for active atoms to enhance seawater electrolysis performance. Regulating the surface microenvironment provides a novel approach to mitigating seawater corrosion. Contrary to the traditional understanding that chloride ions accelerate anode corrosion certain catalysts benefit from the unique coordination environment of chloride ions on the catalyst surface potentially enhancing oxygen evolution reaction (OER) performance. Lastly this study presents the latest advancements in the industrialization of seawater electrolysis including the in situ electrolysis of undiluted seawater and the implementation of three-chamber dual anion membranes coupled with circulating electrolyte systems. The prospects of seawater electrolysis are also explored.
Above-ground Hydrogen Storage: A State-of-the-art Review
Nov 2024
Publication
Hydrogen is increasingly recognized as a clean energy alternative offering effective storage solutions for widespread adoption. Advancements in storage electrolysis and fuel cell technologies position hydrogen as a pathway toward cleaner more efficient and resilient energy solutions across various sectors. However challenges like infrastructure development cost-effectiveness and system integration must be addressed. This review comprehensively examines above-ground hydrogen storage technologies and their applications. It highlights the importance of established hydrogen fuel cell infrastructure particularly in gaseous and LH2 systems. The review favors material-based storage for medium- and long-term needs addressing challenges like adverse thermodynamics and kinetics for metal hydrides. It explores hydrogen storage applications in mobile and stationary sectors including fuel-cell electric vehicles aviation maritime power generation systems off-grid stations power backups and combined renewable energy systems. The paper underscores hydrogen’s potential to revolutionize stationary applications and co-generation systems highlighting its significant role in future energy landscapes.
Optimal Scheduling of Electricity and Hydrogen Integrated Energy System Considering Multiple Uncertainties
Apr 2024
Publication
The spread of renewable energy (RE) generation not only promotes economy and the environmental protection but also brings uncertainty to power system. As the integration of hydrogen and electricity can effectively mitigate the fluctuation of RE generation an electricity-hydrogen integrated energy system is constructed. Then this paper studies the source-load uncertainties and corresponding correlation as well as the electricity-hydrogen price uncertainties and corresponding correlation. Finally an optimal scheduling model considering economy environmental protection and demand response (DR) is proposed. The simulation results indicate that the introduction of the DR strategy and the correlation of electricity-hydrogen price can effectively improve the economy of the system. After introducing the DR the operating cost of the system is reduced by 5.59% 10.5% 21.06% in each season respectively. When considering the correlation of EP and HP the operating cost of the system is reduced by 4.71% 6.47% 1.4% in each season respectively.
A Numerial Study on Hydrogen Blending in Natural Gas Pipeline by a T-pipe
Mar 2024
Publication
In order to study the flow blending and transporting process of hydrogen that injects into the natural gas pipelines a three-dimensional T-pipe blending model is established and the flow characteristics are investigated systematically by the large eddy simulation (LES). Firstly the mathematical formulation of hydrogen-methane blending process is provided and the LES method is introduced and validated by a benchmark gas blending model having experimental data. Subsequently the T-pipe blending model is presented and the effects of key parameters such as the velocity of main pipe hydrogen blending ratio diameter of hydrogen injection pipeline diameter of main pipe and operating pressure on the hydrogen-methane blending process are studied systematically. The results show that under certain conditions the gas mixture will be stratified downstream of the blending point with hydrogen at the top of the pipeline and methane at the bottom of the pipeline. For the no-stratified scenarios the distance required for uniformly mixing downstream the injection point increases when the hydrogen mixing ratio decreases the diameter of the hydrogen injection pipe and the main pipe increase. Finally based on the numerical results the underlying physics of the stratification phenomenon during the blending process are explored and an indicator for stratification is proposed using the ratio between the Reynolds numbers of the natural gas and hydrogen.
The Impact of Impurity Gases on the Hydrogen Embrittlement Behavior of Pipeline Steel in High-Pressure H2 Environments
May 2024
Publication
The use of hydrogen-blended natural gas presents an efficacious pathway toward the rapid large-scale implementation of hydrogen energy with pipeline transportation being the principal method of conveyance. However pipeline materials are susceptible to hydrogen embrittlement in high-pressure hydrogen environments. Natural gas contains various impurity gases that can either exacerbate or mitigate sensitivity to hydrogen embrittlement. In this study we analyzed the mechanisms through which multiple impurity gases could affect the hydrogen embrittlement behavior of pipeline steel. We examined the effects of O2 and CO2 on the hydrogen embrittlement behavior of L360 pipeline steel through a series of fatigue crack growth tests conducted in various environments. We analyzed the fracture surfaces and assessed the fracture mechanisms involved. We discovered that CO2 promoted the hydrogen embrittlement of the material whereas O2 inhibited it. O2 mitigated the enhancing effect of CO2 when both gases were mixed with hydrogen. As the fatigue crack growth rate increased the influence of impurity gases on the hydrogen embrittlement of the material diminished.
Comparative Study of Different Alternative Fuel Options for Shipowners Based on Carbon Intensity Index Model Under the Background of Green Shipping Development
Nov 2024
Publication
The International Maritime Organization (IMO)’s annual operational carbon intensity index (CII) rating requires that from 1 January 2023 all applicable ships meet both technical and operational energy efficiency requirements. In this paper we conduct a comparative study of different alternative fuel options based on a CII model from the perspective of shipowners. The advantages and disadvantages of alternative fuel options such as liquefied natural gas (LNG) methanol ammonia and hydrogen are presented. A numerical example using data from three China Ocean Shipping (Group) shipping lines is analyzed. It was found that the overall attained CII of different ship types showed a decreasing trend with the increase of the ship’s deadweight tonnage. A larger ship size choice can obtain better carbon emission reduction for the carbon emission reduction investment program using alternative fuels. The recommended options of using LNG fuel and zero-carbon fuel (ammonia and hydrogen) on Route 1 and Route 3 during the study period were analyzed for the shipowners. Carbon reduction scenarios using low-carbon fuels (LNG and methanol) and zero-carbon fuels (ammonia and hydrogen) on Route 2 are in line with IMO requirements for CII.
No more items...