Switzerland
Risk-adjusted Preferences of Utility Companies and Institutional Investors for Battery Storage and Green Hydrogen Investment
Feb 2022
Publication
Achieving climate-neutrality requires considerable investment in energy storage systems (ESS) to integrate variable renewable energy sources into the grid. However investments into ESS are often unprofitable in particular for grid-scale battery storage and green hydrogen technologies prompting many actors to call for policy intervention. This study investigates investor-specific risk-return preferences for ESS investment and derives policy recommendations. Insights are drawn from 1605 experimental investment-related decisions obtained from 42 high-level institutional investors and utility representatives. Results reveal that both investor groups view revenue stacking as key to making ESS investment viable. While the expected return on investment is the most important project characteristic risk-return preferences for other features diverge between groups. Institutional investors appear more open to exploring new technological ventures (20% of utility respondents would not consider making investments into solar photovoltaic-hydrogen) whereas utilities seem to prefer greenfield projects (23% of surveyed institutional investors rejected such projects). Interestingly both groups show strong aversion towards energy market price risk. Institutional investors require a premium of 6.87 percentage points and utilities 5.54 percentage points for moving from a position of fully hedged against market price risk to a scenario where only 20% of revenue is fixed underlining the need for policy support.
Perspective on the Hydrogen Economy as a Pathway to Reach Net-zero CO2 Emissions in Europe
Jan 2022
Publication
The envisioned role of hydrogen in the energy transition – or the concept of a hydrogen economy – has varied through the years. In the past hydrogen was mainly considered a clean fuel for cars and/or electricity production; but the current renewed interest stems from the versatility of hydrogen in aiding the transition to CO2 neutrality where the capability to tackle emissions from distributed applications and complex industrial processes is of paramount importance. However the hydrogen economy will not materialise without strong political support and robust infrastructure design. Hydrogen deployment needs to address multiple barriers at once including technology development for hydrogen production and conversion infrastructure co-creation policy market design and business model development. In light of these challenges we have brought together a group of hydrogen researchers who study the multiple interconnected disciplines to offer a perspective on what is needed to deploy the hydrogen economy as part of the drive towards net-zero-CO2 societies. We do this by analysing (i) hydrogen end-use technologies and applications (ii) hydrogen production methods (iii) hydrogen transport and storage networks (iv) legal and regulatory aspects and (v) business models. For each of these we provide key take home messages ranging from the current status to the outlook and needs for further research. Overall we provide the reader with a thorough understanding of the elements in the hydrogen economy state of play and gaps to be filled.
Increasing the Energy Efficiency of Gas Boosters for Hydrogen Storage and for Refueling Stations
Feb 2023
Publication
A new electrically driven gas booster is described as an alternative to the classical air-driven gas boosters known for their poor energetic efficiency. These boosters are used in small scale Hydrogen storage facilities and in refueling stations for Hydrogen vehicles. In such applications the overall energy count is of significance and must include the efficiency of the compression stage. The proposed system uses an electric motor instead of the pneumatic actuator and increases the total efficiency of the compression process. Two mechanical principles are studied for the transformation of the rotational motion of the motor to the linear displacement of the compressor pistons. The strongly fluctuating power of the compressor is smoothed by an active capacitive auxiliary storage device connected to the DC circuit of the power converter. The proposed system has been verified by numeric simulation including the thermodynamic phenomena the kinetics of the new compressor drive and the the operation of the circuits of the power smoothing system.
Optimal Design of Multi-energy Systems with Seasonal Storage
Oct 2017
Publication
Optimal design and operation of multi-energy systems involving seasonal energy storage are often hindered by the complexity of the optimization problem. Indeed the description of seasonal cycles requires a year-long time horizon while the system operation calls for hourly resolution; this turns into a large number of decision variables including binary variables when large systems are analyzed. This work presents novel mixed integer linear program methodologies that allow considering a year time horizon with hour resolution while significantly reducing the complexity of the optimization problem. First the validity of the proposed techniques is tested by considering a simple system that can be solved in a reasonable computational time without resorting to design days. Findings show that the results of the proposed approaches are in good agreement with the full-scale optimization thus allowing to correctly size the energy storage and to operate the system with a long-term policy while significantly simplifying the optimization problem. Furthermore the developed methodology is adopted to design a multi-energy system based on a neighborhood in Zurich Switzerland which is optimized in terms of total annual costs and carbon dioxide emissions. Finally the system behavior is revealed by performing a sensitivity analysis on different features of the energy system and by looking at the topology of the energy hub along the Pareto sets.
Deep Decarbonisation Pathways of the Energy System in Times of Unprecedented Uncertainty in the Energy Sector
May 2023
Publication
Unprecedented investments in clean energy technology are required for a net-zero carbon energy system before temperatures breach the Paris Agreement goals. By performing a Monte-Carlo Analysis with the detailed ETSAPTIAM Integrated Assessment Model and by generating 4000 scenarios of the world’s energy system climate and economy we find that the uncertainty surrounding technology costs resource potentials climate sensitivity and the level of decoupling between energy demands and economic growth influence the efficiency of climate policies and accentuate investment risks in clean energy technologies. Contrary to other studies relying on exploring the uncertainty space via model intercomparison we find that the CO2 emissions and CO2 prices vary convexly and nonlinearly with the discount rate and climate sensitivity over time. Accounting for this uncertainty is important for designing climate policies and carbon prices to accelerate the transition. In 70% of the scenarios a 1.5 ◦C temperature overshoot was within this decade calling for immediate policy action. Delaying this action by ten years may result in 2 ◦C mitigation costs being similar to those required to reach the 1.5 ◦C target if started today with an immediate peak in emissions a larger uncertainty in the medium-term horizon and a higher effort for net-zero emissions.
Conditions for Profitable Operation of P2X Energy Hubs to Meet Local Demand Under Energy Market Access
Feb 2023
Publication
This paper analyzes the operation of an energy hub on a community level with an integrated P2X facility and with access to energy markets. In our case P2X allows converting power to hydrogen heat methane or back to power. We consider the energy hub as a large prosumer who can be both a producer and consumer in the markets with the novelty that P2X technology is available. We investigate how such a P2X energy hub trades optimally in the electricity market and satisfies local energy demand under the assumption of a long-term strong climate scenario in year 2050. For numerical analysis a case study of a mountain village in Switzerland is used. One of the main contributions of this paper is to quantify key conditions for profitable operations of such a P2X energy hub. In particular the analysis includes impacts of influencing factors on profits and operational patterns in terms of different degrees of self-sufficiency and different availability of local renewable resources. Moreover the access to real-time wholesale market electricity price signals and a future retail hydrogen market is assessed. The key factors for the successful operation of a P2X energy hub are identified to be sufficient local renewable resources and access to a retail market of hydrogen. The results also show that the P2X operation leads to an increased deployment of local renewables especially in the case of low initial deployment; on the other hand seasonal storage plays a subordinated role. Additionally P2X lowers for the community the wholesale electricity market trading volumes.
Solar Fuel Processing: Comparative Mini-review on Research, Technology Development, and Scaling
Oct 2022
Publication
Solar energy provides an unprecedented potential as a renewable and sustainable energy resource and will substantially reshape our future energy economy. It is not only useful in producing electricity but also (hightemperature) heat and fuel both required for non-electrifiable energy services. Fuels are particularly valuable as they are energy dense and storable and they can also act as a feedstock for the chemical industry. Technical pathways for the processing of solar fuels include thermal pathways (e.g. solar thermochemistry) photo pathways (e.g. photoelectrochemistry) and combinations thereof. A review of theoretical limits indicates that all technical solar fuel processing pathways have the potential for competitive solar-to-fuel efficiencies (>10 %) but require very different operating conditions (e.g. temperature levels or oxygen partial pressures) making them complementary and highly versatile for process integration. Progress in photoelectrochemical devices and solar thermochemical reactors over the last 50 + years are summarized showing encouraging trends in terms of performance technological viability and scaling.
Life Cycle Assessment and Economic Analysis of an Innovative Biogas Membrane Reformer for Hydrogen Production
Feb 2019
Publication
This work investigates the environmental and economic performances of a membrane reactor for hydrogen production from raw biogas. Potential benefits of the innovative technology are compared against reference hydrogen production processes based on steam (or autothermal) reforming water gas shift reactors and a pressure swing adsorption unit. Both biogas produced by landfill and anaerobic digestion are considered to evaluate the impact of biogas composition. Starting from the thermodynamic results the environmental analysis is carried out using environmental Life cycle assessment (LCA). Results show that the adoption of the membrane reactor increases the system efficiency by more than 20 percentage points with respect to the reference cases. LCA analysis shows that the innovative BIONICO system performs better than reference systems when biogas becomes a limiting factor for hydrogen production to satisfy market demand as a higher biogas conversion efficiency can potentially substitute more hydrogen produced by fossil fuels (natural gas). However when biogas is not a limiting factor for hydrogen production the innovative system can perform either similar or worse than reference systems as in this case impacts are largely dominated by grid electric energy demand and component use rather than conversion efficiency. Focusing on the economic results hydrogen production cost shows lower value with respect to the reference cases (4 €/kgH2 vs 4.2 €/kgH2) at the same hydrogen delivery pressure of 20 bar. Between landfill and anaerobic digestion cases the latter has the lower costs as a consequence of the higher methane content.
Smart Power-to-gas Deployment Strategies Informed by Spatially Explicit Cost and Value Models
Oct 2022
Publication
Green hydrogen allows coupling renewable electricity to hard-to-decarbonize sectors such as long-distance transport and carbon-intensive industries in order to achieve net zero emissions. Evaluating the cost and value of power-to-gas is a major challenge owing to the spatial distribution and temporal variability of renewable electricity CO2 and energy demand. Here we propose a method based on geographic information system (GIS) and techno-economic modeling to: (i) compare the levelized cost and levelized value of power-to-gas across locations; (ii) identify potential hotspots for their future implementation in Switzerland; and (iii) set cost improvement targets as well as smart deployment strategies. Our method accounts for the spatial and temporal (both hourly and seasonal) availability of renewable electricity and CO2 sources as well as the presence of gas infrastructure heating networks oxygen and gas demand centers. We find that only green hydrogen plants connected directly to run-of-river hydropower plants are currently profitable in Switzerland (with NPV per CAPEX ranging between 2.3-5.6). However considering technological progress by 2050 a few green hydrogen plants deployed in the demand centers and powered by rooftop PV electricity will also become economically attractive. Moreover a few synthetic methane plants connected to run-of-river hydropower plants currently show slight profitability (NPV per CAPEX reaching values up to 1.3) and in 2050 (NPV per CAPEX up to 3.1) whereas those connected to rooftop PV will remain uneconomical even in 2050. Based on our findings we devise a long-term roadmap for policy makers and project developers to plan future green hydrogen projects. The proposed methodology which is applied to Switzerland can be extended to other countries.
Optimal Pathways for the Decarbonisation of the Transport Sector: Trade-offs Between Battery and Hydrogen Technologies Using a Whole Energy System Perspective
Jun 2023
Publication
Several countries have revised their targets in recent years to reach net-zero CO2 emissions across all sectors by 2050 and the transport sector is responsible for a significant share of these emissions. This study compares possible pathways to decarbonise the transport sector through electrification including passenger cars light commercial vehicles and heavy commercial vehicles. To do so we explore 125 scenarios by varying the share of battery and hydrogen-based fuel cell electric vehicles in each of the three categories above independently. We further model the decarbonisation of the industrial hydrogen demand using electrolysers with hydrogen storage. To explore the potential role of electric and hydrogen transport as well as their trade-offs we use GRIMSEL an open-source sector coupling energy system model of Switzerland which includes the residential commercial industrial and transport sectors with four energy carriers namely electricity heat hot water and hydrogen. The total costs are minimised from a social planner perspective. We find that the full electrification of the transport sector could lead on average to a 12% increase in costs by 2050 and 1.3 MtCO2/year which represents a 90% CO2 emissions reduction for the whole sector. Second the transport energy self-sufficiency (i.e. the share of domestic electricity generation in final transport demand) may reach up to 50% for the scenarios with the largest share of battery electric vehicles mainly due to a smaller energy demand than with hydrogen vehicles. Third more than three quarters of the industrial hydrogen production is met by local photovoltaic electricity coupled with battery at minimum costs i.e. green hydrogen. Finally the use of hydrogen as an energy carrier to store electricity over a long period is not cost-optimal.
Hydrogen Production, Storage, Utilisation and Environmental Impacts: A Review
Oct 2021
Publication
Dihydrogen (H2) commonly named ‘hydrogen’ is increasingly recognised as a clean and reliable energy vector for decarbonisation and defossilisation by various sectors. The global hydrogen demand is projected to increase from 70 million tonnes in 2019 to 120 million tonnes by 2024. Hydrogen development should also meet the seventh goal of ‘affordable and clean energy’ of the United Nations. Here we review hydrogen production and life cycle analysis hydrogen geological storage and hydrogen utilisation. Hydrogen is produced by water electrolysis steam methane reforming methane pyrolysis and coal gasification. We compare the environmental impact of hydrogen production routes by life cycle analysis. Hydrogen is used in power systems transportation hydrocarbon and ammonia production and metallugical industries. Overall combining electrolysis-generated hydrogen with hydrogen storage in underground porous media such as geological reservoirs and salt caverns is well suited for shifting excess of-peak energy to meet dispatchable on-peak demand.
The Role of Hydrogen in Heavy Transport to Operate within Planetary Boundaries
Jul 2021
Publication
Green hydrogen i.e. produced from renewable resources is attracting attention as an alternative fuel for the future of heavy road transport and long-distance driving. However the benefits linked to zero pollution at the usage stage can be overturned when considering the upstream processes linked to the raw materials and energy requirements. To better understand the global environmental implications of fuelling heavy transport with hydrogen we quantified the environmental impacts over the full life cycle of hydrogen use in the context of the Planetary Boundaries (PBs). The scenarios assessed cover hydrogen from biomass gasification (with and without carbon capture and storage [CCS]) and electrolysis powered by wind solar bioenergy with CCS nuclear and grid electricity. Our results show that the current diesel-based-heavy transport sector is unsustainable due to the transgression of the climate change-related PBs (exceeding standalone by two times the global climate-change budget). Hydrogen-fuelled heavy transport would reduce the global pressure on the climate change-related PBs helping the transport sector to stay within the safe operating space (i.e. below one-third of the global ecological budget in all the scenarios analysed). However the best scenarios in terms of climate change which are biomass-based would shift burdens to the biosphere integrity and nitrogen flow PBs. In contrast burden shifting in the electrolytic scenarios would be negligible with hydrogen from wind electricity emerging as an appealing technology despite attaining higher carbon emissions than the biomass routes
Non-Precious Electrodes for Practical Alkaline Water Electrolysis
Apr 2019
Publication
Water electrolysis is a promising approach to hydrogen production from renewable energy sources. Alkaline water electrolyzers allow using non-noble and low-cost materials. An analysis of common assumptions and experimental conditions (low concentrations low temperature low current densities and short-term experiments) found in the literature is reported. The steps to estimate the reaction overpotentials for hydrogen and oxygen reactions are reported and discussed. The results of some of the most investigated electrocatalysts namely from the iron group elements (iron nickel and cobalt) and chromium are reported. Past findings and recent progress in the development of efficient anode and cathode materials appropriate for large-scale water electrolysis are presented. The experimental work is done involving the direct-current electrolysis of highly concentrated potassium hydroxide solutions at temperatures between 30 and 100 ◦C which are closer to industrial applications than what is usually found in literature. Stable cell components and a good performance was achieved using Raney nickel as a cathode and stainless steel 316L as an anode by means of a monopolar cell at 75 ◦C which ran for one month at 300 mA cm−2 . Finally the proposed catalysts showed a total kinetic overpotential of about 550 mV at 75 ◦C and 1 A cm−2.
Optimising Fuel Supply Chains within Planetary Boundaries: A Case Study of Hydrogen for Road Transport in the UK
Jul 2020
Publication
The world-wide sustainability implications of transport technologies remain unclear because their assessment often relies on metrics that are hard to interpret from a global perspective. To contribute to filling this gap here we apply the concept of planetary boundaries (PBs) i.e. a set of biophysical limits critical for operating the planet safely to address the optimal design of sustainable fuel supply chains (SCs) focusing on hydrogen for vehicle use. By incorporating PBs into a mixed-integer linear programming model (MILP) we identify SC configurations that satisfy a given transport demand while minimising the PBs transgression level i.e. while reducing the risk of surpassing the ecological capacity of the Earth. On applying this methodology to the UK we find that the current fossil-based sector is unsustainable as it transgresses the energy imbalance CO2 concentration and ocean acidification PBs heavily i.e. five to 55-fold depending on the downscale principle. The move to hydrogen would help to reduce current transgression levels substantially i.e. reductions of 9–86% depending on the case. However it would be insufficient to operate entirely within all the PBs concurrently. The minimum impact SCs would produce hydrogen via water electrolysis powered by wind and nuclear energy and store it in compressed form followed by distribution via rail which would require as much as 37 TWh of electricity per year. Our work unfolds new avenues for the incorporation of PBs in the assessment and optimisation of energy systems to arrive at sustainable solutions that are entirely consistent with the carrying capacity of the planet.
Life Cycle Assessment Integration into Energy System Models: An Application for Power-to-Methane in the EU
Nov 2019
Publication
As the EU energy system transitions to low carbon the technology choices should consider a broader set of criteria. The use of Life Cycle Assessment (LCA) prevents burden shift across life cycle stages or impact categories while the use of Energy System Models (ESM) allows evaluating alternative policies capacity evolution and covering all the sectors. This study does an ex-post LCA analysis of results from JRC-EU-TIMES and estimates the environmental impact indicators across 18 categories in scenarios that achieve 80–95% CO2 emission reduction by 2050. Results indicate that indirect CO2 emissions can be as large as direct ones for an 80% CO2 reduction target and up to three times as large for 95% CO2 reduction. Impact across most categories decreases by 20–40% as the CO2 emission target becomes stricter. However toxicity related impacts can become 35–100% higher. The integrated framework was also used to evaluate the Power-to-Methane (PtM) system to relate the electricity mix and various CO2 sources to the PtM environmental impact. To be more attractive than natural gas the climate change impact of the electricity used for PtM should be 123–181 gCO2eq/kWh when the CO2 comes from air or biogenic sources and 4–62 gCO2eq/kWh if the CO2 is from fossil fuels. PtM can have an impact up to 10 times larger for impact categories other than climate change. A system without PtM results in ~4% higher climate change impact and 9% higher fossil depletion while having 5–15% lower impact for most of the other categories. This is based on a scenario where 9 parameters favor PtM deployment and establishes the upper bound of the environmental impact PtM can have. Further studies should work towards integrating LCA feedback into ESM and standardizing the methodology.
Environmental Degradation Effect of High-Temperature Water and Hydrogen on the Fracture Behavior of Low-Alloy Reactor Pressure Vessel Steels
Dec 2019
Publication
Structural integrity of reactor pressure vessel (RPV) in light water reactors (LWR) is of highest importance regarding operation safety and lifetime. The fracture behaviour of low-alloy RPV steels with different dynamic strain aging (DSA) & environmental assisted cracking (EAC) susceptibilities in simulated LWR environments was evaluated by elastic plastic fracture mechanics tests (EPFM) and by metallo- and fractographic post-test analysis. Exposure to high temperature water (HTW) environments at LWR temperatures revealed only moderated reductions in the fracture initiation and tearing resistance of low alloy RPV steels with high DSA or EAC susceptibility accompanied with a moderate but clear change in fracture morphology which indicates the potential synergies of hydrogen/HTW embrittlement with DSA and EAC under suitable conditions. The most pronounced degradation effects occurred in a) RPV steels with high DSA susceptibility where the fracture initiation and tearing resistance reduction increased with decreasing loading rate and were most pronounced in hydrogenated HTW and b) high sulphur steels with high EAC susceptibility in aggressive occluded crevice environment and with preceding fast EAC crack growth in oxygenated HTW. The moderate effects are due to the low hydrogen availability in HTW together with high density of fine-dispersed hydrogen traps in RPV steels. Stable ductile transgranular tearing by microvoid coalescence was the dominant failure mechanism in all environments with additional varying few % of secondary cracks macrovoids and quasi-cleavage in HTW. The observed behavior suggests a combination of plastic strain localisation by the Hydrogen-enhanced Local Plasticity (HELP) mechanism in synergy with DSA and Hydrogen-enhanced Strain-induced Vacancies (HESIV) mechanism with additional minor contributions of Hydrogen-enhanced Decohesion Embrittlement (HEDE) mechanism.
On the Climate Impacts of Blue Hydrogen Production
Nov 2021
Publication
Natural gas based hydrogen production with carbon capture and storage is referred to as blue hydrogen. If substantial amounts of CO2 from natural gas reforming are captured and permanently stored such hydrogen could be a low-carbon energy carrier. However recent research raises questions about the effective climate impacts of blue hydrogen from a life cycle perspective. Our analysis sheds light on the relevant issues and provides a balanced perspective on the impacts on climate change associated with blue hydrogen. We show that such impacts may indeed vary over large ranges and depend on only a few key parameters: the methane emission rate of the natural gas supply chain the CO2 removal rate at the hydrogen production plant and the global warming metric applied. State-of-the-art reforming with high CO2 capture rates combined with natural gas supply featuring low methane emissions does indeed allow for substantial reduction of greenhouse gas emissions compared to both conventional natural gas reforming and direct combustion of natural gas. Under such conditions blue hydrogen is compatible with low-carbon economies and exhibits climate change impacts at the upper end of the range of those caused by hydrogen production from renewable-based electricity. However neither current blue nor green hydrogen production pathways render fully “net-zero” hydrogen without additional CO2 removal.
Boron Hydrogen Compounds: Hydrogen Storage and Battery Applications
Dec 2021
Publication
About 25 years ago Bogdanovic and Schwickardi (B. Bogdanovic M. Schwickardi: J. Alloys Compd. 1–9 253 (1997) discovered the catalyzed release of hydrogen from NaAlH4 . This discovery stimulated a vast research effort on light hydrides as hydrogen storage materials in particular boron hydrogen compounds. Mg(BH4 )2 with a hydrogen content of 14.9 wt % has been extensively studied and recent results shed new light on intermediate species formed during dehydrogenation. The chemistry of B3H8 − which is an important intermediate between BH4 − and B12H12 2− is presented in detail. The discovery of high ionic conductivity in the high-temperature phases of LiBH4 and Na2B12H12 opened a new research direction. The high chemical and electrochemical stability of closo-hydroborates has stimulated new research for their applications in batteries. Very recently an all-solid-state 4 V Na battery prototype using a Na4 (CB11H12)2 (B12H12) solid electrolyte has been demonstrated. In this review we present the current knowledge of possible reaction pathways involved in the successive hydrogen release reactions from BH4 − to B12H12 2− and a discussion of relevant necessary properties for high-ionic-conduction materials.
Moving Toward the Low-carbon Hydrogen Economy: Experiences and Key Learnings from National Case Studies
Sep 2022
Publication
The urgency to achieve net-zero carbon dioxide (CO2) emissions by 2050 as first presented by the IPCC special report on 1.5°C Global Warming has spurred renewed interest in hydrogen to complement electrification for widespread decarbonization of the economy. We present reflections on estimates of future hydrogen demand optimization of infrastructure for hydrogen production transport and storage development of viable business cases and environmental impact evaluations using life cycle assessments. We highlight challenges and opportunities that are common across studies of the business cases for hydrogen in Germany the UK the Netherlands Switzerland and Norway. The use of hydrogen in the industrial sector is an important driver and could incentivise large-scale hydrogen value chains. In the long-term hydrogen becomes important also for the transport sector. Hydrogen production from natural gas with capture and permanent storage of the produced CO2 (CCS) enables large-scale hydrogen production in the intermediate future and is complementary to hydrogen from renewable power. Furthermore timely establishment of hydrogen and CO2 infrastructures serves as an anchor to support the deployment of carbon dioxide removal technologies such as direct air carbon capture and storage (DACCS) and biohydrogen production with CCS. Significant public support is needed to ensure coordinated planning governance and the establishment of supportive regulatory frameworks which foster the growth of hydrogen markets.
Review—Identifying Critical Gaps for Polymer Electrolyte Water Electrolysis Development
Feb 2017
Publication
Although polymer electrolyte water electrolyzers (PEWEs) have been used in small-scale (kW to tens of kW range) applications for several decades PEWE technology for hydrogen production in energy applications (power-to-gas power-to-fuel etc.) requires significant improvements in the technology to address the challenges associated with cost performance and durability. Systems with power of hundreds of kW or even MWs corresponding to hydrogen production rates of around 10 to 20 kg/h have started to appear in the past 5 years. The thin (∼0.2 mm) polymer electrolyte in the PEWE with low ohmic resistance compared to the alkaline cell with liquid electrolyte allows operation at high current densities of 1–3 A/cm2 and high differential pressure. This article after an introductory overview of the operating principles of PEWE and state-of-the-art discusses the state of understanding of key phenomena determining and limiting performance durability and commercial readiness identifies important ‘gaps’ in understanding and essential development needs to bring PEWE science & engineering forward to prosper in the energy market as one of its future backbone technologies. For this to be successful science engineering and process development as well as business and market development need to go hand in hand.
Economically Viable Large-scale Hydrogen Liquefaction
Mar 2016
Publication
The liquid hydrogen demand particularly driven by clean energy applications will rise in the near future. As industrial large scale liquefiers will play a major role within the hydrogen supply chain production capacity will have to increase by a multiple of today’s typical sizes. The main goal is to reduce the total cost of ownership for these plants by increasing energy efficiency with innovative and simple process designs optimized in capital expenditure. New concepts must ensure a manageable plant complexity and flexible operability. In the phase of process development and selection a dimensioning of key equipment for large scale liquefiers such as turbines and compressors as well as heat exchangers must be performed iteratively to ensure technological feasibility and maturity. Further critical aspects related to hydrogen liquefaction e.g. fluid properties ortho-para hydrogen conversion and coldbox configuration must be analysed in detail. This paper provides an overview on the approach challenges and preliminary results in the development of efficient as well as economically viable concepts for large-scale hydrogen liquefaction.
A Review of Synthetic Fuels for Passenger Vehicles
May 2019
Publication
Synthetic fuels produced with renewable surplus electricity depict an interesting solution for the decarbonization of mobility and transportation applications which are not suited for electrification. With the objective to compare various synthetic fuels an analysis of all the energy conversion steps is conducted from the electricity source i.e. wind- solar- or hydro-power to the final application i.e. a vehicle driving a certain number of miles. The investigated fuels are hydrogen methane methanol dimethyl ether and Diesel. While their production process is analyzed based on literature the usage of these fuels is analyzed based on chassis dynanometer measurement data of various EURO-6b passenger vehicles. Conventional and hybrid power-trains as well as various carbon dioxide sources are investigated in two scenarios. The first reference scenario considers market-ready technology only while the second future scenario considers technology which is currently being developed in industry and assumed to be market-ready in near future. With the results derived in this study and with consideration of boundary conditions i.e. availability of infrastructure storage technology of gaseous fuels energy density requirements etc. the most energy efficient of the corresponding suitable synthetic fuels can be chosen.
Hydrogen Production on Demand by Redox-mediated Electrocatalysis: A Kinetic Study
Aug 2020
Publication
Producing hydrogen from water using a redox mediator on solid electrocatalyst particles in a reactor offers several advantages over classical electrolysis in terms of safety membrane degradation purity and flexibility. Herein vanadium-mediated hydrogen evolution on a commercial and low-cost Mo2C electrocatalyst is studied through the development of a reaction kinetics model. Based on a proposed mechanistic reaction scheme we established a kinetic rate law dependent on the concentration of V2+ the state-of-charge of the vanadium electrolyte from a vanadium redox flow battery and the amount of available catalytic sites on solid Mo2C. Kinetic experiments in transient conditions reveals a first-order dependence on both the concentration of V2+ and the concentration of catalytic active sites and a power law with an exponential factor of 0.57 was measured on the molar ratio V2+/V3+ i.e. on the electrochemical driving force generated on the Mo2C particles. The kinetic rate law was validated by studying the rate of reaction in steady-state conditions using a specially developed rotating ring-disk device (RRD) methodology. The kinetic model was demonstrated to be a useful tool to predict the hydrogen production via the chemical oxidation of V2+ over Mo2C at low pH (> 1 M H2SO4). For a perspective the model was implemented in a semi-batch reactor. The simulations highlight the optimal state-of-charge (SOC) to carry out the reaction in an efficient way for a given demand in hydrogen.
Quantification of Hydrogen in Nanostructured Hydrogenated Passivating Contacts for Silicon Photovoltaics Combining SIMS-APT-TEM: A Multiscale Correlative Approach
Mar 2021
Publication
Multiscale characterization of the hydrogenation process of silicon solar cell contacts based on c-Si/SiOx/nc-SiCx(p) has been performed by combining dynamic secondary ion mass-spectrometry (D-SIMS) atom probe tomography (APT) and transmission electron microscopy (TEM). These contacts are formed by high-temperature firing which triggers the crystallization of SiCx followed by a hydrogenation process to passivate remaining interfacial defects. Due to the difficulty of characterizing hydrogen at the nm-scale the exact hydrogenation mechanisms have remained elusive. Using a correlative TEM-SIMS-APT analysis we are able to locate hydrogen trap sites and quantify the hydrogen content. Deuterium (D) a heavier isotope of hydrogen is used to distinguish hydrogen introduced during hydrogenation from its background signal. D-SIMS is used due to its high sensitivity to get an accurate deuterium-to-hydrogen ratio which is then used to correct deuterium profiles extracted from APT reconstructions. This new methodology to quantify the concentration of trapped hydrogen in nm-scale structures sheds new insights on hydrogen distribution in technologically important photovoltaic materials.
The Hydrogen Grand Challenge
Apr 2016
Publication
More than 90% of the world’s growing energy demand is satisfied by fossil fuels (BP Statistical Review … 2015)1. One consequence of the unrestrained use of this technology is the continuous increase of the CO2 level of the atmosphere2. There are also the challenges associated with the limitations of the corresponding resources (Hubbert 1956; BP Statistical Review … 2015). Climate change as a consequence of the growing CO2 level (see text footnote 2 ESRL Global Monitoring Division 2015) has been identified as one of the most critical challenges facing mankind and requires immediate action: “The Paris Agreement aims to strengthen the global response to the threat of climate change ( … ) by low greenhouse gas emissions development in a manner that does not threaten food production” (United Nations Framework … 2015). How to reach the corresponding significant reduction of CO2 emission by 2050 is not defined in this document but it implies that mankind must transform its energy technology from a fossil to a renewable basis. Numerous studies and publications have indicated that the sun’s energy and its derivatives (wind water) are by far sufficient to supply world’s energy demand (see e.g. Smalley 2005; Züttel et al. 2010); but the large daily and seasonal power variation of renewable energy is an additional complication for a wide spread replacement of fossil energy by renewable energy.
Combined Hydrogen Production and Electricity Storage using a Vanadium Manganese Redox Dual-flow Battery
Aug 2021
Publication
A redox dual-flow battery is distinct from a traditional redox flow battery (RFB) in that the former includes a secondary energy platform in which the pre-charged electrolytes can be discharged in external catalytic reactors through decoupled redox-mediated hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). The concept offers several advantages over conventional electrolysis in terms of safety durability modularity and purity. In this work we demonstrate a vanadium-manganese redox-flow battery in which Mn3+/Mn2+ and V3+/V2+ respectively mediate the OER and the HER in Mo2C-based and RuO2-based catalysts. The flow battery demonstrates an average energy efficiency of 68% at a current density of 50 mA ⋅ cm−2 (cell voltage = 1.92 V) and a relative energy density 45% higher than the conventional all-vanadium RFB. Both electrolytes are spontaneously discharged through redox-mediated HER and OER with a faradic efficiency close to 100%.
Future Swiss Energy Economy: The Challenge of Storing Renewable Energy
Feb 2022
Publication
Fossil fuels and materials on Earth are a finite resource and the disposal of waste into the air on land and into water has an impact on our environment on a global level. Using Switzerland as an example the energy demand and the technical challenges and the economic feasibility of a transition to an energy economy based entirely on renewable energy were analyzed. Three approaches for the complete substitution of fossil fuels with renewable energy from photovoltaics called energy systems (ES) were considered i.e. a purely electric system with battery storage (ELC) hydrogen (HYS) and synthetic hydrocarbons (HCR). ELC is the most energy efficient solution; however it requires seasonal electricity storage to meet year-round energy needs. Meeting this need through batteries has a significant capital cost and is not feasible at current rates of battery production and expanding pumped hydropower to the extent necessary will have a big impact on the environment. The HYS allows underground hydrogen storage to balance seasonal demand but requires building of a hydrogen infrastructure and applications working with hydrogen. Finally the HCR requires the largest photovoltaic (PV) field but the infrastructure and the applications already exist. The model for Switzerland can be applied to other countries adapting the solar irradiation the energy demand and the storage options.
Environmental Sustainability Assessment of Large-scale Hydrogen Production Using Prospective Life Cycle Analysis
Nov 2022
Publication
The need for a rapid transformation to low-carbon economies has rekindled hydrogen as a promising energy carrier. Yet the full range of environmental consequences of large-scale hydrogen production remains unclear. Here prospective life cycle analysis is used to compare different options to produce 500 Mt/yr of hydrogen including scenarios that consider likely changes to future supply chains. The resulting environmental and human health impacts of such production levels are further put into context with the Planetary Boundaries framework known human health burdens the impacts of the world economy and the externality-priced production costs that embody the environmental impact. The results indicate that climate change impacts of projected production levels are 3.3–5.4 times higher than the allocated planetary boundary with only green hydrogen from wind energy staying below the boundary. Human health impacts and other environmental impacts are less severe in comparison but metal depletion and ecotoxicity impacts of green hydrogen deserve further attention. Priced-in environmental damages increase the cost most strongly for blue hydrogen (from ∼2 to ∼5 USD/kg hydrogen) while such true costs drop most strongly for green hydrogen from solar photovoltaic (from ∼7 to ∼3 USD/kg hydrogen) when applying prospective life cycle analysis. This perspective helps to evaluate potentially unintended consequences and contributes to the debate about blue and green hydrogen.
Planetary Boundaries Assessment of Deep Decarbonisation Options for Building Heating in the European Union
Jan 2023
Publication
Building heating is one of the sectors for which multiple decarbonisation options exist and current geopolitical tensions provide urgency to design adequate regional policies. Heat pumps and hydrogen boilers alongside alternative district heating systems are the most promising alternatives. Although a host of city or country-level studies exist it remains controversial what role hydrogen should play for building heating in the European Union compared with electrification and how blue and green hydrogen differ in terms of costs and environmental impacts. This works assesses the optimal technology mix for staying within planetary boundaries and the influence of international cooperation and political restrictions. To perform the analysis a bottom-up optimisation model was developed incorporating life cycle assessment constraints and covering production storage transport of energy and carbon dioxide as well as grid and non-grid connected end-users of heat. It was found that a building heating system within planetary boundaries is feasible through large-scale electrification via heat pumps although at a higher cost than the current system with abatement costs of around 200 €/ton CO2. Increasing interconnector capacity or onshore wind energy is found to be vital to staying within boundaries. A strong trade-off for hydrogen was identified with blue hydrogen being cost-competitive but vastly unsustainable (when applied to heating) and green hydrogen being 2–3 times more expensive than electrification while still transgressing several planetary boundaries. The insights from this work indicate that heat pumps and renewable electricity should be prioritised over hydrogen-based heating in most cases and grid-stability and storage aspects explored further while revealing a need for policy instruments to mitigate increased costs for consumers.
Life Cycle Environmental and Cost Comparison of Current and Future Passenger Cars under Different Energy Scenarios
Apr 2020
Publication
In this analysis life cycle environmental burdens and total costs of ownership (TCO) of current (2017) and future (2040) passenger cars with different powertrain configurations are compared. For all vehicle configurations probability distributions are defined for all performance parameters. Using these a Monte Carlo based global sensitivity analysis is performed to determine the input parameters that contribute most to overall variability of results. To capture the systematic effects of the energy transition future electricity scenarios are deeply integrated into the ecoinvent life cycle assessment background database. With this integration not only the way how future electric vehicles are charged is captured but also how future vehicles and batteries are produced. If electricity has a life cycle carbon content similar to or better than a modern natural gas combined cycle powerplant full powertrain electrification makes sense from a climate point of view and in many cases also provides reductions in TCO. In general vehicles with smaller batteries and longer lifetime distances have the best cost and climate performance. If a very large driving range is required or clean electricity is not available hybrid powertrain and compressed natural gas vehicles are good options in terms of both costs and climate change impacts. Alternative powertrains containing large batteries or fuel cells are the most sensitive to changes in the future electricity system as their life cycles are more electricity intensive. The benefits of these alternative drivetrains are strongly linked to the success of the energy transition: the more the electricity sector is decarbonized the greater the benefit of electrifying passenger vehicles.
Enabling Low-carbon Hydrogen Supply Chains Through Use of Biomass and Carbon Capture and Storage: A Swiss Case Study
Jul 2020
Publication
This study investigates the optimal design of low-carbon hydrogen supply chains on a national scale. We consider hydrogen production based on several feedstocks and energy sources namely water with electricity natural gas and biomass. When using natural gas we couple hydrogen production with carbon capture and storage. The design of the hydrogen biomass and carbon dioxide (CO2 ) infrastructure is performed by solving an optimization problem that determines the optimal selection size and location of the hydrogen production technologies and the optimal structure of the hydrogen biomass and CO2 O2 networks. First we investigate the rationale behind the optimal design of low-carbon hydrogen supply chains by referring to an idealized system configuration and by performing a parametric analysis of the most relevant design parameters of the supply chains such as biomass availability. This allows drawing general conclusions independent of any specific geographic features about the minimum-cost and minimum-emissions system designs and network structures. Moreover we analyze the Swiss case study to derive specific guidelines concerning the design of hydrogen supply chains deploying carbon capture and storage. We assess the impact of relevant design parameters such as location of CO2 storage facilities techno-economic features of CO2 capture technologies and network losses on the optimal supply chain design and on the competition between the hydrogen and CO2 networks. Findings highlight the fundamental role of biomass (when available) and of carbon capture and storage for decarbonizing hydrogen supply chains while transitioning to a wider deployment of renewable energy sources.
Electrochemical Conversion Technologies for Optimal Design of Decentralized Multi-energy Systems: Modeling Framework and Technology Assessment
Apr 2018
Publication
The design and operation of integrated multi-energy systems require models that adequately describe the behavior of conversion and storage technologies. Typically linear conversion performance or fixed data from technology manufacturers are employed especially for new or advanced technologies. This contribution provides a new modeling framework for electrochemical devices that bridges first-principles models to their simplified implementation in the optimization routine. First thermodynamic models are implemented to determine the on/off-design performance and dynamic behavior of different types of fuel cells and of electrolyzers. Then as such nonlinear models are intractable for use in the optimization of integrated systems different linear approximations are developed. The proposed strategies for the synthesis of reduced order models are compared to assess the impact of modeling approximations on the optimal design of multi-energy systems including fuel cells and electrolyzers. This allows to determine the most suitable level of detail for modeling the underlying electrochemical technologies from an integrated system perspective. It is found that the approximation methodology affects both the design and operation of the system with a significant effect on system costs and violation of the thermal energy demand. Finally the optimization and technology modeling framework is exploited to determine guidelines for the installation of the most suitable fuel cell technology in decentralized multi-energy systems. We show how the installation costs of PEMFC SOFC and MCFC their electrical and thermal efficiencies their conversion dynamics and the electricity price affect the system design and technology selection.
Energy Management of Hydrogen Hybrid Electric Vehicles—Online-Capable Control
May 2024
Publication
The results shown in this paper extend our research group’s previous work which presents the theoretically achievable hydrogen engine-out NOeo x (H2-NOeo x ) Pareto front of a hydrogen hybrid electric vehicle (H2-HEV). While the Pareto front is calculated offline which requires significant computing power and time this work presents an online-capable algorithm to tackle the energy management of a H2-HEV with explicit consideration of the H2-NOeo x trade-off. Through the inclusion of realistic predictive data on the upcoming driving mission a model predictive control algorithm (MPC) is utilized to effectively tackle the conflicting goal of achieving low hydrogen consumption while simultaneously minimizing NOeo x . In a case study it is shown that MPC is able to satisfy user-defined NOeo x limits over the course of various driving missions. Moreover a comparison with the optimal Pareto front highlights MPC’s ability to achieve close-to-optimal fuel performance for any desired cumulated NOeo x target on four realistic routes for passenger cars.
How to Make Climate-neutral Aviation Fly
Jul 2023
Publication
The European aviation sector must substantially reduce climate impacts to reach net-zero goals. This reduction however must not be limited to flight CO2 emissions since such a narrow focus leaves up to 80% of climate impacts unaccounted for. Based on rigorous life-cycle assessment and a time-dependent quantification of non-CO2 climate impacts here we show that from a technological standpoint using electricity-based synthetic jet fuels and compensating climate impacts via direct air carbon capture and storage (DACCS) can enable climate-neutral aviation. However with a continuous increase in air traffic synthetic jet fuel produced with electricity from renewables would exert excessive pressure on economic and natural resources. Alternatively compensating climate impacts of fossil jet fuel via DACCS would require massive CO2 storage volumes and prolong dependence on fossil fuels. Here we demonstrate that a European climate-neutral aviation will fly if air traffic is reduced to limit the scale of the climate impacts to mitigate.
Suitability and Energy Sustainability of Atmospheric Water Generation Technology for Green Hydrogen Production
Sep 2023
Publication
This research investigated the suitability of air-to-water generator (AWG) technology to address one of the main concerns in green hydrogen production namely water supply. This study specifically addresses water quality and energy sustainability issues which are crucial research questions when AWG technology is intended for electrolysis. To this scope a reasoned summary of the main findings related to atmospheric water quality has been provided. Moreover several experimental chemical analyses specifically focused on meeting electrolysis process requirements on water produced using a real integrated AWG system equipped with certified materials for food contact were discussed. To assess the energy sustainability of AWGs in green hydrogen production a case study was presented regarding an electrolyzer plant intended to serve as energy storage for a 2 MW photovoltaic field on Iriomote Island. The integrated AWG used for the water quality analyses was studied in order to determine its performance in the specific island climate conditions. The production exceeded the needs of the electrolyzer; thus the overproduction was considered for the panels cleaning due to the high purity of the water. Due to such an operation the efficiency recovery was more than enough to cover the AWG energy consumption. This paper on the basis of the quantity results provides the first answers to the said research questions concerning water quality and energy consumption establishing the potential of AWG as a viable solution for addressing water scarcity and enhancing the sustainability of electrolysis processes in green hydrogen production.
Macroeconomic Analysis of a New Green Hydrogen Industry using Input-output Analysis: The Case of Switzerland
Sep 2023
Publication
Hydrogen is receiving increasing attention to decarbonize hard-to-abate sectors such as carbon intensive industries and long-distance transport with the ultimate goal of reducing greenhouse gas (GHG) emissions to net-zero. However limited knowledge exists so far on the socio-economic and environmental impacts for countries moving towards green hydrogen. Here we analyse the macroeconomic impacts both direct and indirect in terms of GDP growth employment generation and GHG emissions of green hydrogen production in Switzerland. The results are first presented in gross terms for the construction and operation of a new green hydrogen industry considering that all the produced hydrogen is allocated to passenger cars (final demand). We find that for each kg of green hydrogen produced the operational phase creates 6.0 5.9 and 9.5 times more GDP employment and GHG emissions respectively compared to the construction phase (all values in gross terms). Additionally the net impacts are calculated by assuming replacement of diesel by green hydrogen as fuel for passenger cars. We find that green hydrogen contributes to a higher GDP and employment compared to diesel while reducing GHG emissions. For instance in all the three cases namely ‘Equal Cost’ ‘Equal Energy’ and ‘Equal Service’ we find that a green hydrogen industry generates around 106% 28% and 45% higher GDP respectively; 163% 43% and 65% more full-time equivalent jobs respectively; and finally 45% 18% and 29% lower GHG emissions respectively compared to diesel and other industries. Finally the methodology developed in this study can be extended to other countries using country-specific data.
Advantages and Technological Progress of Hydrogen Fuel Cell Vehicles
Jun 2023
Publication
The automotive industry is undergoing a profound transformation driven by the need for sustainable and environmentally friendly transportation solutions [1]. In this context fuel cell technology has emerged as a promising alternative offering clean efficient and high-performance power sources for vehicles [2]. Fuel cell vehicles are electric vehicles that use fuel cell systems as a single power source or as a hybrid power source in combination with rechargeable energy storage systems. A typical fuel cell system for electric vehicle is exhibited in Figure 1 which provides a comprehensive demonstration of this kind of complex system. Hydrogen energy is a crucial field in the new energy revolution and will become a key pillar in building a green efficient and secure new energy system. As a critical field for hydrogen utilization fuel cell vehicles will play an important role in the transformation and development of the automotive industry. The development of fuel cell vehicles offers numerous advantages such as strong power outputs safety reliability and economic energy savings [3]. However improvements must urgently be made in existing technologies such as fuel cell stacks (including proton exchange membranes catalysts gas diffusion layers and bipolar plates) compressors and onboard hydrogen storage systems [4]. The advantages and current technological status are analyzed here.
A Review of the MSCA ITN ECOSTORE—Novel Complex Metal Hydrides for Efficient and Compact Storage of Renewable Energy as Hydrogen and Electricity
Mar 2020
Publication
Hydrogen as an energy carrier is very versatile in energy storage applications. Developments in novel sustainable technologies towards a CO2-free society are needed and the exploration of all-solid-state batteries (ASSBs) as well as solid-state hydrogen storage applications based on metal hydrides can provide solutions for such technologies. However there are still many technical challenges for both hydrogen storage material and ASSBs related to designing low-cost materials with low-environmental impact. The current materials considered for all-solid-state batteries should have high conductivities for Na+ Mg2+ and Ca2+ while Al3+-based compounds are often marginalised due to the lack of suitable electrode and electrolyte materials. In hydrogen storage materials the sluggish kinetic behaviour of solid-state hydride materials is one of the key constraints that limit their practical uses. Therefore it is necessary to overcome the kinetic issues of hydride materials before discussing and considering them on the system level. This review summarizes the achievements of the Marie Skłodowska-Curie Actions (MSCA) innovative training network (ITN) ECOSTORE the aim of which was the investigation of different aspects of (complex) metal hydride materials. Advances in battery and hydrogen storage materials for the efficient and compact storage of renewable energy production are discussed.
Optimal Hydrogen Production in a Wind-dominated Zero-emission Energy System
May 2021
Publication
The role of hydrogen in future energy systems is widely acknowledged: from fuel for difficult-to-decarbonize applications to feedstock for chemicals synthesis to energy storage for high penetration of undispatchable renewable electricity. While several literature studies investigate such energy systems the details of how electrolysers and renewable technologies optimally behave and interact remain an open question. With this work we study the interplay between (i) renewable electricity generation through wind and solar (ii) electricity storage in batteries (iii) electricity storage via Power-to-H2 and (iv) hydrogen commodity demand. We do so by designing a cost-optimal zero-emission energy system and use the Netherlands as a case study in a mixed integer linear model with hourly resolution for a time horizon of one year. To account for the significant role of wind we also provide an elaborate approach to model broad portfolios of wind turbines. The results show that if electrolyzers can operate flexibly batteries and power-to-H2-to-power are complementary with the latter using renewable power peaks and the former using lower renewable power outputs. If the operating modes of the power-to-H2-to-power system are limited - artificially or technically - the competitive advantage over batteries decreases. The preference of electrolyzers for power peaks also leads to an increase in renewable energy utilization for increased levels of operation flexibility highlighting the importance of capturing this feature both from a technical and a modeling perspective. When adding a commodity hydrogen demand the amount of hydrogen converted to electricity decreases hence decreasing its role as electricity storage medium.
Heat Transfer Analysis of High Pressure Hydrogen Tank Fillings
Jun 2022
Publication
Fast fillings of hydrogen vehicles require proper control of the temperature to ensure the integrity of the storage tanks. This study presents an analysis of heat transfer during filling of a hydrogen tank. A conjugate heat transfer based on energy balance is introduced. The numerical model is validated against fast filling experiments of hydrogen in a Type IV tank by comparing the gas temperature evolution. The impact of filling parameters such as initial temperature inlet nozzle diameter and filling time is then assessed. For the considered Type IV tank the results show that both a higher and lower tank shell thermal conductivity results in lower inner wall peak temperatures. The presented model provides an analytical description of the temperature evolution in the gas and in the tank shell and is thus a useful tool to explore a broad range of parameters e.g. to determine new hydrogen filling protocols.
Polymer Electrolyte Membrane Electrolyzer and Fuel Cell System Characterization for Power System Frequency Control
Mar 2022
Publication
This work focuses on tests for control reserve of a novel Power-to-Gas-to-Power platform based on proton exchange membrane technologies and on pure oxygen instead of air in the re-electrification process. The technologies are intended as a further option to stabilize the power system therefore helping integrating renewable energy into the power system. The tests are based on the pre-qualification tests used by Swissgrid but are not identical in order to capture the maximum dynamics by the plants. The main characteristics identified are the ramping capabilities of ±8% per unit per second for the electrolyzer system and ±33% per unit per second for the fuel cell system. The ramping capabilities are mainly limited by the underlying processes of polymer electrolyte membrane technologies. Additionally the current and projected round-trip efficiencies for Power-to-Gas-to-Power of 39% in 2025 and 48% in 2040 are derived. Furthermore during the successful tests the usage of oxygen in the present Power-to-Gas and Gas-to-Power processes and its influence on the dynamics and the round-trip efficiency was assessed. In consequence fundamental data on the efficiency and the dynamics of the Power-to-Gas-to-Power technologies is presented. This data can serve as basis for prospective assessments on the suitability of the technologies investigated for frequency control in power systems.
Aluminium Redox Cycle in Comparison to Pressurized Hydrogen for the Energy Supply of Multi-family Houses
Nov 2022
Publication
Power-to-X technologies that convert renewable electricity to chemically stored energy in “X” may provide a gaseous liquid or solid fuel that can be used in winter to provide both heat and electricity and thus replace fossil fuels that are currently used in many countries with cold winters. This contribution compares two options for power-to-X technologies for providing heat and electricity supply of buildings with high solar photovoltaic coverage at times of low solar availability. The option “compressed hydrogen” is based on water electrolysis that produces hydrogen on-site. This hydrogen is subsequently compressed and stored at high pressure (350 bar) for use in winter by a fuel cell. The option “aluminium redox-cycle” includes an inert electrode high temperature electrolysis process that is carried out at industrial scale. Produced aluminium is subseqeuntly transported to the site of use and converted to hydrogen and heat – and finally to electricity and heat - by aluminium-water reaction in combination with a fuel cell. Results of cost and LCA analysis show that the overall energetic efficiency of the compressed hydrogen process is slightly higher than for the aluminium redox cycle. However the aluminium redox-cycles needs far less on-site storage volume and is likely to become available at lower investment cost for the end user. Total annual cost of ownership and global warming potential of the two options are quite similar.
Detection of Contaminants in Hydrogen Fuel for Fuel Cell Electrical Vehicles with Sensors—Available Technology, Testing Protocols and Implementation Challenges
Dec 2021
Publication
Europe’s low-carbon energy policy favors a greater use of fuel cells and technologies based on hydrogen used as a fuel. Hydrogen delivered at the hydrogen refueling station must be compliant with requirements stated in different standards. Currently the quality control process is performed by offline analysis of the hydrogen fuel. It is however beneficial to continuously monitor at least some of the contaminants onsite using chemical sensors. For hydrogen quality control with regard to contaminants high sensitivity integration parameters and low cost are the most important requirements. In this study we have reviewed the existing sensor technologies to detect contaminants in hydrogen then discussed the implementation of sensors at a hydrogen refueling stations described the state-of-art in protocols to perform assessment of these sensor technologies and finally identified the gaps and needs in these areas. It was clear that sensors are not yet commercially available for all gaseous contaminants mentioned in ISO14687:2019. The development of standardized testing protocols is required to go hand in hand with the development of chemical sensors for this application following a similar approach to the one undertaken for air sensors.
Large-scale Hydrogen Production via Water Electrolysis: A Techno-economic and Environmental Assessment
Jul 2022
Publication
Low-carbon (green) hydrogen can be generated via water electrolysis using photovoltaic wind hydropower or decarbonized grid electricity. This work quantifies current and future costs as well as environmental burdens of large-scale hydrogen production systems on geographical islands which exhibit high renewable energy potentials and could act as hydrogen export hubs. Different hydrogen production configurations are examined considering a daily hydrogen production rate of 10 tonnes on hydrogen production costs life cycle greenhouse gas emissions material utilization and land transformation. The results demonstrate that electrolytic hydrogen production costs of 3.7 Euro per kg H2 are within reach today and that a reduction to 2 Euro per kg H2 in year 2040 is likely hence approaching cost parity with hydrogen from natural gas reforming even when applying ‘‘historical’’ natural gas prices. The recent surge of natural gas prices shows that cost parity between green and grey hydrogen can already be achieved today. Producing hydrogen via water electrolysis with low costs and low GHG emissions is only possible at very specific locations nowadays. Hybrid configurations using different electricity supply options demonstrate the best economic performance in combination with low environmental burdens. Autonomous hydrogen production systems are especially effective to produce low-carbon hydrogen although the production of larger sized system components can exhibit significant environmental burdens and investments. Some materials (especially iridium) and the availability of land can be limiting factors when scaling up green hydrogen production with polymer electrolyte membrane (PEM) electrolyzers. This implies that decision-makers should consider aspects beyond costs and GHG emissions when designing large-scale hydrogen production systems to avoid risks coming along with the supply of for example scarce materials
Expert Perceptions of Game-changing Innovations towards Net Zero
Dec 2022
Publication
Current technological improvements are yet to put the world on track to net-zero which will require the uptake of transformative low-carbon innovations to supplement mitigation efforts. However the role of such innovations is not yet fully understood; some of these ‘miracles’ are considered indispensable to Paris Agreement-compliant mitigation but their limitations availability and potential remain a source of debate. We evaluate such potentially game-changing innovations from the experts’ perspective aiming to support the design of realistic decarbonisation scenarios and better-informed net-zero policy strategies. In a worldwide survey 260 climate and energy experts assessed transformative innovations against their mitigation potential at-scale availability and/or widescale adoption and risk of delayed diffusion. Hierarchical clustering and multi-criteria decision-making revealed differences in perceptions of core technological innovations with next generation energy storage alternative building materials iron-ore electrolysis and hydrogen in steelmaking emerging as top priorities. Instead technologies highly represented in well-below-2◦C scenarios seemingly feature considerable and impactful delays hinting at the need to re-evaluate their role in future pathways. Experts’ assessments appear to converge more on the potential role of other disruptive innovations including lifestyle shifts and alternative economic models indicating the importance of scenarios including non-technological and demand-side innovations. To provide insights for expert elicitation processes we finally note caveats related to the level of representativeness among the 260 engaged experts the level of their expertise that may have varied across the examined innovations and the potential for subjective interpretation to which the employed linguistic scales may be prone to.
Overview of First Outcomes of PNR Project HYTUNNEL-CS
Sep 2021
Publication
Dmitry Makarov,
Donatella Cirrone,
Volodymyr V. Shentsov,
Sergii Kashkarov,
Vladimir V. Molkov,
Z. Xu,
Mike Kuznetsov,
Alexandros G. Venetsanos,
Stella G. Giannissi,
Ilias C. Tolias,
Knut Vaagsaether,
André Vagner Gaathaug,
Mark R. Pursell,
Wayne M. Rattigan,
Frank Markert,
Luisa Giuliani,
L.S. Sørensen,
A. Bernad,
Mercedes Sanz Millán,
U. Kummer,
Christian Brauner,
Paola Russo,
J. van den Berg,
F. de Jong,
Tom Van Esbroeck,
M. Van De Veire,
Didier Bouix,
Gilles Bernard-Michel,
Sergey Kudriakov,
Etienne Studer,
Domenico Ferrero,
Joachim Grüne and
G. Stern
The paper presents the first outcomes of the experimental numerical and theoretical studies performed in the funded by Fuel Cell and Hydrogen Joint Undertaking (FCH2 JU) project HyTunnel-CS. The project aims to conduct pre-normative research (PNR) to close relevant knowledge gaps and technological bottlenecks in the provision of safety of hydrogen vehicles in underground transportation systems. Pre normative research performed in the project will ultimately result in three main outputs: harmonised recommendations on response to hydrogen accidents recommendations for inherently safer use of hydrogen vehicles in underground traffic systems and recommendations for RCS. The overall concept behind this project is to use inter-disciplinary and inter-sectoral prenormative research by bringing together theoretical modelling and experimental studies to maximise the impact. The originality of the overall project concept is the consideration of hydrogen vehicle and underground traffic structure as a single system with integrated safety approach. The project strives to develop and offer safety strategies reducing or completely excluding hydrogen-specific risks to drivers passengers public and first responders in case of hydrogen vehicle accidents within the currently available infrastructure.
Life Cycle Assessment of Natural Gas-based Chemical Looping for Hydrogen Production
Dec 2014
Publication
Hydrogen production from natural gas combined with advanced CO2 capture technologies such as iron-based chemical looping (CL) is considered in the present work. The processes are compared to the conventional base case i.e. hydrogen production via natural gas steam reforming (SR) without CO2 capture. The processes are simulated using commercial software (ChemCAD) and evaluated from a technical point of view considering important key performance indicators such as hydrogen thermal output net electric power carbon capture rate and specific CO2 emissions. The environmental evaluation is performed using Life Cycle Analysis (LCA) with the following system boundaries considered: i) hydrogen production from natural gas coupled to CO2 capture technologies based on CL ii) upstream processes such as: extraction and processing of natural gas ilmenite and catalyst production and iii) downstream processes such as: H2 and CO2 compression transport and storage. The LCA assessment was carried out using the GaBi6 software. Different environmental impact categories following here the CML 2001 impact assessment method were calculated and used to determine the most suitable technology. Sensitivity analyses of the CO2 compression transport and storage stages were performed in order to examine their effect on the environmental impact categories.
The Role of Hydrogen for Deep Decarbonization of Energy Systems: A Chilean Case Study
Mar 2023
Publication
In this paper we implement a long-term multi-sectoral energy planning model to evaluate the role of green hydrogen in the energy mix of Chile a country with a high renewable potential under stringent emission reduction objectives in 2050. Our results show that green hydrogen is a cost-effective and environmentally friendly route especially for hard-to-abate sectors such as interprovincial and freight transport. They also suggest a strong synergy of hydrogen with electricity generation from renewable sources. Our numerical simulations show that Chile should (i) start immediately to develop hydrogen production through electrolyzers all along the country (ii) keep investing in wind and solar generation capacities ensuring a low cost hydrogen production and reinforce the power transmission grid to allow nodal hydrogen production (iii) foster the use of electric mobility for cars and local buses and of hydrogen for long-haul trucks and interprovincial buses and (iv) develop seasonal hydrogen storage and hydrogen cells to be exploited for electricity supply especially for the most stringent emission reduction objectives.
Comparative Exergy and Environmental Assessment of the Residual Biomass Gasification Routes for Hydrogen and Ammonia Production
Jul 2023
Publication
The need to reduce the dependency of chemicals on fossil fuels has recently motivated the adoption of renewable energies in those sectors. In addition due to a growing population the treatment and disposition of residual biomass from agricultural processes such as sugar cane and orange bagasse or even from human waste such as sewage sludge will be a challenge for the next generation. These residual biomasses can be an attractive alternative for the production of environmentally friendly fuels and make the economy more circular and efficient. However these raw materials have been hitherto widely used as fuel for boilers or disposed of in sanitary landfills losing their capacity to generate other by-products in addition to contributing to the emissions of gases that promote global warming. For this reason this work analyzes and optimizes the biomass-based routes of biochemical production (namely hydrogen and ammonia) using the gasification of residual biomasses. Moreover the capture of biogenic CO2 aims to reduce the environmental burden leading to negative emissions in the overall energy system. In this context the chemical plants were designed modeled and simulated using Aspen plus™ software. The energy integration and optimization were performed using the OSMOSE Lua Platform. The exergy destruction exergy efficiency and general balance of the CO2 emissions were evaluated. As a result the irreversibility generated by the gasification unit has a relevant influence on the exergy efficiency of the entire plant. On the other hand an overall negative emission balance of −5.95 kgCO2/kgH2 in the hydrogen production route and −1.615 kgCO2/kgNH3 in the ammonia production route can be achieved thus removing from the atmosphere 0.901 tCO2/tbiomass and 1.096 tCO2/tbiomass respectively.
Energy Management of Hydrogen Hybrid Electric Vehicles - A Potential Analysis
Jan 2024
Publication
The hydrogen combustion engine (H2 ICE) is known to be able to burn H2 producing no CO2 emissions and extremely low engine-out NOeo emissions. In this work the potential to reduce the NOeo emissions through the implementation of electric hybridization of an H2 ICE-equipped passenger car (H2 -HEV) combined with a dedicated energy management system (EMS) is discussed. Achieving a low H2 consumption and low NOeo emissions are conflicting objectives the trade-off of which depends on the EMS and can be represented as a Pareto front. The dynamic programming algorithm is used to calculate the Pareto-optimal EMS calibrations for various driving missions. Through the utilization of a dedicated energy management calibration H2 -HEVs exhibit the potential to decrease the NOeo x emissions by more than 90% while decreasing the H2 consumption by over 16% compared to a comparable non-hybridized H2 -vehicle. The present paper represents the initial potential analysis suggesting that H2 -HEVs are a viable option towards a CO2 -free mobility with extremely low NOeo emissions.
No more items...