Switzerland
Application of Hydrides in Hydrogen Storage and Compression: Achievements, Outlook and Perspectives
Feb 2019
Publication
José Bellosta von Colbe,
Jose-Ramón Ares,
Jussara Barale,
Marcello Baricco,
Craig Buckley,
Giovanni Capurso,
Noris Gallandat,
David M. Grant,
Matylda N. Guzik,
Isaac Jacob,
Emil H. Jensen,
Julian Jepsen,
Thomas Klassen,
Mykhaylo V. Lototskyy,
Kandavel Manickam,
Amelia Montone,
Julian Puszkiel,
Martin Dornheim,
Sabrina Sartori,
Drew Sheppard,
Alastair D. Stuart,
Gavin Walker,
Colin Webb,
Heena Yang,
Volodymyr A. Yartys,
Andreas Züttel and
Torben R. Jensen
Metal hydrides are known as a potential efficient low-risk option for high-density hydrogen storage since the late 1970s. In this paper the present status and the future perspectives of the use of metal hydrides for hydrogen storage are discussed. Since the early 1990s interstitial metal hydrides are known as base materials for Ni – metal hydride rechargeable batteries. For hydrogen storage metal hydride systems have been developed in the 2010s [1] for us Read More
Evaluation of Sorbents for High Temperature Removal of Tars, Hydrogen Sulphide, Hydrogen Chloride and Ammonia from Biomass-derived Syngas by Using Aspen Plus
Jan 2020
Publication
Biomass gasification is a promising technology to produce secondary fuels or heat and power offering considerable advantages over fossil fuels. An important aspect in the usage of producer gas is the removal of harmful contaminants from the raw syngas. Thus the object of this study is the development of a simulation model for a gasifier including gas clean-up for which a fluidized-bed gasifier for biomass-derived syngas production was considered bas Read More
Towards Climate Resilient Urban Energy Systems: A Review
Jun 2020
Publication
Climate change and increased urban population are two major concerns for society. Moving towards more sustainable energy solutions in the urban context by integrating renewable energy technologies supports decarbonizing the energy sector and climate change mitigation. A successful transition also needs adequate consideration of climate change including extreme events to ensure the reliable performance of energy systems in the long run. This re Read More
Comparative Life Cycle Assessment of Hydrogen-fuelled Passenger Cars
Feb 2021
Publication
In order to achieve gradual but timely decarbonisation of the transport sector it is essential to evaluate which types of vehicles provide a suitable environmental performance while allowing the use of hydrogen as a fuel. This work compares the environmental life-cycle performance of three different passenger cars fuelled by hydrogen: a fuel cell electric vehicle an internal combustion engine car and a hybrid electric vehicle. Besides two vehicle Read More
Carbon Capture and Storage (CCS): The Way Forward
Mar 2018
Publication
Mai Bui,
Claire S. Adjiman,
André Bardow,
Edward J. Anthony,
Andy Boston,
Solomon Brown,
Paul Fennell,
Sabine Fuss,
Amparo Galindo,
Leigh A. Hackett,
Jason P. Hallett,
Howard J. Herzog,
George Jackson,
Jasmin Kemper,
Samuel Krevor,
Geoffrey C. Maitland,
Michael Matuszewski,
Ian Metcalfe,
Camille Petit,
Graeme Puxty,
Jeffrey Reimer,
David M. Reiner,
Edward S. Rubin,
Stuart A. Scott,
Nilay Shah,
Berend Smit,
J. P. Martin Trusler,
Paul Webley,
Jennifer Wilcox and
Niall Mac Dowell
Carbon capture and storage (CCS) is broadly recognised as having the potential to play a key role in meeting climate change targets delivering low carbon heat and power decarbonising industry and more recently its ability to facilitate the net removal of CO2 from the atmosphere. However despite this broad consensus and its technical maturity CCS has not yet been deployed on a scale commensurate with the ambitions articulated a decade ago. Thus i Read More
Uncovering the True Cost of Hydrogen Production Routes Using Life Cycle Monetisation
Oct 2020
Publication
Hydrogen has been identified as a potential energy vector to decarbonise the transport and chemical sectors and achieve global greenhouse gas reduction targets. Despite ongoing efforts hydrogen technologies are often assessed focusing on their global warming potential while overlooking other impacts or at most including additional metrics that are not easily interpretable. Herein a wide range of alternative technologies have been assessed to determi Read More
Dynamic System Modeling of Thermally-integrated Concentrated PV-electrolysis
Feb 2021
Publication
Understanding the dynamic response of a solar fuel processing system utilizing concentrated solar radiation and made of a thermally-integrated photovoltaic (PV) and water electrolyzer (EC) is important for the design development and implementation of this technology. A detailed dynamic non-linear process model is introduced for the fundamental system components (i.e. PV EC pump etc.) in order to investigate the coupled system behavior and perfo Read More
Optimisation-based System Designs for Deep Offshore Wind Farms including Power to Gas Technologies
Feb 2022
Publication
A large deployment of energy storage solutions will be required by the stochastic and non-controllable nature of most renewable energy sources when planning for higher penetration of renewable electricity into the energy mix. Various solutions have been suggested for dealing with medium- and long-term energy storage. Hydrogen and ammonia are two of the most frequently discussed as they are both carbon-free fuels. In this paper the authors an Read More
Direct Numerical Simulation of Hydrogen Combustion at Auto-ignitive Conditions Ignition, Stability and Turbulent Reaction-front Velocity
Mar 2021
Publication
Direct Numerical Simulations (DNS) are performed to investigate the process of spontaneous ignition of hydrogen flames at laminar turbulent adiabatic and non-adiabatic conditions. Mixtures of hydrogen and vitiated air at temperatures representing gas-turbine reheat combustion are considered. Adiabatic spontaneous ignition processes are investigated first providing a quantitative characterization of stable and unstable flames. Results indicate that i Read More
Polymer Electrolyte Membrane Electrolyzer and Fuel Cell System Characterization for Power System Frequency Control
Mar 2022
Publication
This work focuses on tests for control reserve of a novel Power-to-Gas-to-Power platform based on proton exchange membrane technologies and on pure oxygen instead of air in the re-electrification process. The technologies are intended as a further option to stabilize the power system therefore helping integrating renewable energy into the power system. The tests are based on the pre-qualification tests used by Swissgrid but are not identical in o Read More
Hydrogen Production on Demand by Redox-mediated Electrocatalysis: A Kinetic Study
Aug 2020
Publication
Producing hydrogen from water using a redox mediator on solid electrocatalyst particles in a reactor offers several advantages over classical electrolysis in terms of safety membrane degradation purity and flexibility. Herein vanadium-mediated hydrogen evolution on a commercial and low-cost Mo2C electrocatalyst is studied through the development of a reaction kinetics model. Based on a proposed mechanistic reaction scheme we establishe Read More
Calculation and Analysis of Efficiencies and Annual Performances of Power-to-Gas Systems
Mar 2017
Publication
This paper describes a generic and systematic method to calculate the efficiency and the annual performance for Power-to-Gas (PtG) systems. This approach gives the basis to analytically compare different PtG systems using different technologies under different boundary conditions. To have a comparable basis for efficiency calculations a structured break down of the PtG system is done. Until now there has not been a universal approach for efficiency calcula Read More
Reversible Solid-oxide Cell Stack Based Power-to-x-to-power Systems: Comparison of Thermodynamic Performance
Jun 2020
Publication
The increasing penetration of variable renewable energies poses new challenges for grid management. The economic feasibility of grid-balancing plants may be limited by low annual operating hours if they work either only for power generation or only for power storage. This issue might be addressed by a dual-function power plant with power-to-x capability which can produce electricity or store excess renewable electricity into chemicals at different Read More
Power-to-hydrogen as Seasonal Energy Storage: An Uncertainty Analysis for Optimal Design of Low-carbon Multi-energy Systems
Jun 2020
Publication
This study analyzes the factors leading to the deployment of Power-to-Hydrogen (PtH2) within the optimal design of district-scale Multi-Energy Systems (MES). To this end we utilize an optimization framework based on a mixed integer linear program that selects sizes and operates technologies in the MES to satisfy electric and thermal demands while minimizing annual costs and CO2 emissions. We conduct a comprehensive uncertainty analysis that encompa Read More
The Effect of Hydrogen Enrichment, Flame-flame Interaction, Confinement, and Asymmetry on the Acoustic Response of a Model Can Combustor
Apr 2022
Publication
To maximise power density practical gas turbine combustion systems have several injectors which can lead to complex interactions between flames. However our knowledge about the effect of flame-flame interactions on the flame response the essential element to predict the stability of a combustor is still limited. The present study investigates the effect of hydrogen enrichment flame-flame interaction confinement and asymmetries on the linear and non-lin Read More
Detection of Contaminants in Hydrogen Fuel for Fuel Cell Electrical Vehicles with Sensors—Available Technology, Testing Protocols and Implementation Challenges
Dec 2021
Publication
Europe’s low-carbon energy policy favors a greater use of fuel cells and technologies based on hydrogen used as a fuel. Hydrogen delivered at the hydrogen refueling station must be compliant with requirements stated in different standards. Currently the quality control process is performed by offline analysis of the hydrogen fuel. It is however beneficial to continuously monitor at least some of the contaminants onsite using chemical sensors. For hydrogen Read More
Cost Benefits of Optimizing Hydrogen Storage and Methanation Capacities for Power-to-Gas Plants in Dynamic Operation
Oct 2019
Publication
Power-to-Gas technologies offer a promising approach for converting renewable electricity into a molecular form (fuel) to serve the energy demands of non-electric energy applications in all end-use sectors. The technologies have been broadly developed and are at the edge of a mass roll-out. The barriers that Power-to-Gas faces are no longer technical but are foremost regulatory and economic. This study focuses on a Power-to-Gas pathway where elect Read More
Hydrogen Direct Injection: Optical Investigation of Premixed and Jet-guided Combustion Modes
Mar 2024
Publication
The classical approach to use hydrogen as a fuel for Internal Combustion Engines (ICEs) is premixed combustion. In order to avoid knocking and to limit NOx emissions very lean mixtures are employed thus resulting in a high boost pressure demand or low specific engine power. To overcome these limitations the possibility of a diesellike jet-guided combustion of hydrogen is explored. The approach is to ignite a directly injected hydrogen jet at its periphery b Read More
Analyzing the Competitiveness of Low-carbon Drive-technologies in Road-freight: A Total Cost of Ownership Analysis in Europe
Nov 2021
Publication
In light of the Paris Agreement road-freight represents a critically difficult-to-abate sector. In order to meet the ambitious European transport sector emissions reduction targets a rapid transition to zero-carbon road-freight is necessary. However limited policy assessments indicate where and how to appropriately intervene in this sector. To support policy-makers in accelerating the zero-carbon road-freight transition this paper examines the rel Read More
Increasing the Energy Efficiency of Gas Boosters for Hydrogen Storage and for Refueling Stations
Feb 2023
Publication
A new electrically driven gas booster is described as an alternative to the classical air-driven gas boosters known for their poor energetic efficiency. These boosters are used in small scale Hydrogen storage facilities and in refueling stations for Hydrogen vehicles. In such applications the overall energy count is of significance and must include the efficiency of the compression stage. The proposed system uses an electric motor instead of the pneumatic actu Read More
No more items...