Australia
Insights into Decision-making for Offshore Green Hydrogen Infrastructure Developments
Apr 2023
Publication
Green hydrogen is a key element that has the potential to play a critical role in the global pursuit of a resilient and sustainable future. However like other energy production methods hydrogen comes with challenges including high costs and safety concerns across its entire value chain. To overcome these low-cost productions are required along with a promised market. Offshore renewables have an enormous potential to facilitate green hydrogen production on a large scale. Their plummeting cost technological advances and rising cost of carbon pave a pathway where green hydrogen can be cost-competitive against fossil-fuel-based hydrogen. Offshore industries including oil and gas aquaculture and shipping are looking for cleaner energy solutions to decarbonize their systems/operations and can serve as a substantial market. Offshore industrial nexus moreover can assist the production storage and transmission of green hydrogen through infrastructure sharing and logistical support. The development of offshore green hydrogen production facilities is in its infancy and requires a deeper insight into the key elements that govern decision-making during their life-cycle. This includes the parameters that reflect the performance of hydrogen technology with technical socio-political financial and environmental considerations. Therefore this study provides critical insight into the influential factors discovered through a comprehensive analysis that governs the development of an offshore green hydrogen system. Insights are also fed into the requirements for modelling and analysis of these factors considering the synergy of hydrogen production with the offshore industries coastal hydrogen hub and onshore energy demand. The results of this critical review will assist the researchers and developers in establishing and executing an effective framework for offshore site selection in largely uncertain and hazardous ocean environments. Overall the study will facilitate the stakeholders and researchers in developing decision-making tools to ensure sustainable and safe offshore green hydrogen facilities.
Material Challenges and Hydrogen Embrittlement Assessment for Hydrogen Utilisation in Industrial Scale
Sep 2023
Publication
Hydrogen has been studied extensively as a potential enabler of the energy transition from fossil fuels to renewable sources. It promises a feasible decarbonisation route because it can act as an energy carrier a heat source or a chemical reactant in industrial processes. Hydrogen can be produced via renewable energy sources such as solar hydro or geothermic routes and is a more stable energy carrier than intermittent renewable sources. If hydrogen can be stored efficiently it could play a crucial role in decarbonising industries. For hydrogen to be successfully implemented in industrial systems its impact on infrastructure needs to be understood quantified and controlled. If hydrogen technology is to be economically feasible we need to investigate and understand the retrofitting of current industrial infrastructure. Currently there is a lack of comprehensive knowledge regarding alloys and components performance in long-term hydrogen-containing environments at industrial conditions associated with high-temperature hydrogen processing/production. This review summarises insights into the gaps in hydrogen embrittlement (HE) research that apply to high-temperature high-pressure systems in industrial processes and applications. It illustrates why it is still important to develop characterisation techniques and methods for hydrogen interaction with metals and surfaces under these conditions. The review also describes the implications of using hydrogen in large-scale industrial processes.
Hydrogen Storage in Unlined Rock Caverns: An Insight on Opportunities and Challenges
Jun 2024
Publication
Transitioning to a sustainable energy future necessitates innovative storage solutions for renewable energies where hydrogen (H₂) emerges as a pivotal energy carrier for its low emission potential. This paper explores unlined rock caverns (URCs) as a promising alternative for underground hydrogen storage (UHS) overcoming the geographical and technical limitations of UHS methods like salt rock caverns and porous media. Drawing from the experiences of natural gas (NG) and compressed air energy storage (CAES) in URCs we explore the viability of URCs for storing hydrogen at gigawatt-hour scales (>100 GWh). Despite challenges such as potential uplift failures (at a depth of approximately less than 1000 m) and hydrogen reactivity with storage materials at typical conditions (below temperatures of 100◦C and pressures of 15 MPa) URCs present a flexible scalable option closely allied with green hydrogen production from renewable sources. Our comprehensive review identifies critical design considerations including hydraulic containment and the integrity of fracture sealing materials under UHS conditions. Addressing identified knowledge gaps particularly around the design of hydraulic containment systems and the interaction of hydrogen with cavern materials will be crucial for advancing URC technology. The paper underscores the need for further experimental and numerical studies to refine URC suitability for hydrogen storage highlighting the role of URCs in enhancing the compatibility of renewable energy sources with the grid.
Exploring Hydrogen Storage Potentital in Depleted Western Australian Hydrocarbon Reservoirs: A Petrophysical and Petrographic Analysis
Oct 2023
Publication
Hydrogen recognised as a clean and sustainable energy carrier with excellent transportation fuel properties drives numerous countries towards a hydrogen-based economy due to its high utilisation efficiency and minimal environmental impact. However the gaseous nature of hydrogen necessitates larger storage surface areas. Underground Hydrogen Storage (UHS) has emerged as a promising and efficient method to overcome this challenge. Currently only a handful of UHS locations exist globally due to the novelty of this field. With its abundant depleted hydrocarbon reservoirs boasting significant storage capacity Western Australia presents a suitable region for hydrogen storage. This paper comprehensively analyses petrophysical and petrographic characteristics employing XRD MIP and Micro-CT techniques on sandstone and claystone samples obtained from several fields in Western Australia. The suitability of these samples for hydrogen storage is evaluated based on mineral composition and porosity. The analysis reveals that more than 96% of Quartz is present in the sandstone samples. The claystone samples exhibit a mineral composition comprising Quartz Calcite K-feldspar Kaolinite Pyrite Albite and Muscovite. The study suggests that hydrogen storage in formation rock is favourable due to the low reactivity of hydrogen with silicate minerals but interactions with cap rock minerals should be considered. Micro-CT results indicate the connected porosity in the 17.23–4.67% range. Pore distribution in sandstones ranges from nanometers to millimetres with a substantial proportion of connected pores in the intermediate range which is conducive to hydrogen storage. This is particularly advantageous as the hydrogen-water system is highly water-wet with hydrogen primarily occupying medium and larger pores minimising hydrogen trapping. In claystone most pores were below 3 nm but instrumental constraints limited their quantification. In conclusion the petrophysical and petrographic analysis underscores the potential of Western Australian depleted hydrocarbon reservoirs for hydrogen storage. Understanding the mineralogical reactions with cap rock minerals is crucial while the favourable pore distribution in sandstones further supports the viability of hydrogen storage.
Underground Hydrogen Storage: Integrated Surface Facilities and Fluid Flow Modelling for Depleted Gas Reservoirs
Aug 2023
Publication
We report a new techno-economic model to assess performance and capital costs for large-scale underground hydrogen storage in depleted gas reservoirs. A simulation toolbox is developed to model surface facilities and to simulate the hydrogen flow in geological formations in an integrated fashion.<br/>Integrated modelling revealed the following key insights: 1) A buffer system is highly desirable to absorb inherent variability in upstream hydrogen production; 2) hydrogen mixing with existing gases in the reservoir together with gravity segregation and diffusion results in a decline in hydrogen purity at the wellhead over time and can require increased purification; 3) the capital cost is dominated by the cost of cushion gas (hydrogen) and the compression system where about 9% of the total energy content of the hydrogen is consumed for compression. The scenarios modelled in our study result in a levelized cost of storage in Australia ranging from 2.3 to 4.29 A$/(kg).
Hydrogen Production from Low-temperature Geothermal Energy - A Review of Opportunities, Challenges, and Mitigating Solutions
Jun 2024
Publication
This study aims to provide a comprehensive review of the potential of geothermal energy for producing hydrogen with a focus on the Australian context where low-temperature geothermal reservoirs particularly hot sedimentary aquifers (HSAs) are prevalent. The work includes an overview of various geothermal technologies and hydrogen production routes and evaluates potential alternatives for hydrogen production in terms of energy and exergy efficiency economic performance and hydrogen production rate. Values for energy efficiency are reported in the literature to range from 3.51 to 47.04% 7.4–67.5% for exergy efficiency a cost ranging from 0.59 to 5.97 USD/kg of hydrogen produced and a hydrogen production rate ranging from 0.11 to 5857 kg/h. In addition the article suggests and evaluates multiple metrics to appraise the feasibility of HSAs geothermal reservoirs with results tailored to Australia but that can be extended to jurisdictions with similar conditions worldwide. Furthermore the performance of various hydrogen production systems is investigated by considering important operating conditions. Lastly the key factors and possible solutions associated with the hydrogeological and financial conditions that must be considered in developing hydrogen production using lowtemperature geothermal energy are summarised. This study shows that low-temperature HSAs (~100 ◦C) can still be used for hydrogen generation via supplying power to conventional electrolysis processes by implementing several improvements in heat source temperature and energy conversion efficiency of Organic Rankine Cycle (ORC) power plants. Geothermal production from depleted or even active oilfields can reduce the capital cost of a hydrogen production system by up to 50% due to the use of pre-existing wellbores under the right operating conditions. Thus the results of this study bring novel insights in terms of both the opportunities and the challenges in producing clean hydrogen from geothermal energy applicable not only to the hydro-geological and socio-economic conditions in Australia but also worldwide exploring the applicability of geothermal energy for clean hydrogen production with similar geothermal potential.
Influence of Natural Gas and Hydrogen Properties on Internal Combustion Engine Performance, Combustion, and Emissions: A Review
Jan 2024
Publication
This paper provides a comprehensive overview of the physical properties and applications of natural gas (NG) and hydrogen as fuels in internal combustion (IC) engines. The paper also meticulously examines the use of both NG and hydrogen as a fuel in vehicles their production physical characteristics and combustion properties. It reviews the current experimental studies in the literature and investigates the results of using both fuels. It further covers the challenges associated with injectors needle valves lubrication spark plugs and safety requirements for both fuels. Finally the challenges related to the storage production and safety of both fuels are also discussed. The literature review reveals that NG in spark ignition (SI) engines has a clear and direct positive impact on fuel economy and certain emissions notably reducing CO2 and non-methane hydrocarbons. However its effect on other emissions such as unburnt hydrocarbons (UHC) nitrogen oxides (NOx) and carbon monoxide (CO) is less clear. NG which is primarily methane has a lower carbon-to-hydrogen ratio than diesel fuel resulting in lower CO2 emissions per unit of energy released. In contrast hydrogen is particularly well-suited for use in gasoline engines due to its high self-ignition temperature. While increasing the hydrogen content of NG engines reduces torque and power output higher hydrogen input results in reduced fuel consumption and the mitigation of toxic exhaust emissions. Due to its high ignition temperature hydrogen is not inherently suitable for direct use in diesel engines necessitating the exploration of alternative methods for hydrogen introduction into the cylinder. The literature review suggests that hydrogen in diesel engines has shown a reduction in specific exhaust emissions and fuel consumption and an increase in NOx emissions. Overall the paper provides a valuable and informative overview of the challenges and opportunities associated with using hydrogen and NG as fuels in IC engines. It highlights the need for further research and development to address the remaining challenges such as the development of more efficient combustion chambers and the reduction of NOx emissions.
A Hydrogen Supply-chain Model Powering Australian Isolated Communities
Oct 2023
Publication
This article proposes a supply chain-based green hydrogen microgrid modelling for a number of remote Australian communities. Green hydrogen can be used as an emissions-free fuel source for electricity generation in places where large-scale renewable energy production is impossible due to land availability population or government regulations. This research focuses on the Torres Strait Island communities in northern Australia where the transition from diesel to renewable electricity generation is difficult due to very limited land availability on most islands. Due to geographical constraints low population and smaller electrical load the green hydrogen needs to be sourced from somewhere else. This research presents a green hydrogen supply chain model that leverages the land availability of one island to produce hydrogen to supply other island communities. In addition this research presents a model of producing and transporting green hydrogen while supplying cheaper electricity to the communities at focus. The study has used a transitional scenario planning approach and the HOMER simulation platform to find the least-cost solution. Based on the results a levelised cost of energy range of AU$0.42 and AU$0.44 was found. With the help of a green hydrogen supply chain CO2 emissions at the selected sites could be cut by 90 %. This study can be used as a guide for small clustered communities that could not support or justify large-scale renewable generation facilities but need more opportunities to install renewable generation.
Greenhouse Gas Emissions Performance of Electric, Hydrogen and Fossil-Fuelled Freight Trucks with Uncertainty Estimates Using a Probabilistic Life-Cycle Assessment (pLCA)
Jan 2024
Publication
This research conducted a probabilistic life-cycle assessment (pLCA) into the greenhouse gas (GHG) emissions performance of nine combinations of truck size and powertrain technology for a recent past and a future (largely decarbonised) situation in Australia. This study finds that the relative and absolute life-cycle GHG emissions performance strongly depends on the vehicle class powertrain and year of assessment. Life-cycle emission factor distributions vary substantially in their magnitude range and shape. Diesel trucks had lower life-cycle GHG emissions in 2019 than electric trucks (battery hydrogen fuel cell) mainly due to the high carbon-emission intensity of the Australian electricity grid (mainly coal) and hydrogen production (mainly through steam–methane reforming). The picture is however very different for a more decarbonised situation where battery electric trucks in particular provide deep reductions (about 75–85%) in life-cycle GHG emissions. Fuel-cell electric (hydrogen) trucks also provide substantial reductions (about 50–70%) but not as deep as those for battery electric trucks. Moreover hydrogen trucks exhibit the largest uncertainty in emissions performance which reflects the uncertainty and general lack of information for this technology. They therefore carry an elevated risk of not achieving the expected emission reductions. Battery electric trucks show the smallest (absolute) uncertainty which suggests that these trucks are expected to deliver the deepest and most robust emission reductions. Operational emissions (on-road driving and vehicle maintenance combined) dominate life-cycle emissions for all vehicle classes. Vehicle manufacturing and upstream emissions make a relatively small contribution to life-cycle emissions from diesel trucks (
Synergistic Integration of Hydrogen Energy Economy with UK’s Sustainable Development Goals: A Holistic Approach to Enhancing Safety and Risk Mitigation
Oct 2023
Publication
Hydrogen is gaining prominence as a sustainable energy source in the UK aligning with the country’s commitment to advancing sustainable development across diverse sectors. However a rigorous examination of the interplay between the hydrogen economy and the Sustainable Development Goals (SDGs) is imperative. This study addresses this imperative by comprehensively assessing the risks associated with hydrogen production storage transportation and utilization. The overarching aim is to establish a robust framework that ensures the secure deployment and operation of hydrogen-based technologies within the UK’s sustainable development trajectory. Considering the unique characteristics of the UK’s energy landscape infrastructure and policy framework this paper presents practical and viable recommendations to facilitate the safe and effective integration of hydrogen energy into the UK’s SDGs. To facilitate sophisticated decision making it proposes using an advanced Decision-Making Trial and Evaluation Laboratory (DEMATEL) tool incorporating regret theory and a 2-tuple spherical linguistic environment. This tool enables a nuanced decision-making process yielding actionable insights. The analysis reveals that Incident Reporting and Learning Robust Regulatory Framework Safety Standards and Codes are pivotal safety factors. At the same time Clean Energy Access Climate Action and Industry Innovation and Infrastructure are identified as the most influential SDGs. This information provides valuable guidance for policymakers industry stakeholders and regulators. It empowers them to make well-informed strategic decisions and prioritize actions that bolster safety and sustainable development as the UK transitions towards a hydrogen-based energy system. Moreover the findings underscore the varying degrees of prominence among different SDGs. Notably SDG 13 (Climate Action) exhibits relatively lower overall distinction at 0.0066 and a Relation value of 0.0512 albeit with a substantial impact. In contrast SDG 7 (Clean Energy Access) and SDG 9 (Industry Innovation and Infrastructure) demonstrate moderate prominence levels (0.0559 and 0.0498 respectively) each with its unique influence emphasizing their critical roles in the UK’s pursuit of a sustainable hydrogen-based energy future.
Strategies for the Adoption of Hydrogen-Based Energy Storage Systems: An Exploratory Study in Australia
Aug 2022
Publication
A significant contribution to the reduction of carbon emissions will be enabled through the transition from a centralised fossil fuel system to a decentralised renewable electricity system. However due to the intermittent nature of renewable energy storage is required to provide a suitable response to dynamic loads and manage the excess generated electricity with utilisation during periods of low generation. This paper investigates the use of stationary hydrogen-based energy storage systems for microgrids and distributed energy resource systems. An exploratory study was conducted in Australia based on a mixed methodology. Ten Australian industry experts were interviewed to determine use cases for hydrogen-based energy storage systems’ requirements barriers methods and recommendations. This study suggests that the current cost of the electrolyser fuel cell and storage medium and the current low round-trip efficiency are the main elements inhibiting hydrogen-based energy storage systems. Limited industry and practical experience are barriers to the implementation of hydrogen storage systems. Government support could help scale hydrogen-based energy storage systems among early adopters and enablers. Furthermore collaboration and knowledge sharing could reduce risks allowing the involvement of more stakeholders. Competition and innovation could ultimately reduce the costs increasing the uptake of hydrogen storage systems.
The Hydrogen Economy - Where is the Water?
Jul 2022
Publication
"Green hydrogen” i.e. hydrogen produced by splitting water with a carbon “free” source of electricity via electrolysis is set to become the energy vector enabling a deep decarbonisation of society and a virtuous water based energy cycle. If to date water electrolysis is considered to be a scalable technology the source of water to enable a “green hydrogen” economy at scale is questionable. Countries with the highest renewable energy potential like Australia are also among the driest places on earth. Globally 380000 GL/year of wastewater is available and this is much more than the 34500 GL/year of water required to produce the projected 2.3 Gt of hydrogen of a mature hydrogen economy. Hence the need to assess both technically and economically whether some wastewater treatment effluent are a better source for green hydrogen. Analysis of Sydney Water’s wastewater treatment plants alone shows that these plants have 37.6 ML/day of unused tertiary effluents which if electrolysed would generate 420000 t H2/day or 0.88 Mt H2/year and cover ∼100% of Australia’s estimated production by 2030. Furthermore the production of oxygen as a by-product of the electrolysis process could lead to significant benefits to the water industry not only in reducing the cost of the hydrogen produced for $3/kg (assuming a price of oxygen of $3–4 per kg) but also in improving the environmental footprint of wastewater treatment plants by enabling the onsite re-use of oxygen for the treatment of the wastewater. Compared to desalinated water that requires large investments or stormwater that is unpredictable it is apparent that the water utilities have a critical role to play in managing water assets that are “climate independent” as the next “golden oil” opportunity and in enabling a “responsible” hydrogen industry that sensibly manages its water demands and does not compete with existing water potable water demand.
Techno-Economic Analysis of the Hybrid Solar PV/H/Fuel Cell Based Supply Scheme for Green Mobile Communication
Nov 2021
Publication
Hydrogen has received tremendous global attention as an energy carrier and an energy storage system. Hydrogen carrier introduces a power to hydrogen (P2H) and power to hydrogen to power (P2H2P) facility to store the excess energy in renewable energy storage systems with the facts of large-scale storage capacity transportability and multiple utilities. This work examines the techno-economic feasibility of hybrid solar photovoltaic (PV)/hydrogen/fuel cell-powered cellular base stations for developing green mobile communication to decrease environmental degradation and mitigate fossil-fuel crises. Extensive simulation is carried out using a hybrid optimization model for electric renewables (HOMER) optimization tool to evaluate the optimal size energy production total production cost per unit energy production cost and emission of carbon footprints subject to different relevant system parameters. In addition the throughput and energy efficiency performance of the wireless network is critically evaluated with the help of MATLAB-based Monte-Carlo simulations taking multipath fading system bandwidth transmission power and inter-cell interference (ICI) into consideration. Results show that a more stable and reliable green solution for the telecommunications sector will be the macro cellular basis stations driven by the recommended hybrid supply system. The hybrid supply system has around 17% surplus electricity and 48.1 h backup capacity that increases the system reliability by maintaining a better quality of service (QoS). To end the outcomes of the suggested system are compared with the other supply scheme and the previously published research work for justifying the validity of the proposed system.
Safe Design of a Hydrogen-Powered Ship: CFD Simulation on Hydrogen Leakage in the Fuel Cell Room
Mar 2023
Publication
Adopting proton exchange membrane fuel cells fuelled by hydrogen presents a promising solution for the shipping industry’s deep decarbonisation. However the potential safety risks associated with hydrogen leakage pose a significant challenge to the development of hydrogen-powered ships. This study examines the safe design principles and leakage risks of the hydrogen gas supply system of China’s first newbuilt hydrogen-powered ship. This study utilises the computational fluid dynamics tool FLACS to analyse the hydrogen dispersion behaviour and concentration distributions in the hydrogen fuel cell room based on the ship’s parameters. This study predicts the flammable gas cloud and time points when gas monitoring points first reach the hydrogen volume concentrations of 0.8% and 1.6% in various leakage scenarios including four different diameters (1 3 5 and 10 mm) and five different directions. This study’s findings indicate that smaller hydrogen pipeline diameters contribute to increased hydrogen safety. Specifically in the hydrogen fuel cell room a single-point leakage in a hydrogen pipeline with an inner diameter not exceeding 3 mm eliminates the possibility of flammable gas cloud explosions. Following a 10 mm leakage diameter the hydrogen concentration in nearly all room positions reaches 4.0% within 6 s of leakage. While the leakage diameter does not impact the location of the monitoring point that first activates the hydrogen leak alarm and triggers an emergency hydrogen supply shutdown the presence of obstructions near hydrogen detectors and the leakage direction can affect it. These insights provide guidance on the optimal locations for hydrogen detectors in the fuel cell room and the pipeline diameters on hydrogen gas supply systems which can facilitate the safe design of hydrogen-powered ships.
An Adaptive Renewable Energy Plant (AREP) - To Power Local Premises and Vehicles with 100% Renewables
Aug 2021
Publication
An adaptive response renewable energy plant (AREP) that provides grid balancing services and XeV station fuelling services (where “X” is any type) using renewable energy located in urban centres is described. The AREP has its own primary renewable energy sources and adapts operation in the short term to changing levels of excess or deficient energy on LV and MV electricity grids. The AREP adaptively responds by (1) storing excess energy in batteries for the short term and in hydrogen tanks after energy conversion by electrolysers for the long term; (2) returning power to the grid from either the AREP’s own primary (electron-based) energy sources or batteries and/or from hydrogen via conversion in fuel cells; (3) providing electricity for fast charging BeVs and PHeVs and hydrogen for FCeVs; and (4) exporting excess stored energy as hydrogen to domestic markets. The AREP also adapts over the long term by predictive planning of charging capacity such that the type and capacity of renewable energy equipment is optimised for future operations. A key advantage of this AREP configuration is a flexible “plug and play” capability with modular extension of energy assets. If the AREP footprint is constrained interaction with neighbouring AREPs as a mini-VPP-AREP network can assist in balancing short-term operating requirements. The benefits of this grid balancing and XeV renewable energy filling station or AREP are environmental social and economic through efficient functionality of appropriately sized components. AREPs provide a net zero emissions electricity solution to an existing network with short and long-term storage options as well as a net zero emissions fuel alternative to the transport sector while leveraging existing infrastructure with minimal upfront CAPEX. AREPs can give the flexibility a grid needs to enable high levels of renewable installations while developing green hydrogen production.
A Study on Green Hydrogen-based Isolated Microgrid
Oct 2022
Publication
This paper assesses the techno-economic feasibility of a green hydrogen-based microgrid for a remote Australian island. Hydrogen can be used to provide clean energy in areas where large-scale renewable energy sources are not feasible owing to geography government regulations or regulatory difficulties. This study not only identifies the appropriate component size for a hydrogen-based microgrid but also provides an economic perspective of decarbonising Thursday Island in Torres Straits Queensland Australia. Due to geographical constraints the green hydrogen production system needs to be distinct from the electrical network. This research shows how to produce green hydrogen transport it and generate power at a low cost. The study was performed utilising the HOMER simulation platform to find the least cost solution. The simulation results demonstrate an AU$0.01 reduction in Levelised Cost of Energy compared to the present electricity generation cost which is AU$0.56. The inclusion of a green hydrogen system will potentially minimise CO2 emissions by 99.6% while ensuring almost 100% renewable penetration. The results of this study will also serve as a guide for the placement of hydrogen-based microgrids in similar remote locations around the world where numerous remote energy systems are located close to each other.
Flame Visibility in Hydrogen Appliances
Sep 2023
Publication
One of the benefits of the direct use of hydrogen is its ability to be burned in a similar way to natural gas using appliances with which the community is already familiar. This is particularly true for applications where electrification is neither practicable nor desirable. One common example is domestic cooking stoves where the open flame offers numerous real and perceived benefits to the chef. Similarly many commercial and industrial appliances rely on the unique properties of combustion to achieve a desired purpose that cannot readily be replaced by an alternative to an open flame. Despite the enormous decarbonisation potential of the direct replacement of natural gas with hydrogen there are some operational constraints due to the different burning characteristics of hydrogen. One of the challenges is the low visible light emission from hydrogen flames. The change in visible radiation from the combustion of hydrogen compared with natural gas is a safety concern whereby visual observation of a flame may be difficult. This paper aims to provide clarity on the visual appearance of hydrogen flames via a series of measurements of flame visibility and emission spectra accompanied by the assessment of strategies to improve the safe use of hydrogen.
Accelerating the Green Hydrogen Revolution: A Comprehensive Analysis of Technological Advancements and Policy Interventions
Apr 2024
Publication
Promoting green hydrogen has emerged as a pivotal discourse in the contemporary energy landscape driven by pressing environmental concerns and the quest for sustainable energy solutions. This paper delves into the multifaceted domain of C-Suite issues about green hydrogen encompassing both technological advancements and policy considerations. The question of whether green hydrogen is poised to become the focal point of the upcoming energy race is explored through an extensive analysis of its potential as a clean and versatile energy carrier. The transition from conventional fossil fuels to green hydrogen is considered a fundamental shift in energy paradigms with far-reaching implications for global energy markets. The paper provides a comprehensive overview of state-of-the-art green hydrogen technologies including fuel cells photocatalysts photo electrocatalysts and hydrogen panels. In tandem with technological advancements the role of policy and strategy in fostering the development of green hydrogen energy assumes paramount significance. The paper elucidates the critical interplay between government policies market dynamics and corporate strategies in shaping the green hydrogen landscape. It delves into policy mechanisms such as subsidies carbon pricing and renewable energy mandates shedding light on their potential to incentivize the production and adoption of green hydrogen. This paper offers a nuanced exploration of C-Suite issues surrounding green hydrogen painting a comprehensive picture of the technological and policy considerations that underpin its emergence as a transformative energy source. As the global community grapples with the imperatives of climate change mitigation and the pursuit of sustainable energy solutions understanding these issues becomes imperative for executives policymakers and stakeholders alike.
Knowledge, Skills, and Attributes Needed for Developing a Hydrogen Engineering Workforce: A Systematic Review of Literature on Hydrogen Engineering Education
May 2024
Publication
Growth in Australia’s demand for engineers is fast outpacing supply. A significant challenge for Australia to achieve high projected low emissions hydrogen export targets by 2030 will be finding engineers with suitable knowledge skills and attributes to deliver hydrogen engineering projects safely and sustainably. This systematic review investigates educational outcomes needed to develop a hydrogen engineering workforce. Sixteen relevant studies published between 2003 and 2023 were identified to explore “What key knowledge skills and attributes support the development of a hydrogen engineering workforce?”. While these studies advocated the need for training and prescribed areas of required knowledge for the low-emissions hydrogen sector there was limited empirical evidence that informed what knowledge skills and attributes are relevant for entry to practice. This finding represents a significant opportunity for researchers to engage with employers and engineering practitioners within emerging low-emissions hydrogen sector capture empirical evidence and inform the design of educational programs.
No more items...