Transmission, Distribution & Storage
Hydrogen Embrittlement Evaluation of Micro Alloyed Steels by Means of J-Integral Curve
Jun 2019
Publication
The aim of this work is the evaluation of the hydrogen effect on the J-integral parameter. It is well-known that the micro alloyed steels are affected by Hydrogen Embrittlement phenomena only when they are subjected at the same time to plastic deformation and hydrogen evolution at their surface. Previous works have pointed out the absence of Hydrogen Embrittlement effects on pipeline steels cathodically protected under static load conditions. On the contrary in slow strain rate tests it is possible to observe the effect of the imposed potential and the strain rate on the hydrogen embrittlement steel behavior only after the necking of the specimens. J vs. Δa curves were measured on different pipeline steels in air and in aerated NaCl 3.5 g/L solution at free corrosion potential or under cathodic polarization at −1.05 and −2 V vs. SCE. The area under the J vs. Δa curves and the maximum crack propagation rate were taken into account. These parameters were compared with the ratio between the reduction of area in environment and in air obtained by slow strain rate test in the same environmental conditions and used to rank the different steels.
Stress Corrosion Behavior of AM50Gd Magnesium Alloy in Different Environments
May 2019
Publication
A new type of high strength corrosion-resistant magnesium alloy was prepared by adding 1% rare earth Gd to AM50 and then treated with hot extrusion method. The stress corrosion properties of the new materials in air pure water 0.5 mol/L NaCl and 0.5 mol/L Na2SO4 solution were studied by the slow strain rate tensile (SSRT) test in situ open circuit potential test Tafel curve test stereomicroscope SEM and EDS. The results showed the following. The stress corrosion sensitivity of the material in different environments was Na2SO4> NaCl > distilled water > air. According to the Tafel curves measured at 0 and 100 MPa the corrosion voltage decreased little and the corrosion current density increased rapidly under 100 Pa. This was because the film of the corrosion product ruptured to form a large cathode and a small anode which resulted in a large instantaneous corrosion current. The mechanism of hydrogen embrittlement and anodic dissolution together affected the stress corrosion behavior of the alloy. In distilled water hydrogen embrittlement played a major role while in NaCl and Na2SO4solution hydrogen embrittlement and anodic dissolution were both affected. The direct reason of the stress corrosion crack (SCC) samples’ failure was the cracks expanding rapidly at the bottom of pit which was caused by corrosion.
Effect of Corrosion-induced Hydrogen Embrittlement and its Degradation Impact on Tensile Properties and Fracture Toughness of (Al-Cu-Mg) 2024 Alloy
Jul 2016
Publication
In the present work the effect of artificial ageing of AA2024-T3 on the tensile mechanical properties and fracture toughness degradation due to corrosion exposure will be investigated. Tensile and fracture toughness specimens were artificially aged to tempers that correspond to Under-Ageing (UA) Peak-Ageing (PA) and Over-Ageing (OA) conditions and then were subsequently exposed to exfoliation corrosion environment. The corrosion exposure time was selected to be the least possible according to the experimental work of Alexopoulos et al. (2016) so as to avoid the formation of large surface pits trying to simulate the hydrogen embrittlement degradation only. The mechanical test results show that minimum corrosion-induced decrease in elongation at fracture was achieved for the peak-ageing condition while maximum was noticed at the under-ageing and over-ageing conditions. Yield stress decrease due to corrosion is less sensitive to tempering; fracture toughness decrease was sensitive to ageing heat treatment thus proving that the S΄ particles play a significant role on the corrosion-induced degradation.
Room Temperature Metal Hydrides for Stationary and Heat Storage Applications: A Review
Apr 2021
Publication
Hydrogen has been long known to provide a solution toward clean energy systems. With this notion many efforts have been made to find new ways of storing hydrogen. As a result decades of studies has led to a wide range of hydrides that can store hydrogen in a solid form. Applications of these solid-state hydrides are well-suited to stationary applications. However the main challenge arises in making the selection of the Metal Hydrides (MH) that are best suited to meet application requirements. Herein we discuss the current state-of-art in controlling the properties of room temperature (RT) hydrides suitable for stationary application and their long term behavior in addition to initial activation their limitations and emerging trends to design better storage materials. The hydrogen storage properties and synthesis methods to alter the properties of these MH are discussed including the emerging approach of high-entropy alloys. In addition the integration of intermetallic hydrides in vessels their operation with fuel cells and their use as thermal storage is reviewed.
Radiation Damage of Reactor Pressure Vessel Steels Studied by Positron Annihilation Spectroscopy—A Review
Oct 2020
Publication
Safe and long term operation of nuclear reactors is one of the most discussed challenges in nuclear power engineering. The radiation degradation of nuclear design materials limits the operational lifetime of all nuclear installations or at least decreases its safety margin. This paper is a review of experimental PALS/PLEPS studies of different nuclear reactor pressure vessel (RPV) steels investigated over last twenty years in our laboratories. Positron annihilation lifetime spectroscopy (PALS) via its characteristics (lifetimes of positrons and their intensities) provides useful information about type and density of radiation induced defects. The new results obtained on neutron-irradiated and hydrogen ions implanted German steels were compared to those from the previous studies with the aim to evaluate different processes (neutron flux/fluence thermal treatment or content of selected alloying elements) to the microstructural changes of neutron irradiated RPV steel specimens. The possibility of substitution of neutron treatment (connected to new defects creation) via hydrogen ions implantation was analyzed as well. The same materials exposed to comparable displacement damage (dpa) introduced by neutrons and accelerated hydrogen ions shown that in the results interpretation the effect of hydrogen as a vacancy-stabilizing gas must be considered too. This approach could contribute to future studies of nuclear fission/fusion design steels treated by high levels of neutron irradiation.
Rock Mass Response for Lined Rock Caverns Subjected to High Internal Gas Pressure
Mar 2022
Publication
The storage of hydrogen gas in underground lined rock caverns (LRCs) enables the implementation of the first fossil-free steelmaking process to meet the large demand for crude steel. Predicting the response of rock mass is important to ensure that gas leakage due to rupture of the steel lining does not occur. Analytical and numerical models can be used to estimate the rock mass response to high internal pressure; however the fitness of these models under different in situ stress conditions and cavern shapes has not been studied. In this paper the suitability of analytical and numerical models to estimate the maximum cavern wall tangential strain under high internal pressure is studied. The analytical model is derived in detail and finite element (FE) models considering both two-dimensional (2D) and three-dimensional (3D) geometries are presented. These models are verified with field measurements from the LRC in Skallen southwestern Sweden. The analytical model is inexpensive to implement and gives good results for isotropic in situ stress conditions and large cavern heights. For the case of anisotropic horizontal in situ stresses as the conditions in Skallen the 3D FE model is the best approach
Effect of Cementite on the Hydrogen Diffusion/Trap Characteristics of 2.25Cr-1Mo-0.25V Steel with and without Annealing
May 2018
Publication
Hydrogen embrittlement (HE) is a critical issue that affects the reliability of hydrogenation reactors. The hydrogen diffusivity/trap characteristics of 2.25Cr-1Mo-0.25V steel are important parameters mainly used to study the HE mechanism of steel alloys. In this work the hydrogen diffusivity/trap characteristics of heat-treated (annealed) and untreated 2.25Cr-1Mo-0.25V steel were studied using an electrochemical permeation method. The microstructures of both 2.25Cr-1Mo-0.25V steels were investigated by metallurgical microscopy. The effect of cementite on the hydrogen diffusivity/trap mechanisms was studied using thermodynamics-based and Lennard–Jones potential theories. The results revealed that the cementite located at the grain boundaries and at the interfaces of lath ferrite served as a kind of hydrogen trap (i.e. an irreversible hydrogen trap). In addition hydrogen was transported from ferrite to cementite via up-hill diffusion thereby supporting the hypothesis of cementite acting as a hydrogen trap.
Analysis of Environmentally Assisted Cracking Processes in Notched Steels Using the Point Method
Sep 2019
Publication
This paper proposes the use of the Point Method (PM) to analyse Environmentally Assisted Cracking (EAC) processes in steels containing U-shaped notches. The PM a methodology included within the Theory of Critical Distances (TCD) has been extensively validated by many authors for the analysis of fracture and fatigue phenomena of different types of materials containing notches. However it has never been applied to other critical or subcritical cracking processes such as EAC or creep crack propagation.<br/>This work provides a PM-based analysis of EAC emanating from notches which is validated by testing CT notched specimens of X80 and S420 steels subjected to aggressive environments under hydrogen embrittlement conditions.<br/>The results reveal that the PM accurately predicts the crack propagation onset condition as well as the evolution of the material’s apparent EAC resistance.
Stress–Corrosion Cracking of AISI 316L Stainless Steel in Seawater Environments: Effect of Surface Machining
Oct 2020
Publication
To understand the effect of surface machining on the resistance of AISI 316L to SCC (stress–corrosion cracking) in marine environments we tested nuts surface-machined by different methods in a seawater-spraying chamber. Two forms of cracks were observed: on the machined surface and underneath it. On the surface cracks connected with the pitting sites were observed to propagate perpendicular to the hoop-stress direction identifying them as stress–corrosion cracks. Under the surface catastrophic transgranular cracks developed likely driven by hydrogen embrittlement caused by the chloride-concentrating level of humidity in the testing environment. Under constant testing conditions significantly different SCC resistance was observed depending on how the nuts had been machined. Statistical evaluation of the nut surface-crack density indicates that machining by a “form” tool yields a crack density one order of magnitude lower than machining by a “single-point” tool. Microstructural analysis of form-tool-machined nuts revealed a homogeneous deformed subsurface zone with nanosized grains leading to enhanced surface hardness. Apparently the reduced grain size and/or the associated mechanical hardening improve resistance to SCC. The nanograin subsurface zone was not observed on nuts machined by a single-point tool. Surface roughness measurements indicate that single-point-tool-machined nuts have a rougher surface than form-tool machined nuts. Apparently surface roughness reduces SCC resistance by increasing the susceptibility to etch attack in Cl--rich solutions. The results of X-ray diffractometry and transmission electron microscopy diffractometry indicate that machining with either tool generates a small volume fraction (< 0.01) of strain-induced martensite. However considering the small volume fraction and absence of martensite in regions of cracking martensite is not primarily responsible for SCC in marine environments.
Research of Nanomaterials as Electrodes for Electrochemical Energy Storage
Jan 2022
Publication
This paper has experimentally proved that hydrogen accumulates in large quantities in metal-ceramic and pocket electrodes of alkaline batteries during their operation. Hydrogen accumulates in the electrodes in an atomic form. After the release of hydrogen from the electrodes a powerful exothermic reaction of atomic hydrogen recombination with a large energy release occurs. This exothermic reaction is the cause of thermal runaway in alkaline batteries. For the KSL-15 battery the gravimetric capacity of sintered nickel matrix of the oxide-nickel electrode as hydrogen storage is 20.2 wt% and cadmium electrode is 11.5 wt%. The stored energy density in the metal-ceramic matrix of the oxide-nickel electrode of the battery KSL-15 is 44 kJ/g and in the cadmium electrode it is 25 kJ/g. The similar values for the KPL-14 battery are as follows. The gravimetric capacity of the active substance of the pocket oxide-nickel electrode as a hydrogen storage is 22 wt% and the cadmium electrode is 16.9 wt%. The density of the stored energy in the active substance oxide-nickel electrode is 48 kJ/g and in the active substance of the cadmium electrode it is 36.8 kJ/g. The obtained results of the accumulation of hydrogen energy in the electrodes by the electrochemical method are three times higher than any previously obtained results using the traditional thermochemical method.
Materials for Hydrogen Storage
Aug 2003
Publication
Hydrogen storage is a materials science challenge because for all six storage methods currently being investigated materials with either a strong interaction with hydrogen or without any reaction are needed. Besides conventional storage methods i.e. high pressure gas cylinders and liquid hydrogen the physisorption of hydrogen on materials with a high specific surface area hydrogen intercalation in metals and complex hydrides and storage of hydrogen based on metals and water are reviewed.
Effect of Vanadium-alloying on Hydrogen Embrittlement of Austenitic High-nitrogen Steels
Dec 2018
Publication
The effect of hydrogen on tensile behavior and fracture mechanisms of V-alloying and V-free high-nitrogen austenitic steels was evaluated. Two steels with the chemical compositions of Fe-23Cr–17Mn–0.1C–0.6N (0V-HNS) and Fe-19Cr–22Mn–1.5V–0.3C–0.9N (1.5V-HNS) were electrochemically hydrogen-charged in NaCl water-solution for 100 hours. According to X-ray diffraction analysis and TEM researches V-alloying promotes particle strengthening of the 1.5V-HNS. Despite differences in chemical compositions namely carbon and nitrogen concentrations a solid solution hardening is similar for both steels because of precipitate-assisted depletion of austenite by interstitial atoms (carbon and nitrogen) in 1.5V-HNS. For hydrogen-free state the values of the yield stress and the tensile strength are higher for particle-strengthened 1.5V-HNS as compared to 0V-HNS. Hydrogen-charging increases both the yield stress and the tensile strength of the steels but hydrogen-assisted fracture micromechanisms are different for 0V-HNS and 1.5V-HNS. Hydrogen-charging drastically reduces a total elongation in 0V-HNS but provides insufficient embrittlement in 1.5V-HNS. Hydrogen-assisted brittle layers form on lateral surfaces of the specimens and the widths and fracture micromechanisms in them are different for two steels. For 0V-HNS surface layers of 84 μm in width possess transgranular brittle fracture mechanism (quasi-cleavage mode). For 1.5V-HNS the brittle surface layers (31 μm width) destroy in intergranular brittle fracture mode. The central parts of steel specimens show dimple fracture similar to hydrogen-free steels. The possible reasons for different hydrogen-induced effects in 0V-HNS and 1.5V-HNS are discussed.
Insight into Anomalous Hydrogen Adsorption on Rare Earth Metal Decorated on 2 Dimensional Hexagonal Boron Nitride a Density Functional Theory Study
Mar 2020
Publication
Hydrogen interaction with metal atoms is of prime focus for many energy related applications like hydrogen storage hydrogen evolution using catalysis etc. Although hydrogen binding with many main group alkaline and transition metals is quite well understood its binding properties with lanthanides are not well reported. In this article by density functional theory studies we show how a rare earth metal cerium binds with hydrogen when decorated over a heteropolar 2D material hexagonal boron nitride. Each cerium adatom is found to bind eight hydrogen molecules which is a much higher number than has been reported for transition metal atoms. However the highest binding energy occurs at four hydrogen molecules. This anomaly therefore is investigated in the present article using first-principles calculations. The number density of hydrogen molecules adsorbed over the cerium adatom is explained by investigating the electronic charge volume interactions owing to a unique geometrical arrangement of the guest hydrogen molecules. The importance of geometrical encapsulation in enhancing electronic interactions is explained.
Techno-economic Feasibility of Road Transport of Hydrogen Using Liquid Organic Hydrogen Carriers
Sep 2020
Publication
The cost of storing and transporting hydrogen have been one of the main challenges for the realization of the hydrogen economy. Liquid organic hydrogen carriers (LOHC) are a promising novel solution to tackle these challenges. In this paper we compare the LOHC concept to compressed gas truck delivery and on-site production of hydrogen via water electrolysis. As a case study we consider transportation of by-product hydrogen from chlor-alkali and chlorate plants to a single industrial customer which was considered to have the greatest potential for the LOHC technology to enter the markets. The results show that the LOHC delivery chain could significantly improve the economics of long distance road transport. For economic feasibility the most critical parameters identified are the heat supply method for releasing hydrogen at the end-user site and the investment costs for LOHC reactors.
TM-doped Mg12O12 Nano-cages for Hydrogen Storage Applications: Theoretical Study
Feb 2022
Publication
DFT calculations at B3LYP/6-31g(dp) with the D3 version of Grimme’s dispersion are performed to investigate the application of TM-encapsulated Mg12O12 nano-cages (TM= Mn Fe and Co) as a hydrogen storage material. The molecular dynamic (MD) calculations are utilized to examine the stability of the considered structures. TD-DFT method reveals that the TM-encapsulation converts the Mg12O12 from an ultraviolet into a visible optical active material. The adsorption energy values indicate that the Mn and Fe atoms encapsulation enhances the adsorption of H2 molecules on the Mg12O12 nano-cage. The pristine Mg12O12 and CoMg12O12 do not meet the requirements for hydrogen storage materials while the MnMg12O12 and FeMg12O12 obey the requirements. MnMg12O12 and FeMg12O12 can carry up to twelve and nine H2 molecules respectively. The hydrogen adsorption causes a redshift for the λmax value of the UV-Vis. spectra of the MnMg12O12 and FeMg12O12 nano-cages. The thermodynamic calculations show that the hydrogen storage reaction for MnMg12O12 nano-cage is a spontaneous reaction while for FeMg12O12 nano-cage is not spontaneous. The results suggested that the MnMg12O12 nano-cage may be a promising material for hydrogen storage applications.
Comarine Derivatives Designed as Carbon Dioxide and Hydrogen Storage
Feb 2022
Publication
The growing of fossil fuel burning leads to increase CO2 and H2 emissions which cause increasing of global warming that has brought big attention. As a result enormous researches have been made to reduce CO2 and H2 build up in the environment. One of the most promising approaches for managing CO2 and H2 gases percentage in the atmosphere is capturing and storage them inside proper materials. Therefore the design of new materials for carbon dioxide and hydrogen storage has received increasing research attention. Four derivatives of coumarine linked to thiazolidinone were synthesized in good yields by reacting 3-(2-Phenylaminoacetyl)coumarine and 2-phenylimino thiazolidinone-4-one in a solution of anhydrous sodium acetate /glacial acetic acid at 120° for 5-6 hours. The synthesised organic compounds were identified by using different techniques such as 1H NMR 13C NMR FTIR and energy dispersive X-ray spectra. The agglomeration shape and porosity of the particles were determined utilizing scanning electron microscopy (SEM) and microscopy images analysis. The capacity of carbon dioxide (CO2) and hydrogen (H2) adsorption on the prepared organic materials at 323 K 50 bar ranged from 22 to 31 cm3 /g and hydrogen from 4 to 12 cm3 /g for the four synthesised compounds which contain phenyl substituted with chloro nitro and bromo groups was found to be the most active adsorbent surfaces for carbon dioxide and hydrogen storage.
A Probabilistic Framework for the Techno-economic Assessment of Smart Energy Hubs for Electric Vehicle Charging
Apr 2022
Publication
Smart energy hubs (Smart Hubs) equipped with Vehicle-to-Grid (V2G) charging photovoltaic (PV) energy generation and hydrogen storage capabilities are an emerging technology with potential to alleviate the impact of electric vehicles (EV) on the electricity grid. Their operation however is characterised by intermittent PV energy generation as well as uncertainties in EV traffic and driver preference. These uncertainties when combined with the need to maximise their financial return while guaranteeing driver satisfaction yields a challenging decision-making problem. This paper presents a novel Monte-Carlo-based modelling and computational framework for simulating the operation of Smart Hubs — providing a means for a holistic assessment of their technical and financial viability. The framework utilises a compact and representative mathematical model accounting for power losses PV module degradation variability in EV uptake price inflation driver preference and diversity in charge points and EVs. It provides a comprehensive approach for dealing with uncertainties and dependencies in EV data while being built on an energy management algorithm that maximises revenue generation ensures driver satisfaction and preserves battery life. The energy management problem is formulated as a mixed-integer linear programming problem constituting a business case that includes an adequate V2G reward model for drivers. To demonstrate its applicability the framework was used to assess the financial viability of a fleet management site for various caps on vehicle stay at the site. From the assessment controlled charging was found to be more financially rewarding in all cases yielding between 1.7% and 3.1% more revenue than uncontrolled charging. The self-consumption of the site was found to be nearly 100% due mainly to local load shifting and dispatchable hydrogen generation. V2G injection was however negligible — suggesting its unattractiveness for sites that do not participate in the demand side response market. Overall the numerical results obtained validate the applicability of the proposed framework as a decision-support tool in the sustainable design and operation of Smart Hubs for EV charging.
Hydrogen Embrittlement and Improved Resistance of Al Addition in Twinning-Induced Plasticity Steel: First-Principles Study
Apr 2019
Publication
Understanding the mechanism of hydrogen embrittlement (HE) of austenitic steels and developing an effective strategy to improve resistance to HE are of great concern but challenging. In this work first-principles studies were performed to investigate the HE mechanism and the improved resistance of Al-containing austenite to HE. Our results demonstrate that interstitial hydrogen atoms have different site preferences in Al-free and Al-containing austenites. The calculated binding energies and diffusion barriers of interstitial hydrogen atoms in Al-containing austenite are remarkably higher than those in Al-free austenite indicating that the presence of Al is more favorable for reducing hydrogen mobility. In Al-free austenite interstitial hydrogen atoms caused a remarkable increase in lattice compressive stress and a distinct decrease in bulk shear and Young’s moduli. Whereas in Al-containing austenite the lattice compressive stress and the mechanical deterioration induced by interstitial hydrogen atoms were effectively suppressed.
The Role of Hydrogen in Hydrogen Embrittlement of Metals: The Case of Stainless Steel
Apr 2019
Publication
Hydrogen embrittlement (HE) of metals has remained a mystery in materials science for more than a century. To try to clarify this mystery tensile tests were conducted at room temperature (RT) on a 316 stainless steel (SS) in air and hydrogen of 70 MPa. With an aim to directly observe the effect of hydrogen on ordering of 316 SS during deformation electron diffraction patterns and images were obtained from thin foils made by a focused ion beam from the fracture surfaces of the tensile specimens. To prove lattice contraction by ordering a 40% CW 316 SS specimen was thermally aged at 400 °C to incur ordering and its lattice contraction by ordering was determined using neutron diffraction by measuring its lattice parameters before and after aging. We demonstrate that atomic ordering is promoted by hydrogen leading to formation of short-range order and a high number of planar dislocations in the 316 SS and causing its anisotropic lattice contraction. Hence hydrogen embrittlement of metals is controlled by hydrogen-enhanced ordering during RT deformation in hydrogen. Hydrogen-enhanced ordering will cause the ordered metals to be more resistant to HE than the disordered ones which is evidenced by the previous observations where furnace-cooled metals with order are more resistant to HE than water-quenched or cold worked metals with disorder. This finding strongly supports our proposal that strain-induced martensite is a disordered phase.
The Impact of Hydrogen on Mechanical Properties; A New In Situ Nanoindentation Testing Method
Feb 2019
Publication
We have designed a new method for electrochemical hydrogen charging which allows us to charge very thin coarse-grained specimens from the bottom and perform nanomechanical testing on the top. As the average grain diameter is larger than the thickness of the sample this setup allows us to efficiently evaluate the mechanical properties of multiple single crystals with similar electrochemical conditions. Another important advantage is that the top surface is not affected by corrosion by the electrolyte. The nanoindentation results show that hydrogen reduces the activation energy for homogenous dislocation nucleation by approximately 15–20% in a (001) grain. The elastic modulus also was observed to be reduced by the same amount. The hardness increased by approximately 4% as determined by load-displacement curves and residual imprint analysis.
No more items...