Australia
Application and Limitations of Batteries and Hydrogen in Heavy Haul Rail using Australian Case Studies
Oct 2022
Publication
Decarbonisation of heavy haul rail is an essential contributor to a zero-emissions future. However the transition from diesel to battery locomotives is not always practical given the unique characteristics of each haul. This paper demonstrates the limitations of state-of-the-art batteries using real-world data from multiple locomotives operating in Australian rail freight. An energy model was developed to assess each route’s required energy and potential regenerated energy. The tractive and regenerative battery energy mass and cost were determined using data from the energy model coupled with battery specifications. The feasibility of implementing lithium iron phosphate (LFP) nickel manganese cobalt (NMC) and lithium titanium oxide (LTO) chemistries was explored based on cost energy density cycle lifespan and locomotive data. LFP was identified as the most suitable current battery solution based on current chemistries. Further examination of the energy demands and associated mass/volume constraints concluded that three platforms are required for heavy haul rail decarbonisation i) a battery electric locomotive for low-energy demands which can be coupled with either ii) a battery electric tender for medium energy demands or iii) a hydrogen fuel cell electric tender for higher energy demands. A future-looking techno-economic assessment of battery and hydrogen fuel cell platforms concludes that the lowest cost solution for low-energy hauls is a battery-only system and for high-energy hauls a battery-hydrogen system.
Clean Energy Futures: An Australian Based Foresight Study
Aug 2022
Publication
Political decarbonisation commitments and outcompeting renewable electricity costs are disrupting energy systems. This foresight study prepares stakeholders for this dynamic reactive change by examining visions that constitute a probable plausible and possible component of future energy systems. Visions were extrapolated through an expert review of energy technologies and Australian case studies. ‘Probable–Abundant’ envisages a high penetration of solar and wind with increased value of balancing services: batteries pumped hydro and transmission. This vision is exemplified by the South Australian grid where variable and distributed sources lead generation. ‘Plausible–Traded’ envisages power and power fuel exports given hydrogen and high-voltage direct-current transmission advances reflected by public and private sector plans to leverage rich natural resources for national and intercontinental exchanges. ‘Possible–Zero’ envisages the application of carbon removal and nuclear technologies in response to the escalating challenge of deep decarbonisation. The Australian critical minerals strategy signals adaptations of high-emission industries to shifting energy resource values. These visions contribute a flexible accessible framework for diverse stakeholders to discuss uncertain energy systems changes and consider issues from new perspectives. Appraisal of preferred futures allows stakeholders to recognise observed changes as positive or negative and may lead to new planning aspirations.
A Review of Hydrogen/rock/brine Interaction: Implications for Hydrogen Geo-storage
Dec 2022
Publication
Hydrogen (H2) is currently considered a clean fuel to decrease anthropogenic greenhouse gas emissions and will play a vital role in climate change mitigation. Nevertheless one of the primary challenges of achieving a complete H2 economy is the large-scale storage of H2 which is unsafe on the surface because H2 is highly compressible volatile and flammable. Hydrogen storage in geological formations could be a potential solution to this problem because of the abundance of such formations and their high storage capacities. Wettability plays a critical role in the displacement of formation water and determines the containment safety storage capacity and amount of trapped H2 (or recovery factor). However no comprehensive review article has been published explaining H2 wettability in geological conditions. Therefore this review focuses on the influence of various parameters such as salinity temperature pressure surface roughness and formation type on wettability and consequently H2 storage. Significant gaps exist in the literature on understanding the effect of organic material on H2 storage capacity. Thus this review summarizes recent advances in rock/H2/brine systems containing organic material in various geological reservoirs. The paper also presents influential parameters affecting H2 storage capacity and containment safety including liquid–gas interfacial tension rock–fluid interfacial tension and adsorption. The paper aims to provide the scientific community with an expert opinion to understand the challenges of H2 storage and identify storage solutions. In addition the essential differences between underground H2 storage (UHS) natural gas storage and carbon dioxide geological storage are discussed and the direction of future research is presented. Therefore this review promotes thorough knowledge of UHS provides guidance on operating large-scale UHS projects encourages climate engineers to focus more on UHS research and provides an overview of advanced technology. This review also inspires researchers in the field of climate change to give more credit to UHS studies.
Ignore Variability, Overestimate Hydrogen Production - Quantifying the Effects of Electrolyzer Efficiency Curves on Hydrogen Producton from Renewable Energy Sources
May 2024
Publication
This study investigates the impact of including (or neglecting) the variable efficiency of hydrogen electrolyzers as a function of operating power in the modelling of green hydrogen produced from variable renewable energy sources. Results show that neglecting the variable electrolyzer efficiency as is commonly done in studies of green hydrogen leads to significant overestimation of hydrogen production in the range of 5–24%. The effects of the time resolution used in models are also investigated as well as the impact of including the option for the electrolyzer to switch to stand-by mode instead of powering down and electrolyzer ramp rate constraints. Results indicate that these have a minor effect on overall hydrogen production with the use of hour resolution data leading to overestimation in the range of 0.2–2% relative to using 5-min data. This study used data from three solar farms and three wind in Australia from which it is observed that wind farms produced 55% more hydrogen than the solar farms. The results in this study highlight the critical importance of including the variable efficiency of electrolyzers in the modelling of green hydrogen production. As this industry scales continuing to neglect this effect would lead to the overestimation of hydrogen production by tens of megatonnes.
The Possibility of Powering a Light Aircraft by Releasing the Energy Stored in Hydrogen within a Fuel Cell Stack
Jun 2024
Publication
In this work we examine the possibility of converting a light propeller-driven aircraft powered by a spark-ignition reciprocating piston and internal combustion engine running on AVGAS into one powered by an electric motor driven by a proton exchange membrane fuel cell stack running on hydrogen. Our studies suggest that storing hydrogen cryogenically is a better option than storing hydrogen under pressure. In comparison to cryogenic tanks high-pressure tanks are extremely heavy and unacceptable for light aircraft. We show that the modified aircraft (including batteries) is no heavier than the original and that the layout of the major components results in lower movement of the aircraft center-of-gravity as the aircraft consumes hydrogen. However we acknowledge that our fuel cell aircraft cannot store the same amount of energy as the original running on AVGAS. Therefore despite the fact that the fuel cell stack is markedly more efficient than an internal combustion engine there is a reduction in the range of the fuel cell aircraft. One of our most important findings is that the quantity of energy that we need to dissipate to the surroundings via heat transfer is significantly greater from a fuel cell stack than from an internal combustion engine. This is particularly the case when we attempt to run the fuel cell stack at high current densities. To control this problem our strategy during the cruise phase is to run the fuel cell stack at its maximum efficiency where the current density is low. We size the fuel cell stack to produce at least enough power for cruise and when we require excess power we add the energy stored in batteries to make up the difference.
Levelised Cost of Dynamic Green Hydrogen Production: A Case Study for Australia's Hydrogen Hubs
Jun 2024
Publication
This study evaluates the levelised cost of hydrogen (LCOH) dynamically produced using the two dominant electrolysis technologies directly connected to wind turbines or photovoltaic (PV) panels in regions of Australia designated as hydrogen hubs. Hourly data are utilised to size the components required to meet the hydrogen demand. The dynamic efficiency of each electrolysis technology as a function of input power along with its operating characteristics and overload capacity are employed to estimate flexible hydrogen production. A sensitivity analysis is then conducted to capture the behaviour of the LCOH in response to inherent uncertainty in critical financial and technical factors. Additionally the study investigates the trade-offs between carbon cost and lifecycle emissions of green hydrogen. This approach is applied to ascertain the impact of internalising environmental costs on the cost-competitiveness of green hydrogen compared to grey hydrogen. The economic modelling is developed based on the Association for the Advancement of Cost Engineering (AACE) guidelines. The findings indicate that scale-up is key to reducing the LCOH by a meaningful amount. However scale-up alone is insufficient to reach the target value of AUD 3 (USD 2) except for PV-based plant in the Pilbara region. Lowered financial costs from scale-up can make the target value achievable for PV-based plants in Gladstone and Townsville and for wind-based plants in the Eyre Peninsula and Pilbara regions. For other hubs a lower electricity cost is required as it accounts for the largest portion of the LCOH.
Hydrogen-Powered Aircraft at Airports: A Review of the Infrastructure Requirements and Planning Challenges
Nov 2023
Publication
Hydrogen-fueled aircraft are a promising innovation for a sustainable future in aviation. While hydrogen aircraft design has been widely studied research on airport requirements for new infrastructure associated with hydrogen-fueled aircraft and its integration with existing facilities is scarce. This study analyzes the current body of knowledge and identifies the planning challenges which need to be overcome to enable the operation of hydrogen flights at airports. An investigation of the preparation of seven major international airports for hydrogen-powered flights finds that although there is commitment airports are not currently prepared for hydrogen-based flights. Major adjustments are required across airport sites covering land use plans airside development utility infrastructure development and safety security and training. Developments are also required across the wider aviation industry including equipment updates such as for refueling and ground support and supportive policy and regulations for hydrogen-powered aircraft. The next 5–10 years is identified from the review as a critical time period for airports given that the first commercial hydrogen-powered flight is likely to depart in 2026 and that the next generation of short-range hydrogen-powered aircraft is predicted to enter service between 2030 and 2035.
Synergy of Carbon Capture, Waste Heat Recovery and Hydrogen Production for Industrial Decarbonisation
May 2024
Publication
Industry is the biggest sector of energy consumption and greenhouse gas emissions whose decarbonisation is essential to achieve the Sustainable Development Goals. Carbon capture energy efficiency improvement and hydrogen are among the main strategies for industrial decarbonization. However novel approaches are needed to address the key requirements and differences between sectors to ensure they can work together to well integrate industrial decarbonisation with heat CO2 and hydrogen. The emerging Calcium Looping (CaL) is attracting interest in designing CO2-involved chemical processes for heat capture and storage. The reversibility relatively high-temperature (600 to 900 ◦C) and high energy capacity output as well as carbon capture function make CaL well-fit for CO2 capture and utilisation and waste heat recovery from industrial flue gases. Meanwhile methane dry reforming (MDR) is a promising technology to produce blue hydrogen via the consumption of two major greenhouse gases i.e. CO2 and CH4. It has great potential to combine the two technologies to achieve insitu CO2 utilization with multiple benefits. In this paper progresses on the reaction conditions and performance of CaL for CO2 capture and industrial waste heat recovery as well as MDR were screened. Secondly recent approaches to CaL-MDR synergy have been reviewed to identify the advantages. The major challenges in such a synergistic process include MDR catalyst deactivation CaL sorbents sintering and system integration. Thirdly the paper outlooks future work to explore a rational design of a multi-function system for the proposed synergistic process.
Investigating the Impact of Economic Uncertainty on Optimal Sizing of Grid-Independent Hybrid Renewable Energy Systems
Aug 2021
Publication
One of the many barriers to decarbonization and decentralization of the energy sector in developing countries is the economic uncertainty. As such this study scrutinizes economics of three grid-independent hybrid renewable-based systems proposed to co-generate electricity and heat for a small-scale load. Accordingly the under-study systems are simulated and optimized with the aid of HOMER Pro software. Here a 20-year average value of discount and inflation rates is deemed a benchmark case. The techno-economic-environmental and reliability results suggest a standalone solar/wind/electrolyzer/hydrogen-based fuel cell integrated with a hydrogen-based boiler system is the best alternative. Moreover to ascertain the impact of economic uncertainty on optimal unit sizing of the nominated model the fluctuations of the nominal discount rate and inflation respectively constitute within the range of 15–20% and 10–26%. The findings of economic uncertainty analysis imply that total net present cost (TNPC) fluctuates around the benchmark value symmetrically between $478704 and $814905. Levelized energy cost varies from an amount 69% less than the benchmark value up to two-fold of that. Furthermore photovoltaic (PV) optimal size starts from a value 23% less than the benchmark case and rises up to 55% more. The corresponding figures for wind turbine (WT) are respectively 21% and 29%. Eventually several practical policies are introduced to cope with economic uncertainty.
Contribution to Net Zero Emissions of Integrating Hydrogen Production in Wastewater Treatment Plants
Jul 2023
Publication
The reliability of renewable hydrogen supply for off-take applications is critical to the future sustainable energy economy. Integrated water electrolysis can be deployed at distributed municipal wastewater treatment plants (WWTP) creating opportunity for reduction in carbon emissions through direct and indirect use of the electrolysis output. A novel energy shifting process where the co-produced oxygen is compressed and stored to enhance the utilisation of intermittent renewable electricity is analysed. The hydrogen produced can be used in local fuel cell electric buses to replace incumbent diesel buses for public transport. However quantifying the extent of carbon emission reduction of this conceptual integrated system is key. In this study the integration of hydrogen production at a case study WWTP of 26000 EP capacity and using the hydrogen in buses was compared with two conventional systems: the base case of a WWTP with grid electricity consumption offset by solar PV and the community’s independent use of diesel buses for transport and the non-integrated configuration with hydrogen produced at the bus refuelling location operated independently of the WWTP. The system response was analysed using a Microsoft Excel simulation model with hourly time steps over a 12-month time frame. The model included a control scheme for the reliable supply of hydrogen for public transport and oxygen to the WWTP and considered expected reductions in carbon intensity of the national grid level of solar PV curtailment electrolyser efficiency and size of the solar PV system. Results showed that by 2031 when Australia’s national electricity is forecast to achieve a carbon intensity of less than 0.186 kg CO2-e/kWh integrating water electrolysis at a municipal WWTP for producing hydrogen for use in local hydrogen buses produced less carbon emissions than continuing to use diesel buses and offsetting emissions by exporting renewable electricity to the grid. By 2034 an annual reduction of 390 t–CO2–e is expected after changing to the integrated configuration. Considering electrolyser efficiency improvements and curtailment of renewable electricity the reduction increases to 872.8 t–CO2–e.
Advancements in Hydrogen Production, Storage, Distribution and Refuelling for a Sustainable Transport Sector: Hydrogen Fuel Cell Vehicles
Jul 2023
Publication
Hydrogen is considered as a promising fuel in the 21st century due to zero tailpipe CO2 emissions from hydrogen-powered vehicles. The use of hydrogen as fuel in vehicles can play an important role in decarbonising the transport sector and achieving net-zero emissions targets. However there exist several issues related to hydrogen production efficient hydrogen storage system and transport and refuelling infrastructure where the current research is focussing on. This study critically reviews and analyses the recent technological advancements of hydrogen production storage and distribution technologies along with their cost and associated greenhouse gas emissions. This paper also comprehensively discusses the hydrogen refuelling methods identifies issues associated with fast refuelling and explores the control strategies. Additionally it explains various standard protocols in relation to safe and efficient refuelling analyses economic aspects and presents the recent technological advancements related to refuelling infrastructure. This study suggests that the production cost of hydrogen significantly varies from one technology to others. The current hydrogen production cost from fossil sources using the most established technologies were estimated at about $0.8–$3.5/kg H2 depending on the country of production. The underground storage technology exhibited the lowest storage cost followed by compressed hydrogen and liquid hydrogen storage. The levelised cost of the refuelling station was reported to be about $1.5–$8/kg H2 depending on the station's capacity and country. Using portable refuelling stations were identified as a promising option in many countries for small fleet size low-to-medium duty vehicles. Following the current research progresses this paper in the end identifies knowledge gaps and thereby presents future research directions.
Split Injection Strategies for a High-pressure Hydrogen Direct Injection in a Small-bore Dual-fuel Diesel Engine
Jan 2024
Publication
Hydrogen-diesel dual direct-injection (H2DDI) engines present a promising pathway towards cleaner and more efficient transportation. In this study hydrogen split injection strategies were explored in an automotive-size single-cylinder compression ignition (CI) engine with a focus on varying the injection timings and energy fractions. The engine was operated at an intermediate load with fixed combustion phasing through adjustments of pilot diesel injection timing. An energy substitution principle guided the variation in energy fraction between the two hydrogen injections and then diesel injection while keeping the total energy input constant. The findings demonstrate that early first hydrogen injection timings lead to characteristics indicative of premixed combustion reflecting a high homogeneity of the hydrogen-air mixture. In contrast hydrogen stratification levels were predominantly influenced by later second injection timings with mixing-controlled combustion behaviour apparent for very late injections near top dead centre or when the second hydrogen injection held high energy fractions which led to decreased nitrogen oxides (NOx: NO and NO2) emissions. The carbon dioxide (CO2) emissions did not show high sensitivity to the hydrogen split injection strategies exhibiting about 77 % reduction compared to the diesel baseline due primarily to increased hydrogen energy fraction of up to 90 %
Energy and Environmental Costs in Transitioning to Zero and Low Emission Trucks for the Australian Truck Fleet: An Industry Perspective
May 2024
Publication
Modernising Australia’s old truck fleet and adopting a more stringent standard to reduce emissions and air pollutants is a primary objective for the Australian truck sector. Various strategies worldwide have been introduced to cut emissions and pollutants in the truck sector such as a low-emission strategy supported by strict diesel standards and a zero-emission strategy to shift to battery-electric or hydrogen trucks. The paper focuses on emissions and local air pollutants of trucks under various transition scenarios at both the tailpipe and the wider supply chain including domestic power generation and hydrogen production. In contrast for diesel we focus on tailpipe outputs following fuel standards in Australia given diesel is imported other than in some limited refineries. We compare and recommend actions that government and truck operators may take in the near to longer term in transitioning to cleaner energy. We tested a number of scenarios using a decision support system incorporating all the latest information on costs and emissions for all truck classes using diesel electric or hydrogen. A key finding from our scenario tests is that the current electricity mix has high carbon emissions and air pollutants due to fossil fuel-fired sources for power generation. Without improvement in using renewable energy sources in the future transitioning to electric trucks implies more carbon emissions and air pollutants in the atmosphere from power plants even though electric trucks generate zero tailpipe emissions. The main motivation for switching to zero-emission trucks is energy cost savings. We urge the government to decide on a clear roadmap for the truck sector before the sector is in a position to take action to shift to low or zero-emission trucks without totally relying on the likely reduction of emission intensity in electricity and renewable energy production.
Impact of Experimentally Measured Relative Permeability Hysteresis on Reservoir-scale Performance of Undergound Hydrogen Storage (UHS)
Jan 2024
Publication
Underground Hydrogen Storage (UHS) is an emerging large-scale energy storage technology. Researchers are investigating its feasibility and performance including its injectivity productivity and storage capacity through numerical simulations. However several ad-hoc relative permeability and capillary pressure functions have been used in the literature with no direct link to the underlying physics of the hydrogen storage and production process. Recent relative permeability measurements for the hydrogen-brine system show very low hydrogen relative permeability and strong liquid phase hysteresis very different to what has been observed for other fluid systems for the same rock type. This raises the concern as to what extend the existing studies in the literature are able to reliably quantify the feasibility of the potential storage projects. In this study we investigate how experimentally measured hydrogen-brine relative permeability hysteresis affects the performance of UHS projects through numerical reservoir simulations. Relative permeability data measured during a hydrogen-water core-flooding experiment within ADMIRE project is used to design a relative permeability hysteresis model. Next numerical simulation for a UHS project in a generic braided-fluvial water-gas reservoir is performed using this hysteresis model. A performance assessment is carried out for several UHS scenarios with different drainage relative permeability curves hysteresis model coefficients and injection/production rates. Our results show that both gas and liquid relative permeability hysteresis play an important role in UHS irrespective of injection/production rate. Ignoring gas hysteresis may cause up to 338% of uncertainty on cumulative hydrogen production as it has negative effects on injectivity and productivity due to the resulting limited variation range of gas saturation and pressure during cyclic operations. In contrast hysteresis in the liquid phase relative permeability resolves this issue to some extent by improving the displacement of the liquid phase. Finally implementing relative permeability curves from other fluid systems during UHS performance assessment will cause uncertainty in terms of gas saturation and up to 141% underestimation on cumulative hydrogen production. These observations illustrate the importance of using relative permeability curves characteristic of hydrogen-brine system for assessing the UHS performances.
Work Efficiency and Economic Efficiency of Actual Driving Test of Proton Exchange Membrane Fuel Cell Forklift
Aug 2023
Publication
A 3.5 tonne forklift containing proton exchange membrane fuel cells (PEMFCs) and lithium-ion batteries was manufactured and tested in a real factory. The work efficiency and economic applicability of the PEMFC forklift were compared with that of a lithium-ion battery-powered forklift. The results showed that the back-pressure of air was closely related to the power density of the stack whose stability could be improved by a reasonable control strategy and membrane electrode assemblies (MEAs) with high consistency. The PEMFC powered forklift displayed 40.6% higher work efficiency than the lithium-ion battery-powered forklift. Its lower use-cost compared to internal engine-powered forklifts is beneficial to the commercialization of this product.
Technoeconomic Analysis for Green Hydrogen in Terms of Production, Compression, Transportation and Storage Considering the Australian Perspective
Jul 2023
Publication
This current article discusses the technoeconomics (TE) of hydrogen generation transportation compression and storage in the Australian context. The TE analysis is important and a prerequisite for investment decisions. This study selected the Australian context due to its huge potential in green hydrogen but the modelling is applicable to other parts of the world adjusting the price of electricity and other utilities. The hydrogen generation using the most mature alkaline electrolysis (AEL) technique was selected in the current study. The results show that increasing temperature from 50 to 90 ◦C and decreasing pressure from 13 to 5 bar help improve electrolyser performance though pressure has a minor effect. The selected range for performance parameters was based on the fundamental behaviour of water electrolysers supported with literature. The levelised cost of hydrogen (LCH2 ) was calculated for generation compression transportation and storage. However the majority of the LCH2 was for generation which was calculated based on CAPEX OPEX capital recovery factor hydrogen production rate and capacity factor. The LCH2 in 2023 was calculated to be 9.6 USD/kgH2 using a base-case solar electricity price of 65–38 USD/MWh. This LCH2 is expected to decrease to 6.5 and 3.4 USD/kgH2 by 2030 and 2040 respectively. The current LCH2 using wind energy was calculated to be 1.9 USD/kgH2 lower than that of solar-based electricity. The LCH2 using standalone wind electricity was calculated to be USD 5.3 and USD 2.9 in 2030 and 2040 respectively. The LCH2 predicted using a solar and wind mix (SWM) was estimated to be USD 3.2 compared to USD 9.6 and USD 7.7 using standalone solar and wind. The LCH2 under the best case was predicted to be USD 3.9 and USD 2.1 compared to USD 6.5 and USD 3.4 under base-case solar PV in 2030 and 2040 respectively. The best case SWM offers 33% lower LCH2 in 2023 which leads to 37% 39% and 42% lower LCH2 in 2030 2040 and 2050 respectively. The current results are overpredicted especially compared with CSIRO Australia due to the higher assumption of the renewable electricity price. Currently over two-thirds of the cost for the LCH2 is due to the price of electricity (i.e. wind and solar). Modelling suggests an overall reduction in the capital cost of AEL plants by about 50% in the 2030s. Due to the lower capacity factor (effective energy generation over maximum output) of renewable energy especially for solar plants a combined wind- and solar-based electrolysis plant was recommended which can increase the capacity factor by at least 33%. Results also suggest that besides generation at least an additional 1.5 USD/kgH2 for compression transportation and storage is required.
Hydrogen 4.0: A Cyber–Physical System for Renewable Hydrogen Energy Plants
May 2024
Publication
The demand for green hydrogen as an energy carrier is projected to exceed 350 million tons per year by 2050 driven by the need for sustainable distribution and storage of energy generated from sources. Despite its potential hydrogen production currently faces challenges related to cost efficiency compliance monitoring and safety. This work proposes Hydrogen 4.0 a cyber–physical approach that leverages Industry 4.0 technologies—including smart sensing analytics and the Internet of Things (IoT)—to address these issues in hydrogen energy plants. Such an approach has the potential to enhance efficiency safety and compliance through real-time data analysis predictive maintenance and optimised resource allocation ultimately facilitating the adoption of renewable green hydrogen. The following sections break down conventional hydrogen plants into functional blocks and discusses how Industry 4.0 technologies can be applied to each segment. The components benefits and application scenarios of Hydrogen 4.0 are discussed while how digitalisation technologies can contribute to the successful integration of sustainable energy solutions in the global energy sector is also addressed.
Energy and Exergy-economic Performance Comparison of Wind, Solar Pond, and Ocean Thermal Energy Conversion Systems for Green Hydrogen Production
Jun 2024
Publication
The necessity of energy solutions that are economically viable ecologically sustainable and environmentally friendly has become fundamental to economic and societal advancement of nations. In this context renewable energy sources emerge as the most vital component. Furthermore hydrogen generation systems based on renewable energies are increasingly recognized as the most crucial strategies to mitigate global warming. In the present study a comparative analysis is conducted from an exergy-economic perspective to find the most efficient configuration among three different systems for renewable-based power to hydrogen production. These renewable sources are wind turbine salinity gradient solar pond (SGSP) and ocean thermal energy conversion (OTEC). SGSP and OTEC are coupled with a hydrogen production unit by a trilateral cycle (TLC) to improve the temperature match of the heating process. The heat waste energy within these systems is recovered by a thermoelectric generator (TEG) and a proton exchange membrane electrolyzer (PEME) is used for hydrogen production. Under base case input conditions the net power input of PEME is estimated to be approximately 327.8 kW across all configurations. Additionally the 3E (energy exergy and exergy-economic) performance of the three systems is evaluated by a parametric study and design optimization. The results of the best performance analysis reveal that the best exergy efficiency is achievable with the wind-based system in the range of 5.8–10.47% and for average wind speed of 8–12 m/s. Correspondingly the most favorable total cost rate is attributed to the wind-based system at a wind speed of 8 m/s equating to 66.08 USD/h. Subsequently the unit cost of hydrogen for the SGSP-based system is estimated to be the most economical ranging from 42.78 to 44.31 USD/GJ.
An Overview of Hydrogen Storage Technologies - Key Challenges and Opportunities
Jul 2024
Publication
Hydrogen energy has been proposed as a reliable and sustainable source of energy which could play an integral part in demand for foreseeable environmentally friendly energy. Biomass fossil fuels waste products and clean energy sources like solar and wind power can all be employed for producing hydrogen. This comprehensive review paper provides a thorough overview of various hydrogen storage technologies available today along with the benefits and drawbacks of each technology in context with storage capacity efficiency safety and cost. Since safety concerns are among the major barriers to the broad application of H2 as a fuel source special attention has been paid to the safety implications of various H2 storage techniques. In addition this paper highlights the key challenges and opportunities facing the development and commercialization of hydrogen storage technologies including the need for improved materials enhanced system integration increased awareness and acceptance. Finally recommendations for future research and development with a particular focus on advancing these technologies towards commercial viability.
Renewable Hydrogen Standards, Certifications, and Labels: A State-of-the-art Review from a Sustainability Systems Governance Perspective
Feb 2024
Publication
A range of existing and newly developed hydrogen standards certification and labelling (SCL) schemes aim to promote the role of ‘renewable’ ‘clean’ or ‘green’ hydrogen in decarbonising energy transitions. This paper analyses a sample of these SCLs to assess their role in the scaling up of renewable hydrogen and its derivatives. To analyse these hydrogen SCLs we embellish a novel conceptual framework that brings together Sustainability Systems Thinking and Governance (SSG) literatures. The results reveal noteworthy scheme differences in motivation approach criteria and governance; highlighting the complex interconnected and dynamic reality within which energy systems are embedded. We consider whether the sustainable utilisation of renewable hydrogen is well-served by the proliferation of SCLs and recommend an SSG-informed approach. An SSG approach will better promote collaboration towards an authoritative global multistakeholder compromise on hydrogen certification that balances economic considerations with social and environmental dimensions.
No more items...