Switzerland
Carbon Capture and Storage (CCS): The Way Forward
Mar 2018
Publication
Mai Bui,
Claire S. Adjiman,
André Bardow,
Edward J. Anthony,
Andy Boston,
Solomon Brown,
Paul Fennell,
Sabine Fuss,
Amparo Galindo,
Leigh A. Hackett,
Jason P. Hallett,
Howard J. Herzog,
George Jackson,
Jasmin Kemper,
Samuel Krevor,
Geoffrey C. Maitland,
Michael Matuszewski,
Ian Metcalfe,
Camille Petit,
Graeme Puxty,
Jeffrey Reimer,
David M. Reiner,
Edward S. Rubin,
Stuart A. Scott,
Nilay Shah,
Berend Smit,
J. P. Martin Trusler,
Paul Webley,
Jennifer Wilcox and
Niall Mac Dowell
Carbon capture and storage (CCS) is broadly recognised as having the potential to play a key role in meeting climate change targets delivering low carbon heat and power decarbonising industry and more recently its ability to facilitate the net removal of CO2 from the atmosphere. However despite this broad consensus and its technical maturity CCS has not yet been deployed on a scale commensurate with the ambitions articulated a decade ago. Thus in this paper we review the current state-of-the-art of CO2 capture transport utilisation and storage from a multi-scale perspective moving from the global to molecular scales. In light of the COP21 commitments to limit warming to less than 2 °C we extend the remit of this study to include the key negative emissions technologies (NETs) of bioenergy with CCS (BECCS) and direct air capture (DAC). Cognisant of the non-technical barriers to deploying CCS we reflect on recent experience from the UK's CCS commercialisation programme and consider the commercial and political barriers to the large-scale deployment of CCS. In all areas we focus on identifying and clearly articulating the key research challenges that could usefully be addressed in the coming decade.
Hydrogen Storage in Glass Capillary Arrays for Portable and Mobile Systems
Sep 2009
Publication
A crucial problem of new hydrogen technologies is the lightweight and also safe storage of acceptable amounts of hydrogen for portable or mobile applications. A new and innovative technology based on capillary arrays has been developed. These systems ensure safe infusion storage and controlled release of hydrogen gas although storage pressures up to 1200 bar are applied. This technology enables the storage of a significantly greater amount of hydrogen than other approaches. In storage tests with first capillary arrays a gravimetric storage capacity of about 33% and a volumetric capacity of 28% was determined at a comparative low pressure of only 400 bar. This is much more than the actual published storage capacities which are to find for other storage systems. This result already surpassed the US Department of Energy's 2010 target and it is expected to meet the DOE's 2015 target in the near future.<br/>Different safety aspects have been evaluated. On the one hand experiments with single capillaries or arrays of them have been carried out. The capillaries are made of quartz and other glasses. Especially quartz has a three times higher strength than steel. At the same time the density is about three times lower which means that much less material is necessary to reach the same pressure resistance. The pressure resistance of single capillaries has been determined in dependence of capillary materials and dimensions wall thickness etc. in order to find out optimal parameters for the “final” capillaries. In these tests also the sudden release of hydrogen was tested in order to observe possible spontaneous ignitions. On the other hand a theoretical evaluation of explosion hazards was done. Different situations were analyzed e.g. release of hydrogen by diffusion or sudden rupture.
Model-based Determination of Hydrogen System Emissions of Motor Vehicles Using Climate-Chamber Test Facilities
Sep 2007
Publication
Because of air quality problems the problem of CO2 related greenhouse gas emissions and shortage of fossil fuels many vehicles with gaseous fuels (CNG biogas hydrogen etc.) are under research and development. Such vehicles have to prove that as well as their exhaust emissions their overall system emissions (including running loss) remain below certain safety limits before they can be used in practice. This paper presents a cost-effective way of monitoring such system emissions from hydrogen or other gaseous fuel powered vehicles within an air-conditioned chassis dynamometer test cell as commonly used for low ambient emission tests on gasoline vehicles. The only additional equipment needed is a low-concentration sensor for the gas of interest (e.g hydrogen). The method is based on concentration measurements and a dynamic mass balance model. This method is based on the fact that atoms cannot vanish. Applied to a room containing a gas mixture this means that the change of mass of a gaseous matter (called gas G subsequently) inside the chamber is the difference of all mass of G flowing into the chamber and all mass of G flowing out of the chamber. This assumes that no chemical reactions of the gas in mind with other matter take place. By measuring the flow rates and concentrations of ventilation-in flow and ventilation-out flow as well as room concentration the emissions of G of a source i.e. the vehicle to be tested can be calculated. These concentrations need to be measured as functions of time to be able to give values of emissions per time unit. It is shown by a real experiment that very low emissions can be recorded. Additionally error bounds and sensitivities on different parameters such as air exchange ratio are quantified.
Measurement Challenges for Hydrogen Vehicles
Apr 2019
Publication
Uptake of hydrogen vehicles is an ideal solution for countries that face challenging targets for carbon dioxide reduction. The advantage of hydrogen fuel cell electric vehicles is that they behave in a very similar way to petrol engines yet they do not emit any carbon containing products during operation. The hydrogen industry currently faces the dilemma that they must meet certain measurement requirements (set by European legislation) but cannot do so due to a lack of available methods and standards. This paper outlines the four biggest measurement challenges that are faced by the hydrogen industry including flow metering quality assurance quality control and sampling.
Life Cycle Assessment of Substitute Natural Gas Production from Biomass and Electrolytic Hydrogen
Feb 2021
Publication
The synthesis of a Substitute Natural Gas (SNG) that is compatible with the gas grid composition requirements by using surplus electricity from renewable energy sources looks a favourable solution to store large quantities of electricity and to decarbonise the gas grid network while maintaining the same infrastructure. The most promising layouts for SNG production and the conditions under which SNG synthesis reduces the environmental impacts if compared to its fossil alternative is still largely untapped. In this work six different layouts for the production of SNG and electricity from biomass and fluctuating electricity are compared from the environmental point of view by means of Life Cycle Assessment (LCA) methodology. Global Warming Potential (GWP) Cumulative Energy Demand (CED) and Acidification Potential (AP) are selected as impact indicators for this analysis. The influence of key LCA methodological aspects on the conclusions is also explored. In particular two different functional units are chosen: 1 kg of SNG produced and 1 MJ of output energy (SNG and electricity). Furthermore different approaches dealing with co-production of electricity are also applied. The results show that the layout based on hydrogasification has the lowest impacts on all the considered cases apart from the GWP and the CED with SNG mass as the functional unit and the avoided burden approach. Finally the selection of the multifunctionality approach is found to have a significant influence on technology ranking.
Comparative Life Cycle Assessment of Hydrogen-fuelled Passenger Cars
Feb 2021
Publication
In order to achieve gradual but timely decarbonisation of the transport sector it is essential to evaluate which types of vehicles provide a suitable environmental performance while allowing the use of hydrogen as a fuel. This work compares the environmental life-cycle performance of three different passenger cars fuelled by hydrogen: a fuel cell electric vehicle an internal combustion engine car and a hybrid electric vehicle. Besides two vehicles that use hydrogen in a mixture with natural gas or gasoline were considered. In all cases hydrogen produced by wind power electrolysis was assumed. The resultant life-cycle profiles were benchmarked against those of a compressed natural gas car and a hybrid electric vehicle fed with natural gas. Vehicle infrastructure was identified as the main source of environmental burdens. Nevertheless the three pure hydrogen vehicles were all found to be excellent decarbonisation solutions whereas vehicles that use hydrogen mixed with natural gas or gasoline represent good opportunities to encourage the use of hydrogen in the short term while reducing emissions compared to ordinary vehicles.
Molecular Transport Effects of Hydrocarbon Addition on Turbulent Hydrogen Flame Propagation
Sep 2007
Publication
We analytically investigated the influence of light hydrocarbons on turbulent premixed H2/air atmospheric flames under lean conditions in view of safe handling of H2 systems applications in H2 powered IC engines and gas turbines and also with an orientation towards modelling of H2 combustion. For this purpose an algebraic flame surface wrinkling model included with pressure and fuel type effects is used. The model predictions of turbulent premixed flames are compared with the set of corresponding experimental data of Kido et al. (Kido Nakahara et al. 2002). These expanding spherical flame data include H2–air mixtures doped with CH4 and C3H8 while the overall equivalence ratio of all the fuel/air mixtures is fixed at 0.8 for constant unstretched laminar flame speed of 25 cm/s by varying N2 composition. The model predictions show that there is little variation in turbulent flame speed ST for C3H8 additions up to 20-vol%. However for 50 vol% doping flame speed decreases by as much as 30 % from 250 cm/s that of pure H2–air mixtures for turbulence intensity of 200 cm/s. With respect to CH4 for 50 vol% doping ST reduces by only 6 % cf. pure H2/air mixture. In the first instance the substantial decrease of ST with C3H8 addition may be attributed to the increase in the Lewis number of the dual-fuel mixture and proportional restriction of molecular mobility of H2. That is this decrease in flame speed can be explained using the concept of leading edges of the turbulent flame brush (Lipatnikov and Chomiak 2005). As these leading edges have mostly positive curvature (convex to the unburned side) preferential-diffusive-thermal instabilities cause recognizable impact on flame speed at higher levels of turbulence with the effect being very strong for lean H2 mixtures. The lighter hydrocarbon substitutions tend to suppress the leading flame edges and possibly transition to detonation in confined structures and promote flame front stability of lean turbulent premixed flames. Thus there is a necessity to develop a predictive reaction model to quantitatively show the strong influence of molecular transport coefficients on ST.
Evaluation of Sorbents for High Temperature Removal of Tars, Hydrogen Sulphide, Hydrogen Chloride and Ammonia from Biomass-derived Syngas by Using Aspen Plus
Jan 2020
Publication
Biomass gasification is a promising technology to produce secondary fuels or heat and power offering considerable advantages over fossil fuels. An important aspect in the usage of producer gas is the removal of harmful contaminants from the raw syngas. Thus the object of this study is the development of a simulation model for a gasifier including gas clean-up for which a fluidized-bed gasifier for biomass-derived syngas production was considered based on a quasi-equilibrium approach through Gibbs free energy minimisation and including an innovative hot gas cleaning constituted by a combination of catalyst sorbents inside the gasification reactor catalysts in the freeboard and subsequent sorbent reactors by using Aspen Plus software. The gas cleaning chain simulates the raw syngas clean-up for several organic and inorganic contaminants i.e. toluene benzene naphthalene hydrogen sulphide hydrogen chloride and ammonia. The tar and inorganic contaminants final values achieved are under 1 g/Nm3 and 1 ppm respectively.
Towards Climate Resilient Urban Energy Systems: A Review
Jun 2020
Publication
Climate change and increased urban population are two major concerns for society. Moving towards more sustainable energy solutions in the urban context by integrating renewable energy technologies supports decarbonizing the energy sector and climate change mitigation. A successful transition also needs adequate consideration of climate change including extreme events to ensure the reliable performance of energy systems in the long run. This review provides an overview of and insight into the progress achieved in the energy sector to adapt to climate change focusing on the climate resilience of urban energy systems. The state-of-the-art methodology to assess impacts of climate change including extreme events and uncertainties on the design and performance of energy systems is described and discussed. Climate resilience is an emerging concept that is increasingly used to represent the durability and stable performance of energy systems against extreme climate events. However it has not yet been adequately explored and widely used as its definition has not been clearly articulated and assessment is mostly based on qualitative aspects. This study reveals that a major limitation in the state-of-the-art is the inadequacy of climate change adaptation approaches in designing and preparing urban energy systems to satisfactorily address plausible extreme climate events. Furthermore the complexity of the climate and energy models and the mismatch between their temporal and spatial resolutions are the major limitations in linking these models. Therefore few studies have focused on the design and operation of urban energy infrastructure in terms of climate resilience. Considering the occurrence of extreme climate events and increasing demand for implementing climate adaptation strategies the study highlights the importance of improving energy system models to consider future climate variations including extreme events to identify climate resilient energy transition pathways.
Dynamic System Modeling of Thermally-integrated Concentrated PV-electrolysis
Feb 2021
Publication
Understanding the dynamic response of a solar fuel processing system utilizing concentrated solar radiation and made of a thermally-integrated photovoltaic (PV) and water electrolyzer (EC) is important for the design development and implementation of this technology. A detailed dynamic non-linear process model is introduced for the fundamental system components (i.e. PV EC pump etc.) in order to investigate the coupled system behavior and performance synergy notably arising from the thermal integration. The nominal hydrogen production power is ∼2 kW at a hydrogen system efficiency of 16–21% considering a high performance triple junction III-V PV module and a proton exchange membrane EC. The device operating point relative to the maximum power point of the PV was shown to have a differing influence on the system performance when subject to temperature changes. The non-linear coupled behavior was characterised in response to step changes in water flowrate and solar irradiance and hysteresis of the current-voltage operating point was demonstrated. Whilst the system responds thermally to changes in operating conditions in the range of 0.5–2 min which leads to advantageously short start-up times a number of control challenges are identified such as the impact of pump failure electrical PV-EC disconnection and the potentially damaging accentuated temperature rise at lower water flowrates. Finally the simulation of co-generation of heat and hydrogen for various operating conditions demonstrates the significant potential for system efficiency enhancements and the required development of control strategies for demand matching is discussed.
Feasibility of Renewable Hydrogen Based Energy Supply for a District
Sep 2017
Publication
Renewable generation technologies (e.g. photovoltaic panels (PV)) are often installed in buildings and districts with an aim to decrease their carbon emissions and consumption of non-renewable energy. However due to a mismatch between supply and demand at an hourly but also on a seasonal timescale; a large amount of electricity is exported to the grid rather than used to offset local demand. A solution to this is local storage of electricity for subsequent self-consumption. This could additionally provide districts with new business opportunities financial stability flexibility and reliability.<br/>In this paper the feasibility of hydrogen based electricity storage for a district is evaluated. The district energy system (DES) includes PV and hybrid photovoltaic panels (PVT). The proposed storage system consists of production of hydrogen using the renewable electricity generated within the district hydrogen storage and subsequent use in a fuel cell. Combination of battery storage along with hydrogen conversion and storage is also evaluated. A multi-energy optimization approach is used to model the DES. Results of the model are optimal battery capacity electrolyzer capacity hydrogen storage capacity fuel cell capacity and energy flows through the system. The model is also used to compare different system design configurations. The results of this analysis show that both battery capacity and conversion of electricity to hydrogen enable the district to decrease its carbon emissions by approximately 22% when compared to the reference case with no energy storage.
Magnetic Field Enhancement of Electrochemical Hydrogen Evolution Reaction Probed by Magneto-optics
Nov 2020
Publication
External magnetic fields affect various electrochemical processes and can be used to enhance the efficiency of the electrochemical water splitting reaction. However the driving forces behind this effect are poorly understood due to the analytical challenges of the available interface-sensitive techniques. Here we present a set-up based on magneto- and electro-optical probing which allows to juxtapose the magnetic properties of the electrode with the electrochemical current densities in situ at various applied potentials and magnetic fields. On the example of an archetypal hydrogen evolution catalyst Pt (in a form of Co/Pt superlattice) we provide evidence that a magnetic field acts on the electrochemical double layer affecting the local concentration gradient of hydroxide ions which simultaneously affects the magneto-optical and magnetocurrent response.
Hydrogen: The Future Energy Carrier
Jul 2010
Publication
Since the beginning of the twenty-first century the limitations of the fossil age with regard to the continuing growth of energy demand the peaking mining rate of oil the growing impact of CO2 emissions on the environment and the dependency of the economy in the industrialized world on the availability of fossil fuels became very obvious. A major change in the energy economy from fossil energy carriers to renewable energy fluxes is necessary. The main challenge is to efficiently convert renewable energy into electricity and the storage of electricity or the production of a synthetic fuel. Hydrogen is produced from water by electricity through an electrolyser. The storage of hydrogen in its molecular or atomic form is a materials challenge. Some hydrides are known to exhibit a hydrogen density comparable to oil; however these hydrides require a sophisticated storage system. The system energy density is significantly smaller than the energy density of fossil fuels. An interesting alternative to the direct storage of hydrogen are synthetic hydrocarbons produced from hydrogen and CO2 extracted from the atmosphere. They are CO2 neutral and stored like fossil fuels. Conventional combustion engines and turbines can be used in order to convert the stored energy into work and heat.
Link to document download on Royal Society Website
Link to document download on Royal Society Website
A New Technology for Hydrogen Safety: Glass Structures as a Storage System
Sep 2011
Publication
The storage of hydrogen poses inherent weight volume and safety obstacles. An innovative technology which allows for the storage of hydrogen in thin sealed glass capillaries ensures the safe infusion storage and controlled release of hydrogen gas under pressures up to 100 MPa. Glass is a non-flammable material which also guarantees high burst pressures. The pressure resistance of single and multiple capillaries has been determined for different glass materials. Borosilicate capillaries have been proven to have the highest pressure resistance and have therefore been selected for further series of advanced testing. The innovative storage system is finally composed of a variable number of modules. As such in the case of the release of hydrogen this modular arrangement allows potential hazards to be reduced to a minimum. Further advantage of a modular system is the arrangement of single modules in every shape and volume dependent on the final application. Therefore the typical locations of storage systems e.g. the rear of cars can be modified or shifted to places of higher safety and not directly involved in crashes. The various methods of refilling and releasing capillaries with compressed hydrogen the increase of burst pressures through pre-treatment as well as the theoretical analysis and experimental results of the resistance of glass capillaries will further be discussed in detail.
Materials for Hydrogen Storage
Aug 2003
Publication
Hydrogen storage is a materials science challenge because for all six storage methods currently being investigated materials with either a strong interaction with hydrogen or without any reaction are needed. Besides conventional storage methods i.e. high pressure gas cylinders and liquid hydrogen the physisorption of hydrogen on materials with a high specific surface area hydrogen intercalation in metals and complex hydrides and storage of hydrogen based on metals and water are reviewed.
Hydrogen Production from Natural Gas and Biomethane with Carbon Capture and Storage – A Techno-environmental Analysis
Mar 2020
Publication
This study presents an integrated techno-environmental assessment of hydrogen production from natural gas and biomethane combined with CO2 capture and storage (CCS). We have included steam methane reforming (SMR) and autothermal reforming (ATR) for syngas production. CO2 is captured from the syngas with a novel vacuum pressure swing adsorption (VPSA) process that combines hydrogen purification and CO2 separation in one cycle. As comparison we have included cases with conventional amine-based technology. We have extended standard attributional Life Cycle Assessment (LCA) following ISO standards with a detailed carbon balance of the biogas production process (via digestion) and its by-products. The results show that the life-cycle greenhouse gas (GHG) performance of the VPSA and amine-based CO2 capture technologies is very similar as a result of comparable energy consumption. The configuration with the highest plant-wide CO2 capture rate (almost 100% of produced CO2 captured) is autothermal reforming with a two-stage water-gas shift and VPSA CO2 capture – because the latter has an inherently high CO2 capture rate of 98% or more for the investigated syngas. Depending on the configuration the addition of CCS to natural gas reforming-based hydrogen production reduces its life-cycle Global Warming Potential by 45–85 percent while the other environmental life-cycle impacts slightly increase. This brings natural gas-based hydrogen on par with renewable electricity-based hydrogen regarding impacts on climate change. When biomethane is used instead of natural gas our study shows potential for net negative greenhouse gas emissions i.e. the net removal of CO2 over the life cycle of biowaste-based hydrogen production. In the special case where the biogas digestate is used as agricultural fertiliser and where a substantial amount of the carbon in the digestate remains in the soil the biowaste-based hydrogen reaches net-negative life cycle greenhouse gas emissions even without the application of CCS. Addition of CCS to biomethane-based hydrogen production leads to net-negative emissions in all investigated cases.
Application of Hydrides in Hydrogen Storage and Compression: Achievements, Outlook and Perspectives
Feb 2019
Publication
José Bellosta von Colbe,
Jose-Ramón Ares,
Jussara Barale,
Marcello Baricco,
Craig Buckley,
Giovanni Capurso,
Noris Gallandat,
David M. Grant,
Matylda N. Guzik,
Isaac Jacob,
Emil H. Jensen,
Julian Jepsen,
Thomas Klassen,
Mykhaylo V. Lototskyy,
Kandavel Manickam,
Amelia Montone,
Julian Puszkiel,
Martin Dornheim,
Sabrina Sartori,
Drew Sheppard,
Alastair D. Stuart,
Gavin Walker,
Colin Webb,
Heena Yang,
Volodymyr A. Yartys,
Andreas Züttel and
Torben R. Jensen
Metal hydrides are known as a potential efficient low-risk option for high-density hydrogen storage since the late 1970s. In this paper the present status and the future perspectives of the use of metal hydrides for hydrogen storage are discussed. Since the early 1990s interstitial metal hydrides are known as base materials for Ni – metal hydride rechargeable batteries. For hydrogen storage metal hydride systems have been developed in the 2010s [1] for use in emergency or backup power units i. e. for stationary applications.<br/>With the development and completion of the first submarines of the U212 A series by HDW (now Thyssen Krupp Marine Systems) in 2003 and its export class U214 in 2004 the use of metal hydrides for hydrogen storage in mobile applications has been established with new application fields coming into focus.<br/>In the last decades a huge number of new intermetallic and partially covalent hydrogen absorbing compounds has been identified and partly more partly less extensively characterized.<br/>In addition based on the thermodynamic properties of metal hydrides this class of materials gives the opportunity to develop a new hydrogen compression technology. They allow the direct conversion from thermal energy into the compression of hydrogen gas without the need of any moving parts. Such compressors have been developed and are nowadays commercially available for pressures up to 200 bar. Metal hydride based compressors for higher pressures are under development. Moreover storage systems consisting of the combination of metal hydrides and high-pressure vessels have been proposed as a realistic solution for on-board hydrogen storage on fuel cell vehicles.<br/>In the frame of the “Hydrogen Storage Systems for Mobile and Stationary Applications” Group in the International Energy Agency (IEA) Hydrogen Task 32 “Hydrogen-based energy storage” different compounds have been and will be scaled-up in the near future and tested in the range of 500 g to several hundred kg for use in hydrogen storage applications.
Design and Cost Considerations for Practical Solar-hydrogen Generators
Oct 2014
Publication
Solar-hydrogen generation represents a promising alternative to fossil fuels for the large-scale implementation of a clean-fuel transportation infrastructure. A significant amount of research resources has been allocated to the development of photoelectrochemical components (i.e. photovoltaic and water splitting catalysts) that are able to spontaneously split water in the presence of solar irradiation which has led to major advances in the solar-fuels field. At the same time only limited attention has been given to understanding the key aspects that drive economically viable solar-fuel generators. This study presents a generalized approach to understand the economic factors behind the design of solar-hydrogen generators composed of photovoltaic components integrated with water electrolyzers. It evaluates the underpinning effects of the material selection for the light absorption and water splitting components on the cost of the generated fuel ($ per Kg of H2). The results presented in this work provide insights into important engineering aspects related to the sizing of devices and the use of light concentration components that when optimized can lead to costs below $2.90 per kilogram of hydrogen after compression and distribution. Most significantly the analysis demonstrates that the cost of hydrogen is defined primarily by the light-absorbing component (up to 97% of the cost) while the material selection for the electrolysis components has to a large extent minor effects. The findings presented here can help direct research and development efforts towards the fabrication of deployable solar-hydrogen generators that are cost competitive with commercial energy sources.
Potential for Hydrogen Production from Sustainable Biomass with Carbon Capture and Storage
Jan 2022
Publication
Low-carbon hydrogen is an essential element in the transition to net-zero emissions by 2050. Hydrogen production from biomass is a promising bio-energy with carbon capture and storage (BECCS) scheme that could produce low-carbon hydrogen and generate the carbon dioxide removal (CDR) envisioned to be required to offset hard-to-abate emissions. Here we design a BECCS supply chain for hydrogen production from biomass with carbon capture and storage and quantify at high spatial resolution the technical potential for hydrogen production and CDR in Europe. We consider sustainable biomass feedstocks that have minimal impacts on food security and biodiversity namely agricultural residues and waste. We find that this BECCS supply chain can produce up to 12.5 Mtons of H2 per year (currently ~10 Mtons of H2 per year are used in Europe) and remove up to 133 Mtons CO2 per year from the atmosphere (or 3% of European total greenhouse gas emissions). We then perform a geospatial analysis to quantify transportation distances between where biomass feedstocks are located and potential hydrogen users and find that 20% of hydrogen potential is located within 25 km from hard-toelectrify industries. We conclude that BECCS supply chains for hydrogen production from biomass represent an overlooked near-term opportunity to generate carbon dioxide removal and low-carbon hydrogen.
In Situ Neutron Radiography Investigations of Hydrogen Related Processes in Zirconium Alloys
Jun 2021
Publication
In situ neutron radiography experiments can provide information about diffusive processes and the kinetics of chemical reactions. The paper discusses requirements for such investigations. As examples of the zirconium alloy Zircaloy-4 the hydrogen diffusion the hydrogen uptake during high-temperature oxidation in steam and the reaction in nitrogen/steam and air/steam atmospheres results of in situ neutron radiography investigations are reviewed and their benefit is discussed.
No more items...