Transmission, Distribution & Storage
Direct Evidence for Solid-like Hydrogen in a Nanoporous Carbon Hydrogen Storage Material at Supercritical Temperatures
Jul 2015
Publication
Here we report direct physical evidence that confinement of molecular hydrogen (H2) in an optimized nanoporous carbon results in accumulation of hydrogen with characteristics commensurate with solid H2 at temperatures up to 67 K above the liquid vapor critical temperature of bulk H2. This extreme densification is attributed to confinement of H2 molecules in the optimally sized micropores and occurs at pressures as low as 0.02 MPa. The quan Read More
Water Removal from LOHC Systems
Oct 2020
Publication
Liquid organic hydrogen carriers (LOHC) store hydrogen by reversible hydrogenation of a carrier material. Water can enter the system via wet hydrogen coming from electrolysis as well as via moisture on the catalyst. Removing this water is important for reliable operation of the LOHC system. Different approaches for doing this have been evaluated on three stages of the process. Drying of the hydrogen before entering the LOHC system itself is p Read More
Hydrogen-based Systems for Integration of Renewable Energy in Power Systems: Achievements and Perspectives
Jul 2021
Publication
This paper is a critical review of selected real-world energy storage systems based on hydrogen ranging from lab-scale systems to full-scale systems in continuous operation. 15 projects are presented with a critical overview of their concept and performance. A review of research related to power electronics control systems and energy management strategies has been added to integrate the findings with outlooks usually described in separate literatur Read More
A Review on the Properties of Iron Aluminide Intermetallics
Jan 2016
Publication
Iron aluminides have been among the most studied intermetallics since the 1930s when their excellent oxidation resistance was first noticed. Their low cost of production low density high strength-to-weight ratios good wear resistance ease of fabrication and resistance to high temperature oxidation and sulfurization make them very attractive as a substitute for routine stainless steel in industrial applications. Furthermore iron aluminides allow for th Read More
A Quantitative Assessment of the Hydrogen Storage Capacity of the UK Continental Shelf
Nov 2020
Publication
Increased penetration of renewable energy sources and decarbonisation of the UK's gas supply will require large-scale energy storage. Using hydrogen as an energy storage vector we estimate that 150 TWh of seasonal storage is required to replace seasonal variations in natural gas production. Large-scale storage is best suited to porous rock reservoirs. We present a method to quantify the hydrogen storage capacity of gas fields and saline aquifers using dat Read More
Aging Effects on Modelling and Operation of a Photovoltaic System with Hydrogen Storage
Jun 2021
Publication
In this work the aging effects on modelling and operation of a photovoltaic system with hydrogen storage in terms of energy production decrease and demand for additional hydrogen during 10 years of the system operation was analysed for the entire energy system for the first time. The analyses were performed with the support of experimental data for the renewable energy system composed of photovoltaic modules fuel cell electrolysers hydr Read More
Risk Assessment of the Large-Scale Hydrogen Storage in Salt Caverns
May 2021
Publication
Salt caverns are accepted as an ideal solution for high-pressure hydrogen storage. As well as considering the numerous benefits of the realization of underground hydrogen storage (UHS) such as high energy densities low leakage rates and big storage volumes risk analysis of UHS is a required step for assessing the suitability of this technology. In this work a preliminary quantitative risk assessment (QRA) was performed by starting from the worst Read More
Large-scale Stationary Hydrogen Storage via Liquid Organic Hydrogen Carriers
Aug 2021
Publication
Large-scale stationary hydrogen storage is critical if hydrogen is to fulfill its promise as a global energy carrier. While densified storage via compressed gas and liquid hydrogen is currently the dominant approach liquid organic molecules have emerged as a favorable storage medium because of their desirable properties such as low cost and compatibility with existing fuel transport infrastructure. This perspective article analytically investigates hydrogena Read More
Evaluation of Conceptual Electrolysis-based Energy Storage Systems Using Gas Expanders
Feb 2020
Publication
In this study four energy storage systems (Power-to-Gas-to-Power) were analysed that allow electrolysis products to be fully utilized immediately after they are produced. For each option the electrolysis process was supplied with electricity from a wind farm during the off-peak demand periods. In the first two variants the produced hydrogen was directed to a natural gas pipeline while the third and fourth options assumed the use of hydrogen for syntheti Read More
Micro and Macro Mechanical Analysis of Gas Pipeline Steels
Sep 2017
Publication
The actual safety margins of gas pipelines depend on a number of factors that include the mechanical characteristics of the material. The evolution with time of the metal properties can be evaluated by mechanical tests performed at different scales seeking for the best compromise between the simplicity of the experimental setup to be potentially employed in situ and the reliability of the results. Possible alternatives are comparatively assessed on pipeline Read More
Electrochemical Fracture Analysis of In-service Natural Gas Pipeline Steels
Dec 2018
Publication
Long-term operation of natural gas transit pipelines implies aging hydrogen-induced and stress corrosion cracking and it causes hydrogen embrittlement of steels degradation of mechanical properties associated to a safe serviceability of pipelines and failure risk increase. The implementation of effective diagnostic measures of pipelines steels degradation would allow planning actions in order to reduce a risk of fracture. In this paper a new scientifi Read More
Mapping Geological Hydrogen Storage Capacity and Regional Heating Demands: An Applied UK Case Study
Feb 2021
Publication
Hydrogen is considered as a low-carbon substitute for natural gas in the otherwise difficult to decarbonise domestic heating sector. This study presents for the first time a globally applicable source to sink methodology and analysis that matches geological storage capacity with energy demand. As a case study it is applied to the domestic heating system in the UK with a focus on maintaining the existing gas distribution network. To balance the significant an Read More
Carbon Capture from Biogas by Deep Eutectic Solvents A COSMO Study to Evaluate the Effect of Impurities on Solubility and Selectivity
Jun 2021
Publication
Deep eutectic solvents (DES) are compounds of a hydrogen bond donor (HBD) and a hydrogen bond acceptor (HBA) that contain a depressed melting point compared to their individual constituents. DES have been studied for their use as carbon capture media and biogas upgrading. However contaminants’ presence in biogas might affect the carbon capture by DES. In this study conductor-like screening model for real solvents (COSMO-RS) was used to Read More
Liquid Hydrogen: A Review on Liquefaction, Storage, Transportation, and Safety
Sep 2021
Publication
Decarbonization plays an important role in future energy systems for reducing greenhouse gas emissions and establishing a zero-carbon society. Hydrogen is believed to be a promising secondary energy source (energy carrier) that can be converted stored and utilized efficiently leading to a broad range of possibilities for future applications. Moreover hydrogen and electricity are mutually converted creating high energy security and broad economic Read More
Light-Driven Hydrogen Evolution Assisted by Covalent Organic Frameworks
Jun 2021
Publication
Covalent organic frameworks (COFs) are crystalline porous organic polymers built from covalent organic blocks that can be photochemically active when incorporating organic semiconducting units such as triazine rings or diacetylene bridges. The bandgap charge separation capacity porosity wettability and chemical stability of COFs can be tuned by properly choosing their constitutive building blocks by extension of conjugation by adjustment of the siz Read More
Quaternary Hydrides Pd1-y-zAgyCuzHx Embedded Atom Method Potentials for Hydrogen Energy Applications
Jan 2021
Publication
The Pd-H system has attracted extensive attention. Pd can absorb considerable amount of H at room temperature this ability is reversible so it is suitable for multiple energy applications. Pd-Ag alloys possess higher H permeability solubility and narrower miscibility gap with better mechanical properties than pure Pd but sulfur poisoning remains an issue. Pd-Cu alloys have excellent resistance to sulfur and carbon monoxide poisoning and hydrogen embrittle Read More
A Numerical and Graphical Review of Energy Storage Technologies
Dec 2014
Publication
More effective energy production requires a greater penetration of storage technologies. This paper takes a looks at and compares the landscape of energy storage devices. Solutions across four categories of storage namely: mechanical chemical electromagnetic and thermal storage are compared on the basis of energy/power density specific energy/power efficiency lifespan cycle life self-discharge rates capital energy/power costs scale application techni Read More
Development of Hydrogen Storage Tank Systems Based on Complex Metal Hydrides
Sep 2015
Publication
This review describes recent research in the development of tank systems based on complex metal hydrides for thermolysis and hydrolysis. Commercial applications using complex metal hydrides are limited especially for thermolysis-based systems where so far only demonstration projects have been performed. Hydrolysis-based systems find their way in space naval military and defense applications due to their compatibility with proton exchan Read More
Solid State Hydrogen Storage in Alanates and Alanate-Based Compounds: A Review
Jul 2018
Publication
The safest way to store hydrogen is in solid form physically entrapped in molecular form in highly porous materials or chemically bound in atomic form in hydrides. Among the different families of these compounds alkaline and alkaline earth metals alumino-hydrides (alanates) have been regarded as promising storing media and have been extensively studied since 1997 when Bogdanovic and Schwickardi reported that Ti-doped sodium alanate could be re Read More
Effect of Hydrogen-storage Pressure on the Detonation Characteristics of Emulsion Explosives Sensitized by Glass Microballoons
Mar 2021
Publication
In this study hydrogen-storage glass microballoons were introduced into emulsion explosives to improve the detonation performance of the explosives. The effect of hydrogen-storage pressure on the detonation characteristics of emulsion explosives was systematically investigated. Detonation velocity experiments shows that the change of sensitizing gas and the increase of hydrogen pressure have different effects on the detonation velocity. The Read More
Internal and Surface Damage after Electrochemical Hydrogen Charging for Ultra Low Carbon Steel with Various Degrees of Recrystallization
Jul 2016
Publication
An ultra low carbon (ULC) steel was subjected to electrochemical hydrogen charging to provoke hydrogen induced damage in the material. The damage characteristics were analyzed for recrystallized partially recrystallized and cold deformed material. The goal of the study is to understand the effect of cold deformation on the hydrogen induced cracking behavior of a material which is subjected to cathodic hydrogen charging. Additionally charging con Read More
Synthesis and Characterization of Carbon-Based Composites for Hydrogen Storage Application
Dec 2021
Publication
Recent development shows that carbon-based composites are proving to be the most promising materials in hydrogen energy production storage and conversion applications. In this study composites of the copper-based metal-organic framework with different ratios of graphite oxide have been prepared for hydrogen storage application. The developed materials are characterized by X-ray diffraction (XRD) gravimetric thermal analysis (TGA) scanning e Read More
Determination of Critical Hydrogen Concentration and Its Effect on Mechanical Performance of 2200 MPa and 600 HBW Martensitic Ultra-High-Strength Steel
Jun 2021
Publication
The influence of hydrogen on the mechanical performance of a hot-rolled martensitic steel was studied by means of constant extension rate test (CERT) and constant load test (CLT) followed with thermal desorption spectroscopy measurements. The steel shows a reduction in tensile strength up to 25% of ultimate tensile strength (UTS) at critical hydrogen concentrations determined to be about 1.1 wt.ppm and 50% of UTS at hydrogen concentrations of 2 wt. Read More
Briefing on the EU Innovation Fund and the Implications for CCUS Projects- First Report on the Thematic Working Group on Policy, Regulation and Public Perception
Jan 2020
Publication
This report outlines the key modalities and procedures for the Innovation Fund and focuses on the potential funding implications for CCUS projects. The assessment of the suitability of the Innovation Fund for CCS projects has been completed based on discussion during a workshop hosted by the EU CCUS Projects Network in October 2019. This session was part of the Network’s Thematic Group on Policy Regulation and Public Perception. The session Read More
New Insights into Hydrogen Uptake on Porous Carbon Materials via Explainable Machine Learning
Apr 2021
Publication
To understand hydrogen uptake in porous carbon materials we developed machine learning models to predict excess uptake at 77 K based on the textural and chemical properties of carbon using a dataset containing 68 different samples and 1745 data points. Random forest is selected due to its high performance (R2 > 0.9) and analysis is performed using Shapley Additive Explanations (SHAP). It is found that pressure and Brunauer-Emmett-Tell Read More
Towards Net-zero Smart System: An Power Synergy Management Approach of Hydrogen and Battery Hybrid System with Hydrogen Safety Consideration
May 2022
Publication
The building system is one of key energy consumption sector in the market and low-carbon building will make a significant contribution for the worldwide carbon emission reduction. The multiple energy systems including renewable generations hydrogen energy and energy storage is the perspective answer to the net-zero building system. However the research gap lies in the synergy power management among the renewable flexible loads batteries and Read More
Scenarios to Decarbonize Austria’s Energy Consumption and the Role of Underground Hydrogen Storage
May 2022
Publication
The European Union is aiming at reaching greenhouse gas (GHG) emission neutrality in 2050. Austria’s current greenhouse gas emissions are 80 million t/year. Renewable Energy (REN) contributes 32% to Austria’s total energy consumption. To decarbonize energy consumption a substantial increase in energy generation from renewable energy is required. This increase will add to the seasonality of energy supply and amplifies the seasonality in energy d Read More
Enhanced Hydrogen Storage Properties of Mg by the Synergistic Effect of Grain Refinement and NiTiO 3 Nanoparticles
May 2021
Publication
As a promising hydrogen storage material the practical application of magnesium is obstructed by the stable thermodynamics and sluggish kinetics. In this paper three kinds of NiTiO3 catalysts with different mole ratio of Ni to Ti were successfully synthesized and doped into nanocrystalline Mg to improve its hydrogen storage properties. Experimental results indicated that all the Mg-NiTiO3 composites showed prominent hydrogen storage performance. Read More
Experimental Investigation on CO2 Methanation Process for Solar Energy Storage Compared to CO2-Based Methanol Synthesis
Jun 2017
Publication
The utilization of the captured CO2 as a carbon source for the production of energy storage media offers a technological solution for overcoming crucial issues in current energy systems. Solar energy production generally does not match with energy demand because of its intermittent and non-programmable nature entailing the adoption of storage technologies. Hydrogen constitutes a chemical storage for renewable electricity if it is produced by water Read More
Interaction of Hydrogen with the Bulk, Surface and Subsurface of Crystalline RuO2 from First Principles
Feb 2021
Publication
Hydrogen and its interaction with metal oxide surfaces is of major importance for a wide range of research and applied fields spanning from catalysis energy storage microelectronics to metallurgy. This paper reviews state of the art of first principles calculations on the well-known ruthenium oxide (RuO2) surface in its (110) orientation and its interaction with hydrogen. In addition to it the paper also fills gaps in knowledge with new calculations and results on th Read More
Validation of Selected Optical Methods for Assessing Polyethylene (PE) Liners Used in High Pressure Vessels for Hydrogen Storage
Jun 2021
Publication
A polyethylene (PE) liner is the basic element in high-pressure type 4 composite vessels designed for hydrogen or compressed natural gas (CNG) storage systems. Liner defects may result in the elimination of the whole vessel from use which is very expensive both at the manufacturing and exploitation stage. The goal is therefore the development of efficient non-destructive testing (NDT) methods to test a liner immediately after its manufacturing befor Read More
Sulfide Stress Cracking of C-110 Steel in a Sour Environment
Jul 2021
Publication
The scope of this study includes modeling and experimental investigation of sulfide stress cracking (SSC) of high-strength carbon steel. A model has been developed to predict hydrogen permeation in steel for a given pressure and temperature condition. The model is validated with existing and new laboratory measurements. The experiments were performed using C-110 grade steel specimens. The specimens were aged in 2% (wt.) brine saturated with Read More
Comparative Study of Battery Storage and Hydrogen Storage to Increase Photovoltaic Self-sufficiency in a Residential Building of Sweden
Dec 2016
Publication
Photovoltaic (PV) is promising to supply power for residential buildings. Battery is the most widely employed storage method to mitigate the intermittence of PV and to overcome the mismatch between production and load. Hydrogen storage is another promising method that it is suitable for long-term storage. This study focuses on the comparison of self-sufficiency ratio and cost performance between battery storage and hydrogen storage for a residential bu Read More
Sustainability Indicators for the Manufacturing and Use of a Fuel Cell Prototype and Hydrogen Storage for Portable Uses
Oct 2021
Publication
A sustainability assessment regarding the manufacturing process and the use of a new proton exchange membrane fuel cell (PEMFC) specially designed for portable hydrogen applications is presented. The initial fuel cell prototype has been configured by taking into account exclusively technical issues. However a life cycle analysis considering environmental and socioeconomic impacts is crucial to improve the model to develop a more sustainable product. F Read More
Exergy and Exergoeconomic Analysis of Hydrogen and Power Cogeneration Using an HTR Plant
Mar 2021
Publication
This paper proposes using sodium-cooled fast reactor technologies for use in hydrogen vapor methane (SMR) modification. Using three independent energy rings in the Russian BN-600 fast reactor steam is generated in one of the steam-generating cycles with a pressure of 13.1 MPa and a temperature of 505 °C. The reactor's second energy cycles can increase the gas-steam mixture's temperature to the required amount for efficient correction. The 620 to Read More
Tetrahydroborates: Development and Potential as Hydrogen Storage Medium
Oct 2017
Publication
The use of fossil fuels as an energy supply becomes increasingly problematic from the point of view of both environmental emissions and energy sustainability. As an alternative hydrogen is widely regarded as a key element for a potential energy solution. However differently from fossil fuels such as oil gas and coal the production of hydrogen requires energy. Alternative and intermittent renewable energy sources such as solar power wind power Read More
Overview of Current Development in Electrical Energy Storage Technologies and the Application Potential in Power System Operation
Oct 2014
Publication
Electrical power generation is changing dramatically across the world because of the need to reduce greenhouse gas emissions and to introduce mixed energy sources. The power network faces great challenges in transmission and distribution to meet demand with unpredictable daily and seasonal variations. Electrical Energy Storage (EES) is recognized as underpinning technologies to have great potential in meeting these challenges whereby energy is Read More
Continuum Level Simulation of the Grain Size and Misorientation Effects on Hydrogen Embrittlement in Nickel
Jul 2016
Publication
This paper addresses the size and misorientation effects on hydrogen embrittlement of a four grain nickel aggregate. The grain interior is modelled with orthotropic elasticity and the grain boundary with cohesive zone technique. The grain misorientation angle is parameterized by fixing the lower grains and rotating the upper grains about the out-of-plane axis. The hydrogen effect is accounted for via the three-step hydrogen informed cohesive zone si Read More
Irreversible Hydrogen Embrittlement Study of B1500HS High Strength Boron Steel
Dec 2020
Publication
The reversible/irreversible recovery of mechanical properties and the microstructure characteristics of a typical hot-stamped steel B1500HS have been studied under different conditions of hydrogen permeation. Initially all tested specimens were permeated by hydrogen atoms through an electrochemical hydrogen charging scheme. Then the comparisons between different currents and charging time were performed. The influence of different stora Read More
Evaluation of Hydrogen Permeation Characteristics in Rubbery Polymers
Oct 2020
Publication
To find suitable sealing material with low permeability against hydrogen the elaborated evaluation techniques for hydrogen transport properties are necessary. We developed two techniques determining the permeability of hydrogen including software for diffusion behavior analysis. The techniques contain gas chromatography and volumetric collection of hydrogen gas. By measuring the hydrogen released from polymer samples with respect to the e Read More
Enhanced Hydrogen Storage of Alanates: Recent Progress and Future Perspectives
Feb 2021
Publication
The global energy crisis and environmental pollution have caused great concern. Hydrogen is a renewable and environmentally friendly source of energy and has potential to be a major alternative energy carrier in the future. Due to its high capacity and relatively low cost of raw materials alanate has been considered as one of the most promising candidates for hydrogen storage. Among them LiAlH4 and NaAlH4 as two representative metal alanates Read More
Hydrogen Energy
Feb 2007
Publication
The problem of anthropogenically driven climate change and its inextricable link to our global society’s present and future energy needs are arguably the greatest challenge facing our planet. Hydrogen is now widely regarded as one key element of a potential energy solution for the twenty-first century capable of assisting in issues of environmental emissions sustainability and energy security. Hydrogen has the potential to provide for energy in transportat Read More
Hydrogen Trapping in bcc Iron
May 2020
Publication
Fundamental understanding of H localization in steel is an important step towards theoretical descriptions of hydrogen embrittlement mechanisms at the atomic level. In this paper we investigate the interaction between atomic H and defects in ferromagnetic body-centered cubic (bcc) iron using density functional theory (DFT) calculations. Hydrogen trapping profiles in the bulk lattice at vacancies dislocations and grain boundaries (GBs) are calcula Read More
Critical Assessment of the Effect of Atmospheric Corrosion Induced Hydrogen on Mechanical Properties of Advanced High Strength Steel
Dec 2020
Publication
Hydrogen absorption into steel during atmospheric corrosion has been of a strong concern during last decades. It is technically important to investigate if hydrogen absorbed under atmospheric exposure conditions can significantly affect mechanical properties of steels. The present work studies changes of mechanical properties of dual phase (DP) advanced high strength steel specimens with sodium chloride deposits during corrosion in humid air usin Read More
Isotopic Tracing of Hydrogen Transport and Trapping in Nuclear Materials
Jun 2017
Publication
Some illustrations of the use of deuterium or tritium for isotopic tracing of hydrogen absorption transport and trapping in nuclear materials are presented. Isotopic tracing of hydrogen has been shown to be successful for the determination of the boundaries conditions for hydrogen desorption or absorption in a material exposed to a hydrogen source. Also the unique capabilities of isotopic tracing and related techniques to characterize H interactions with Read More
A Review of Cohesive Zone Modelling as an Approach for Numerically Assessing Hydrogen Embrittlement of Steel Structures
Jun 2014
Publication
Simulation of hydrogen embrittlement (HE) requires a coupled approach; on one side the models describing hydrogen transport must account for local mechanical fields while on the other side the effect of hydrogen on the accelerated material damage must be implemented into the model describing crack initiation and growth. This study presents a review of coupled diffusion and cohesive zone modelling as a method for numerically assessing HE of a Read More
Modelling a Kinetic Deviation of the Magnesium Hydrogenation Reaction at Conditions Close to Equilibrium
May 2019
Publication
A model has been derived for the magnesium hydrogenation reaction at conditions close to equilibrium. The reaction mechanism involves an adsorption element where the model is an extension of the Langmuir adsorption model. The concept of site availability (σs) is introduced whereby it has the capability to reduce the reaction rate. To improve representation of σs an adaptable semi-empirical equation has been developed. Supplement to the surface r Read More
A Fully Renewable and Efficient Backup Power System with a Hydrogen-biodiesel-fueled IC Engine
Jan 2019
Publication
Renewable energy is free abundant clean and could contribute towards a significant reduction of the global warming emissions. It is massively introduced as a source of electricity production across the globe and is expected to become the primary source of energy within the following decades. However despite the naturally replenished energy the supply is not always available. For this reason it is necessary at times of excess energy any surplus quantity t Read More
Understanding the Interaction between a Steel Microstructure and Hydrogen
Apr 2018
Publication
The present work provides an overview of the work on the interaction between hydrogen (H) and the steel’s microstructure. Different techniques are used to evaluate the H-induced damage phenomena. The impact of H charging on multiphase high-strength steels i.e. high-strength low-alloy (HSLA) transformation-induced plasticity (TRIP) and dual phase (DP) is first studied. The highest hydrogen embrittlement resistance is obtained for HSLA steel due to the Read More
Energy Storage as Part of a Secure Energy Supply
Mar 2017
Publication
Florian Ausfelder,
Christian Beilmann,
Martin Bertau,
Sigmar Bräuninger,
Angelika Heinzel,
Renate Hoer,
Wolfram Koch,
Falko Mahlendorf,
Anja Metzelthin,
Marcell Peuckert,
Ludolf Plass,
Konstantin Räuchle,
Martin Reuter,
Georg Schaub,
Sebastian Schiebahn,
Ekkehard Schwab,
Ferdi Schüth,
Detlef Stolten,
Gisa Teßmer,
Kurt Wagemann and
Karl-Friedrich Ziegahn
The current energy system is subject to a fundamental transformation: A system that is oriented towards a constant energy supply by means of fossil fuels is now expected to integrate increasing amounts of renewable energy to achieve overall a more sustainable energy supply. The challenges arising from this paradigm shift are currently most obvious in the area of electric power supply. However it affects all areas of the energy system albeit with differe Read More
No more items...