Safety
Liquid Organic Hydrogen Carriers - A Technology to Overcome Common Risks of Hydrogen Storage
Sep 2021
Publication
In transport and storage of hydrogen the risks are mainly seen in its volatile nature its ability to form explosive mixtures with air and the harsh conditions (high pressure or low temperature) for efficient storage. The concept of Liquid Organic Hydrogen Carriers (LOHC) offers a technology to overcome the above mentioned threats. The present submission describes the basics of the LOHC technology. It contains a comparison of a selection of common LOHC materials with a view on physical properties. The advantages of a low viscosity at low temperatures and a high flash point are expressed. LOHCs are also discussed as a concept to import large amounts of energy/hydrogen. A closer look is taken on the environmental and safety aspects of hydrogen storage in LOHCs since here the main differences to pressurized and cryo-storage of hydrogen can be found. The aim of this paper is to provide an overview of the principles of the LOHC technology the different LOHC materials and their risks and opportunities and an impression of a large scale scenario on the basis of the LOHC technology.
Performance of Hydrogen Storage Tanks of Type IV in a Fire: Effect of the State of Charge
Sep 2021
Publication
The use of hydrogen storage tanks at 100% of nominal working pressure (NWP) is expected only after refuelling. Driving between refuellings is characterised by the state of charge SoC <100%. There is experimental evidence that Type IV tanks tested in a fire at initial pressures below 1/3 NWP leaked without rupture. This paper aims at understanding this phenomenon. The numerical research has demonstrated that the heat transfer from fire through the composite overwrap at storage pressures below NWP/3 is sufficient to melt the polymer liner. This melting initiates hydrogen microleaks through the composite before it loses the load-bearing ability. The fire-resistance rating (FRR) is defined as the time to rupture in a fire of a tank without or with blocked thermally activated pressure relief device. The dependence of a FRR on the SoC is demonstrated for the tanks with defined material properties and volumes in the range of 36–244 L. A composite wall thickness variation is shown to cause a safety issue by reducing the tank’s FRR and is suggested to be addressed by tank manufacturers and OEMs. The effect of a tank’s burst pressure ratio on the FRR is investigated. Thermal parameters of the composite wall i.e. decomposition heat and temperatures are shown in simulations of a tank failure in a fire to play an important role in its FRR.
Transient Reversible Solid Oxide Cell Reactor Operation – Experimentally Validated Modeling and Analysis
Oct 2018
Publication
A reversible solid oxide cell (rSOC) reactor can operate efficiently in both electrolysis mode and in fuel cell mode. The bidirectional operability enables rSOC reactors to play a central role as an efficient energy conversion system for energy storage and sector coupling for a renewable energy driven society. A combined system for electrolysis and fuel cell operation can result in complex system configurations that should be able to switch between the two modes as quickly as possible. This can lead to temperature profiles within the reactor that can potentially lead to the failure of the reactor and eventually the system. Hence the behavior of the reactor during the mode switch should be analyzed and optimal transition strategies should be taken into account during the process system design stage. In this paper a one dimensional transient reversible solid oxide cell model was built and experimentally validated using a commercially available reactor. A simple hydrogen based system model was built employing the validated reactor model to study reactor behavior during the mode switch. The simple design leads to a system efficiency of 49% in fuel cell operation and 87% in electrolysis operation where the electrolysis process is slightly endothermic. Three transient operation strategies were studied. It is shown that the voltage response to transient operation is very fast provided the reactant flows are changed equally fast. A possible solution to ensure a safe mode switch by controlling the reactant inlet temperatures is presented. By keeping the rate of change of reactant inlet temperatures five to ten times slower than the mode switch a safe transition can be ensured.
Examining the Role of Safety in Communication Concerning Emerging Hydrogen Technologies by Selected Groups of Stakeholders
Sep 2021
Publication
Governments and other stakeholders actively promote and facilitate the development and deployment of hydrogen and fuel cell technologies. Various strategy documents and energy forecasts outline the environmental and societal benefits of the prospective hydrogen economy. At the same time the safety related properties of hydrogen imply that it is not straightforward to achieve and document the same level of safety for hydrogen systems compared to conventional fuels. Severe accidents can have major impact on the development of energy technologies. The stakes will increase significantly as the use of hydrogen shifts from controlled environments in industrial facilities to the public domain and as the transport-related consumption extends from passenger cars and buses to trains ships and airplanes. Widespread deployment of hydrogen as an energy carrier in society will require massive investments. This implies commercial and political commitment involvement and influence on research priorities and decision-making. The legacy from accidents and the messages communicated by influential stakeholders impact not only how the public perceives hydrogen technologies but also governmental policies the development of regulations codes and standards (RCS) and ultimately the measures adopted for preventing and mitigating accidents. This paper explores whether and how selected aspects of safety are considered when distinct groups of stakeholders frame the hydrogen economy. We assess to what extent the communication is consistent with the current state-of-the-art in hydrogen safety and the contemporary strength of knowledge in risk assessments for hydrogen systems. The approach adopted entails semi-quantitative text analysis and close reading to highlight variations between diverse groups of stakeholders. The results indicate a bias in the framing of the safety-related aspects of the hydrogen economy towards procedural organisational and societal measures of risk reduction at the expense of well-known challenges and knowledge gaps associated with the implications of fundamental safety-related properties of hydrogen.
Simulation of Possible Fire and Explosion Hazards of Clean Fuel Vehicles in Garages
Nov 2021
Publication
Clean fuel is advocated to be used for sustainability. The number of liquefied petroleum gas (LPG) and hydrogen vehicles is increasing globally. Explosion hazard is a threat. On the other hand the use of hydrogen is under consideration in Hong Kong. Explosion hazards of these clean fuel (LPG and hydrogen) vehicles were studied and are compared in this paper. The computational fluid dynamics (CFD) software Flame Acceleration Simulator (FLACS) was used. A car garage with a rolling shutter as its entrance was selected for study. Dispersion of LPG from the leakage source with ignition at a higher position was studied. The same garage was used with a typical hydrogen vehicle leaking 3.4 pounds (1.5 kg) of hydrogen in 100 s the mass flow rate being equal to 0.015 kgs−1 . The hydrogen vehicle used in the simulation has two hydrogen tanks with a combined capacity of 5 kg. The entire tank would be completely vented out in about 333 s. Two scenarios of CFD simulation were carried out. In the first scenario the rolling shutter was completely closed and the leaked LPG or hydrogen was ignited at 300 s after leakage. The second scenario was conducted with a gap height of 0.3 m under the rolling shutter. Predicted results of explosion pressure and temperature show that appropriate active fire engineering systems are required when servicing these clean fuel vehicles in garages. An appropriate vent in an enclosed space such as the garage is important in reducing explosion hazards.
A Flammability Limit Model for Hydrogen-air-diluent Mixtures Based on Heat Transfer Characteristics in Flame Propagation
May 2019
Publication
Predicting lower flammability limits (LFL) of hydrogen has become an ever-important task for safety of nuclear industry. While numerous experimental studies have been conducted LFL results applicable for the harsh environment are still lack of information. Our aim is to develop a calculated non-adiabatic flame temperature (CNAFT) model to better predict LFL of hydrogen mixtures in nuclear power plant. The developed model is unique for incorporating radiative heat loss during flame propagation using the CNAFT coefficient derived through previous studies of flame propagation. Our new model is more consistent with the experimental results for various mixtures compared to the previous model which relied on calculated adiabatic flame temperature (CAFT) to predict the LFL without any consideration of heat loss. Limitation of the previous model could be explained clearly based on the CNAFT coefficient magnitude. The prediction accuracy for hydrogen mixtures at elevated initial temperatures and high helium content was improved substantially. The model reliability was confirmed for H2-air mixtures up to 300 C and H2-air-He mixtures up to 50 vol % helium concentration. Therefore the CNAFT model developed based on radiation heat loss is expected as the practical method for predicting LFL in hydrogen risk analysis.
The Effect of Hydrogen Containing Fuel Blends Upon Flashback in Swirl Burners
Feb 2011
Publication
Lean premixed swirl combustion is widely used in gas turbines and many other combustion Processes due to the benefits of good flame stability and blow off limits coupled with low NOx emissions. Although flashback is not generally a problem with natural gas combustion there are some reports of flashback damage with existing gas turbines whilst hydrogen enriched fuel blends especially those derived from gasification of coal and/or biomass/industrial processes such as steel making cause concerns in this area. Thus this paper describes a practical experimental approach to study and reduce the effect of flashback in a compact design of generic swirl burner representative of many systems. A range of different fuel blends are investigated for flashback and blow off limits; these fuel mixes include methane methane/hydrogen blends pure hydrogen and coke oven gas. Swirl number effects are investigated by varying the number of inlets or the configuration of the inlets. The well known Lewis and von Elbe critical boundary velocity gradient expression is used to characterise flashback and enable comparison to be made with other available data. Two flashback phenomena are encountered here. The first one at lower swirl numbers involves flashback through the outer wall boundary layer where the crucial parameter is the critical boundary velocity gradient Gf. Values of Gf are of similar magnitude to those reported by Lewis and von Elbe for laminar flow conditions and it is recognised that under the turbulent flow conditions pertaining here actual gradients in the thin swirl flow boundary layer are much higher than occur under laminar flow conditions. At higher swirl numbers the central recirculation zone (CRZ) becomes enlarged and extends backwards over the fuel injector to the burner baseplate and causes flashback to occur earlier at higher velocities. This extension of the CRZ is complex being governed by swirl number equivalence ratio and Reynolds Number. Under these conditions flashback occurs when the cylindrical flame front surrounding the CRZ rapidly accelerates outwards to the tangential inlets and beyond especially with hydrogen containing fuel mixes. Conversely at lower swirl numbers with a modified exhaust geometry hence restricted CRZ flashback occurs through the outer thin boundary layer at much lower flow rates when the hydrogen content of the fuel mix does not exceed 30%. The work demonstrates that it is possible to run premixed swirl burners with a wide range of hydrogen fuel blends so as to substantially minimise flashback behaviour thus permitting wider used of the technology to reduce NOx emissions.
Monte-Carlo-Analysis of Minimum Burst Requirements for Composite Cylinders for Hydrogen Service
Sep 2021
Publication
For achieving Net Zero-aims hydrogen is an indispensable component probably the main component. For the usage of hydrogen a wide acceptance is necessary which requires trust in hydrogen based on absence of major incidents resulting from a high safety level. Burst tests stand for a type of testing that is used in every test standard and regulation as one of the key issues for ensuring safety in use. The central role of burst and proof test is grown to historical reasons for steam engines and steel vessels but - with respect for composite pressure vessels (CPVs) - not due an extraordinary depth of outcomes. Its importance results from the relatively simple test process with relatively low costs and gets its importance by running of the different test variations in parallel. In relevant test und production standards (as e. g. ECE R134) the burst test is used in at least 4 different meanings. There is the burst test on a) new CPVs and some others b) for determining the residual strength subsequent to various simulations of ageing effects. Both are performed during the approval process on a pre-series. Then there is c) the batch testing during the CPVs production and finally d) the 100% proof testing which means to stop the burst test at a certain pressure level. These different aspects of burst tests are analysed and compared with respect to its importance for the resulting safety of the populations of CPVs in service based on experienced test results and Monte-Carlo simulations. As main criterial for this the expected failure rate in a probabilistic meaning is used. This finally ends up with recommendations for relevant RC&S especially with respect to GTR 13."
Safety Design and Engineering Solution of Fuel Cell Powered Ship in Inland Waterway of China
Oct 2021
Publication
From the perspective of risk control when hydrogen fuel and fuel cells are used on ships there is a possibility of low-flash fuel leakage leading to the risk of explosion. Since the fuel cell space (cabin for fuel cell installations) is an enclosed space any small amount of leakage must be handled properly. In ship design area classification is a method of analyzing and classifying the areas where explosive gas atmospheres may occur. If the fuel cell space is regarded as a hazardous area all the electrical devices inside it must be explosion-proof type which will make the ship’s design very difficult. This paper takes a Chinese fuel cell powered ship as an example to analyze its safety. Firstly the leakage rates of fuel cell modules valves and connectors are calculated. Secondly the IEC60079-10-1 algorithm is used to calculate the risk level of the fuel cell space. Finally the ship and fuel cells are optimized and redesigned and the risk level of the fuel cell space is recalculated and compared. The result shows that the optimized fuel space risk level could be reduced to the level of the non-hazardous zone.
On the Evaluation of ALD TiO 2 , ZrO 2 and HfO 2 Coatings on Corrosion and Cytotoxicity Performances
May 2021
Publication
Magnesium alloys have been widely studied as materials for temporary implants but their use has been limited by their corrosion rate. Recently coatings have been proven to provide an effective barrier. Though only little explored in the field Atomic Layer Deposition (ALD) stands out as a coating technology due to the outstanding film conformality and density achievable. Here we provide first insights into the corrosion behavior and the induced biological response of 100 nm thick ALD TiO2 HfO2 and ZrO2 coatings on AZ31 alloy by means of potentiodynamic polarization curves electrochemical impedance spectroscopy (EIS) hydrogen evolution and MTS colorimetric assay with L929 cells. All three coatings improve the corrosion behavior and cytotoxicity of the alloy. Particularly HfO2 coatings were characterized by the highest corrosion resistance and cell viability slightly higher than those of ZrO2 coatings. TiO2 was characterized by the lowest corrosion improvements and though generally considered a biocompatible coating was found to not meet the demands for cellular applications (it was characterized by grade 3 cytotoxicity after 5 days of culture). These results reveal a strong link between biocompatibility and corrosion resistance and entail the need of taking the latter into consideration in the choice of a biocompatible coating to protect degradable Mg-based alloys.
Numerical Simulations of Atmospheric Dispersion of Large-scale Liquid Hydrogen Releases
Sep 2021
Publication
Numerical simulations have been conducted for LH2 massive releases and the subsequent atmospheric dispersion using an in-house modified version of the open source computational fluid dynamics (CFD) code OpenFOAM. A conjugate heat transfer model has been added for heat transfer between the released LH2 and the ground. Appropriate interface boundary conditions are applied to ensure the continuities of temperature and heat fluxes. The significant temperature difference between the cryogenic hydrogen and the ground means that the released LH2 will instantly enter in a boiling state resulting in a hydrogen- air gaseous cloud which will initially behave like a dense gas. Numerical predictions have been conducted for the subsequent atmospheric dispersion of the vaporized LH2 for a series of release scenarios - with and without retention pits - to limit the horizontal spread of the LH2 on the ground. The considered cases included the instantaneous release of 1 10 and 50 tons of LH2 under neutral (D) and stable (F) weather conditions. More specifically 3F and 5D conditions were simulated with the former representing stable weather conditions under wind speed of 3 m/s at 10 m above the ground and the later corresponding to neutral weather conditions under 5 m/s wind speed (10 m above the ground). Specific numerical tests have also been conducted for selected scenarios under different ambient temperatures from 233 up to 313 K. According to the current study although the retention pit can extend the dispersion time it can significantly reduce the extent of hazards due to much smaller cloud size within both the flammability and explosion limits. While the former has negative impact on safety the later is beneficial. The use of retention pit should hence be considered with caution in practical applications.
Numerical Simulation of Hydrogen Leakage and Diffusion Process of Fuel Cell Vehicle
Oct 2021
Publication
Regarding the problem of hydrogen diffusion of the fuel cell vehicle (HFCV) when its hydrogen supply system leaks this research uses the FLUENT software to simulate numerical values in the process of hydrogen leakage diffusion in both open space and closed space. This paper analyzed the distribution range and concentration distribution characteristics of hydrogen in these two different spaces. Besides this paper also took a survey about the effects of leakage rate wind speed wind direction in open space and the role the air vents play on hydrogen safety in closed space which provides a reference for the hydrogen safety of HFCV. In conclusion the experiment result showed that: In open space hydrogen leakage rate has a great influence on its diffusion. When the leakage rate doubles the hydrogen leakage range will expand about 1.5 times simultaneously. The hydrogen diffusion range is the smallest when the wind blows at 90 degrees which is more conducive to hydrogen diffusion. However when the wind direction is against the direction of the leakage of hydrogen the range of hydrogen distribution is maximal. Under this condition the risk of hydrogen leakage is highest. In an enclosed space when the vent is set closest to the leakage position the volume fraction of hydrogen at each time is smaller than that at other positions so it is more beneficial to safety.
Why Ultrasonic Gas Leak Detection?
Sep 2021
Publication
Technologies that have traditionally been used in fixed installations to detect hydrogen gas leaks such as Catalytic and Electrochemical Point Sensors have one limitation: in order for a leak to be detected the gas itself must either be in close proximity to the detector or within a pre-defined area. Unfortunately outdoor environmental conditions such as changing wind directions and quick dispersion of the gas cloud from a leaking outdoor installation often cause that traditional gas detection systems may not alert to the presence of gas simply because the gas never reaches the detector. These traditional gas detection systems need to wait for the gas to form a vapor cloud which may or may not ignite and which may or may not allow loss prevention by enabling shutting down the gas facility in time. Ultrasonic Gas Leak Detectors (UGLD) respond at the speed of sound at gas leak initiation unaffected by changing wind directions and dilution of the gas. Ultrasonic Gas Leak Detectors are based on robust microphone technology; they detect outdoor leaks by sensing the distinct high frequency ultrasound emitted by all high pressure gas leaks. With the ultrasonic sensing technology leaking gas itself does not have to reach the sensor – just the sound of the gas leaking. By adding Ultrasonic Gas Leak Detectors for Hydrogen leak detection faster response times and lower operation costs can be obtained.
Investigation into the Cross-sensitivity of Domestic Carbon Monoxide Alarms to Hydrogen
Sep 2021
Publication
Preliminary research suggests domestic carbon monoxide detectors with an electrochemical sensor are approximately 10 -20% sensitive to hydrogen atmospheres in their factory configuration. That is the display on a carbon monoxide detector would give a carbon monoxide reading of approximately 10-20% of the concentration of hydrogen it is exposed to. Current British standards require detectors to sound an alarm within three minutes when subjected to a continuous concentration of ≥ 300 ppm CO. This would equate to a concentration of 1500-3000 ppm hydrogen in air or approximately 3.75 – 7% %LEL. The current evacuation criteria for a natural gas leak in a domestic property is 20 %LEL indicating that standard carbon monoxide detectors could be used as cheap and reliable early warning systems for hydrogen leaks. Given the wide use of carbon monoxide detectors and the affordability of the devices the use of carbon monoxide detectors for hydrogen detection is of particular interest as the UK drives towards energy decarbonisation. Experiments to determine the exact sensitivity of a range of the most common domestic carbon monoxide detectors have been completed by DNV Spadeadam Research & Testing. Determining the effects of repeated exposure to varying concentrations of hydrogen in air on the sensitivity of electrochemical sensors allows recommendations to be made on their adoption as hydrogen detectors. Changing the catalysts used within the electrochemical cell would improve the sensitivity to hydrogen however simply calibrating the sensor to report a concentration of hydrogen rather than carbon monoxide would represent no additional costs to manufacturers. Having determined the suitability of such sensors at an early stage; the technology can then be linked with other technological developments required for the change to hydrogen for domestic heating (e.g. change in metering equipment and appliances). This report finds that from five simple and widely available carbon monoxide detectors the lowest sensitivity to hydrogen measured at the concentration required to sound an alarm within three minutes was approximately 10%. It was also discovered that as the hydrogen concentration was increased over the range tested the sensitivity to hydrogen also increased. It is proposed that coupling these devices with other elements of the domestic gas system would allow actions such as remote meter isolation or automatic warning signals sent to response services would provide a reliable and inherently safe system for protecting occupants as gas networks transition to net-zero greenhouse gas emissions. In this respect it is noted that wireless linking of smoke and heat detectors for domestic application is already widely available in low-cost devices. This could be extended to CO detectors adapted for hydrogen use.
The Effect of Symmetrically Tilt Grain Boundary of Aluminum on Hydrogen Diffusion
Feb 2022
Publication
High-strength aluminum alloys are widely used in industry. Hydrogen embrittlement greatly reduces the performance and service safety of aluminum alloys. The hydrogen traps in aluminum profoundly affect the hydrogen embrittlement of aluminum. Here we took a coincidence-site lattice (CSL) symmetrically tilted grain boundary (STGB) Σ5(120)[001] as an example to carry out molecular dynamics (MD) simulations of hydrogen diffusion in aluminum at different temperatures and to obtain results and rules consistent with the experiment. At 700 K three groups of MD simulations with concentrations of 0.5 2.5 and 5 atomic % hydrogen (at. % H) were carried out for STGB models at different angles. By analyzing the simulation results and the MSD curves of hydrogen atoms we found that in the low hydrogen concentration of STGB models the grain boundaries captured hydrogen atoms and hindered their movement. In high-hydrogen-concentration models the diffusion rate of hydrogen atoms was not affected by the grain boundaries. The analysis of the simulation results showed that the diffusion of hydro-gen atoms at the grain boundary is anisotropic.
Safety Planning for Hydrogen and Fuel Cell Projects
Jul 2019
Publication
The document provides information on safety planning monitoring and reporting for the concerned hydrogen and fuel cell projects and programmes in Europe. It does not replace or contradict existing regulations which prevails under all circumstances. Neither is it meant to conflict with relevant international or national standards or to replace existing company safety policies codes and procedures. Instead this guidance document aims to assist in identifying minimum safety requirements hazards and associated risks and in generating a quality safety plan that will serve as an assisting guide for the inherently safer conduct of all work related to the development and operation of hydrogen and fuel cell systems and infrastructure. A safety plan should be revisited periodically as part of an overall effort to pay continuous and priority attention to the associated safety aspects and to account for all modifications of the considered system and its operations. Potential hazards failure mechanisms and related incidents associated with any work process or system should always be identified analysed reported (recorded in relevant knowledge databases e.g. HIAD 2.0 or HELLEN handbooks papers etc.) and eliminated or mitigated as part of sound safety planning and comprehensive hydrogen safety engineering which extends beyond the recommendations of this document. All relevant objects or aspects that may be adversely affected by a failure should be considered including low frequency high consequences events. So the general protection objective is to exclude or at least minimise potential hazards and associated risks to prevent impacts on the following:
- People. Hazards that pose a risk of injury or loss of life to people must be identified and eliminated or mitigated. A complete safety assessment considers not only those personnel who are directly involved in the work but also others who are at risk due to these hazards.
- Property. Damage to or loss of equipment or facilities must be prevented or minimised. Damage to equipment can be both the cause of incidents and the result of incidents. An equipment failure can result in collateral damage to nearby equipment and property which can then trigger additional equipment failures or even lead to additional hazards and risks e.g. through the domino effect. Effective safety planning monitoring and reporting considers and minimises serious risk of equipment and property damage.
- Environment. Damage to the environment must be prevented. Any aspect of a natural or the built environment which can be harmed due to a hydrogen system or infrastructure failure should be identified and analysed. A qualification of the failure modes resulting in environmental damage must be considered.
Fire Safety of Hydrogen-Fuelled Vehicles- System-Level Bonfire Test
Sep 2005
Publication
The European Community requires a vehicle-level bonfire test for vehicles using plastic fuel tanks for conventional fuels (ECE R-34 Annex 5). A similar test could be applied to hydrogen-fuelled vehicles. It would test a realistic vehicle with its complete fuel and safety systems. An advantage of such a test is that the same test could be applied independent of the hydrogen storage technology (compressed gas liquid or hydride). There are currently standards for bonfire testing of a bare Compressed Natural Gas (CNG) tank and its Pressure Relief Device (PRD). This standard is FMVSS 304 in the U.S. and ISO 15869-1 in Europe. Japan has a similar standard. It requires that a bare tank and its associated PRD be subjected to a propane flame for 20 minutes. The tank must either survive or safely vent its contents. No modern composite wound tank is expected to survive for 20 minutes – so this is not a tank test but really a PRD test. The test procedure requires the PRD to be shielded from direct impingement of the flames – but the shield is not well specified. If it shields the PRD too well the PRD will not activate and the tank will burst. This paper describes the results of a CNG and a hydrogen tank burst from such tests. The mechanical energy released is enormous. It is simply unacceptable to allow the tank to burst – the PRD and venting system must work. Organizations in the U.S Europe and Japan are in the process of modifying the CNG tank bonfire test for compressed hydrogen storage. A bare tank with a single PRD is not a good simulation of a hydrogen fuel system installed in an actual vehicle. There will usually be multiple tanks plumbed together at either the tank pressure or at the intermediate pressure (after the pressure regulator). There may be more than one PRD. The tank may be shielded (from debris) or insulated to protect it from an underbody pool fire. Also the heat transfer from the simulated pool fire (propane flame) will be very different when mounted in a vehicle versus the bare tank test. A vehicle-level pool fire test will alleviate these problems. It is therefore recommended that the bare tank test be replaced by or augmented with a vehicle-level bonfire test similar to ECE R-34 Annex 5.
Australians’ Considerations for Use of Hydrogen in the Transport Sector
Sep 2019
Publication
Hydrogen fuel cells power a range of vehicles including cars buses trucks forklifts and even trains. As fuel cell electric vehicles emit no carbon emissions and only produce water vapor as a by-product they present an attractive option for countries who are experiencing high pollution from transport. This paper presents the findings of ten focus groups and a subset of a national survey which focused specifically on use of hydrogen in the transport sector (N=948). When discussing hydrogen transport options Australian focus group participants felt that rolling out hydrogen fuel cell buses as a first step for fuel cell electric vehicle deployment would be a good way to increase familiarity with the technology. Deploying hydrogen public transport vehicles before personal vehicles was thought to be a positive way to demonstrate the safe use of hydrogen and build confidence in the technology. At the same time it was felt it would allow any issues to be ironed out before the roll out of large-scale infrastructure on a to support domestic use. Long haul trucks were also perceived to be a good idea however safety issues were raised in the focus groups when discussing these vehicles. Survey respondents also expressed positive support for the use of hydrogen fuel cell buses and long-haul trucks. They reported being happy to be a passenger in a fuel cell bus. Safety and environmental benefits remained paramount with cost considerations being the third most important issue. Respondents supportive of hydrogen technologies were most likely to report purchasing a hydrogen vehicle over other options
Overview on Hydrogen Risk Research and Development Activities: Methodology and Open Issues
Jan 2015
Publication
During the course of a severe accident in a light water nuclear reactor large amounts of hydrogen can be generated and released into the containment during reactor core degradation. Additional burnable gases [hydrogen (H2) and carbon monoxide (CO)] may be released into the containment in the corium/concrete interaction. This could subsequently raise a combustion hazard. As the Fukushima accidents revealed hydrogen combustion can cause high pressure spikes that could challenge the reactor buildings and lead to failure of the surrounding buildings. To prevent the gas explosion hazard most mitigation strategies adopted by European countries are based on the implementation of passive autocatalytic recombiners (PARs). Studies of representative accident sequences indicate that despite the installation of PARs it is difficult to prevent at all times and locations the formation of a combustible mixture that potentially leads to local flame acceleration. Complementary research and development (R&D) projects were recently launched to understand better the phenomena associated with the combustion hazard and to address the issues highlighted after the Fukushima Daiichi events such as explosion hazard in the venting system and the potential flammable mixture migration into spaces beyond the primary containment. The expected results will be used to improve the modeling tools and methodology for hydrogen risk assessment and severe accident management guidelines. The present paper aims to present the methodology adopted by Institut de Radioprotection et de Suˆ rete Nucleaire to assess hydrogen risk in nuclear power plants in particular French nuclear power plants the open issues and the ongoing R&D programs related to hydrogen distribution mitigation and combustion.
Flame Acceleration and Deflagration-to-Detonation Transition in Hydrogen-Oxygen Mixture in a Channel with Triangular Obstacles
Sep 2021
Publication
Study of flame acceleration and deflagration-to-detonation transition (DDT) in obstructed channels is an important subject of research for hydrogen safety. Experiments and numerical simulations of DDT in channels equipped with triangular obstacles were conducted in this work. High-speed schlieren photography and pressure records were used to study the flame shape changes flame propagation and pressure build up in the experiments. In the simulations the fully compressible reactive Navier–Stokes equations coupled with a calibrated chemical-diffusion model for stoichiometric hydrogen-oxygen mixture were solved using a high-order numerical method. The simulations were in good agreement with the experiments. The results show that the triangular obstacles significantly promote the flame acceleration and provide conditions for the occurrence of DDT. In the early stages of flame acceleration vortices are generated in the gaps between adjacent obstacles which is the main cause for the flame roll-up and distortion. A positive feedback mechanism between the combustiongenerated flow and flame propagation results in the variations of the size and velocity of vortices. The flame-vortex interactions cause flame fragmentation and consequently rapid growth in flame surface area which further lead to flame acceleration. The initially laminar flame then develops into a turbulent flame with the creation of shocks shock-flame interactions and various flame instabilities. The continuously arranged obstacles interact with shocks and flames and help to create environments in which a detonation can develop. Both flame collision and flame-shock interaction can give rise to detonation in the channels with triangular obstacles.
No more items...