Safety
Heat Radiation of Burning Hydrogen Air Mixtures Impurified by Organic Vapour and Particles
Sep 2007
Publication
Experiments were performed to investigate the radiative heat emission of small scale hydrogen/air explosions also impurified by minor amounts of inert particles and organic fuels. A volume of 1.5 dm3 hydrogen was injected into ambient air as free-jet and ignited. In further experiments simultaneously inert Aerosil and combustible fuels were injected into the blasting hydrogen/air gas cloud. Fuels were a spray of a solvent (Dipropyleneglycol-methylether) and dispersed particles (milk powder). The combustion was observed with a DV camcorder an IR camera and two different fast scanning spectrometers in NIR and IR range using a sampling rate of 100 spectra/s. The intensity calibrated spectra were analyzed using ICT-BaM code to evaluate emission temperature and intensity of H2O CO2 CO NO and soot emission. Using the same code combined with the experimental results total heat emission of such explosions was estimated.
Development of Risk Mitigation Guidance for Sensor Placement Inside Mechanically Ventilated Enclosures – Phase 1
Sep 2019
Publication
Guidance on Sensor Placement was identified as the top research priority for hydrogen sensors at the 2018 HySafe Research Priority Workshop on hydrogen safety in the category Mitigation Sensors Hazard Prevention and Risk Reduction. This paper discusses the initial steps (Phase 1) to develop such guidance for mechanically ventilated enclosures. This work was initiated as an international collaborative effort to respond to emerging market needs related to the design and deployment equipment for hydrogen infrastructure that is often installed in individual equipment cabinets or ventilated enclosures. The ultimate objective of this effort is to develop guidance for an optimal sensor placement such that when integrated into a facility design and operation will allow earlier detection at lower levels of incipient leaks leading to significant hazard reduction. Reliable and consistent early warning of hydrogen leaks will allow for the risk mitigation by reducing or even eliminating the probability of escalation of small leaks into large and uncontrolled events. To address this issue a study of a real-world mechanically ventilated enclosure containing GH2 equipment was conducted where CFD modelling of the hydrogen dispersion (performed by AVT and UQTR and independently by the JRC) was validated by the NREL Sensor laboratory using a Hydrogen Wide Area Monitor (HyWAM) consisting of a 10-point gas and temperature measurement analyzer. In the release test helium was used as a hydrogen surrogate. Expansion of indoor releases to other larger facilities (including parking structures vehicle maintenance facilities and potentially tunnels) and incorporation into QRA tools such as HyRAM is planned for Phase 2. It is anticipated that results of this work will be used to inform national and international standards such as NFPA 2 Hydrogen Technologies Code Canadian Hydrogen Installation Code (CHIC) and relevant ISO/TC 197 and CEN documents.
Safety Strategy for the First Deployment of a Hydrogen- Based Green Public Building in France
Sep 2011
Publication
HELION a subsidiary of AREVA in charge of the business unit Hydrogen and energy storage is deploying for the first time in a French public building a hydrogen-based energy storage system the Greenergy Box™. The 50 kWe system is coupled with a photovoltaic farm to ensure up to 45% electrical autonomy and power backup to the building. The safety system and siting measures of the complete hydrogen chain are described. The paper also highlights the work accomplished with Fire Authorities and Public to gain the acceptance of the project and allow the deployment of four other hydrogen-based green buildings.
Study of Hydrogen Diffusion and Deflagration in a Closed System
Sep 2007
Publication
A total of 12 ventilation experiments with various combinations of hydrogen release rates and ventilation speeds were performed in order to study how ventilation speed and release rate effect the hydrogen concentration in a closed system. The experiential facility was constructed out of steel plates and beams in the shape of a rectangular enclosure. The volume of the test facility was about 60m3. The front face of the enclosure was covered by a plastic film in order to allow visible and infrared cameras to capture images of the flame. The inlet and outlet vents were located on the lower front face and the upper backside panel respectively. Hydrogen gas was released toward the ceiling from the center of the floor. The hydrogen gas was released at constant rate in each test. The hydrogen release rate ranged from 0.002 m3/s to 0.02 m3/s. Ventilation speeds were 0.1 0.2 and 0.4 m3/s respectively. Ignition was attempted at the end of the hydrogen release by using multiple continuous spark ignition modules on the ceiling and next to the release point. Time evolution of hydrogen concentration was measured using evacuated sample bottles. Overpressure and impulse inside and outside the facility were also measured. The mixture was ignited by a spark ignition module mounted on the ceiling in eight of eleven tests. In the other three tests the mixture was ignited by spark ignition modules mounted next to the nozzle. Overpressures generated by the hydrogen deflagration in most of these tests were low and represented a small risk to people or property. The primary risk associated with the hydrogen deflagrations studied in these tests was from the fire. The maximum concentration is proportional to the ratio of the hydrogen release rate to the ventilation speed within the range of parameters tested. Therefore a required ventilation speed can be estimated from the assumed hydrogen leak rate within the experimental conditions described in this paper.
Effects of Chemical Kinetics on Ignition of Hydrogen Jets
Sep 2013
Publication
During the early phase of the transient process following a hydrogen leak into the atmosphere a contact surface appears separating air heated by the leading shock from hydrogen cooled by expansion. Locally the interface is approximately planar. Diffusion leads to a temperature decrease on the air side and an increase in the hydrogen-filled region and mass diffusion of hydrogen into air and of air into hydrogen potentially resulting in ignition. This process was analyzed by Li ˜nan and Crespo [1] for unity Lewis number and Li ˜nan and Williams [2] for Lewis number less than unity. We included in the analysis the effect of a slow expansion [3 4] leading to a slow drop in temperature which occurs in transient jets. Chemistry being very temperature-sensitive the reaction rate peaks close to the hot side of the interface where only a small fuel concentration present close to the warm air-rich side which depends crucially upon the fuel Lewis number. For Lewis number unity the fuel concentration due to diffusion is comparable to the rate of consumption by chemistry. If the Lewis number is less than unity diffusion brings in more fuel than temperature-controlled chemistry consumes. For a Lewis number greater than unity diffusion is not strong enough to bring in as much fuel as chemistry would burn; combustion is controlled by fuel diffusion. If the temperature drop due to expansion associated with the multidimensional jet does not lower significantly the reaction rate up to that point analysis shows that ignition in the jet takes place. For fuel Lewis number greater than unity chemistry does not lead to a defined explosion so that eventually expansion will affect the process; ignition does not take place [3 4]. In the current paper these results are extended to consider multistep chemical kinetics but for otherwise similar assumptions. High activation energy is no longer applicable. Instead results are obtained in the short time limit still as a perturbation superimposed to the self-similar solution to the chemically frozen diffusion solution. In that approximation the initiation step which consumes fuel and oxidant is taken to be slow compared with steps that consume one of the reactants and an intermediate species. The formulation leads to a two point boundary value problem for set of coupled rate equations plus an energy equation for perturbations. These equations are linear with variable co-effcients. The coupled problem is solved numerically using a split algorithm in which chemical reaction is solved for frozen diffusion while diffusion is solved for frozen chemistry. At each time step the still coupled linear problem is solved exactly by projecting onto the eigenmodes of the stiff matrix so that the solution is unaffected by stiffness. Since in the short time limit temperature is only affected at the perturbation level the matrix depends only on the similarity variable x t but it is otherwise time-independent. As a result determination of the eigenvalues and eigenvectors is only done once (using Maple) for the entire range of discretized values of the similarity variable. The diffusion problem consists of a set of independent equations for each species. Each of these is solved using orthogonal decomposition onto Hermite polynomials for the homogeneous part plus a particular solution proportional to time for the non-homogeneous (source) terms. That approach can be implemented for different kinetic schemes.
Thermal Radiation Properties of Large Hydrogen Leaks from Gas Distribution Networks
Sep 2019
Publication
Determination of the behaviour of hydrogen when leaking from pipework on gas distribution assets is essential in assessing the comparative risk associated with using pure hydrogen in place of natural gas in existing assets. Experimental work considering the behaviour of gaseous hydrogen when released in large volumes from gas distribution pipework at pressures of up to 7 barg through holes of up to 200mm in diameter in both buried and unburied scenarios is currently underway. The present paper presents and briefly discusses the results from a set of ignited 20mm diameter releases of hydrogen at pressures up to 7 barg vertically upwards from a pipe in an open excavation. Gaseous releases which find a direct route to atmosphere have the potential to create significant volumes of flammable gas and subsequently significant fires in the case of ignition. It is important to understand both the dispersion distances and thermal hazard field to be able to understand the comparative risk posed when compared to natural gas releases in similar situations. Results of current work completed to date are presented alongside comparisons with known properties of natural gas releases and the potential implications to the comparative risk of hydrogen network operation. The work has been conducted at the DNV GL Spadeadam Testing and Research Centre UK as part of the UK Gas Distribution Networks and Ofgem National Innovation Competition funded H21 project.
Hydrogen Storage - Recent Improvements and Industrial Prospectives
Sep 2013
Publication
This paper gives a historical and technical overview of hydrogen storage vessels and details the specific issues and constraints of hydrogen energy uses. Hydrogen as an industrial gas is stored either as a compressed or as a refrigerated liquefied gas. Since the beginning of the last century hydrogen is stored in seamless steel cylinders. At the end of the 60s tubes also made of seamless steels were used; specific attention was paid to hydrogen embrittlement in the 70s. Aluminum cylinders were also used for hydrogen storage since the end of the 60s but their cost was higher compared to steel cylinders and smaller water capacity. To further increase the service pressure of hydrogen tanks or to slightly decrease the weight metallic cylinders can be hoop-wrapped. Then with specific developments for space or military applications fully-wrapped tanks started to be developed in the 80s. Because of their low weight they started to be used in for portable applications for vehicles (on-board storages of natural gas) for leisure applications (paint-ball) etc… These fully-wrapped composite tanks named types III and IV are now developed for hydrogen energy storage; the requested pressure is very high (from 700 to 1 000 bar) leads to specific issues which are discussed. Each technology is described in term of materials manufacturing technologies and approval tests. The specific issues due to very high pressure are depicted. Hydrogen can also be stored in liquid form (refrigerated liquefied gases). The first cryogenic vessels were used in the 60s. In the following the main characteristics of this type of storage will be indicated.
Dependence of Hydrogen Embrittlement on Hydrogen in the Surface Layer in Type 304 Stainless Steel
Sep 2013
Publication
Hydrogen embrittlement (HE) together with the hydrogen transport behaviour in hydrogen-charged type 304 stainless steel was investigated by combined tension and outgassing experiments. The hydrogen release rate and HE of hydrogen-charged 304 specimens increase with the hydrogen pressure for hydrogen-charging (or hydrogen content) and almost no HE is observed below the hydrogen content of 8.5 mass ppm. Baking at 433 K for 48 h can eliminate HE of the hydrogen-charged 304 specimen while removing the surface layer will restore HE which indicates that hydrogen in the surface layer plays the primary role in HE. Scanning electron microscopy (SEM) and scanning tunnel microscopy (STM) observations show that particles attributed to the strain-induced α′ martensite formation break away from the matrix and the small holes form during deformation on the specimen surface. With increasing strain the connection among small holes along {111} slip planes of austenite will cause crack initiation on the surface and then the hydrogen induced crack propagates from the surface to interior.
Experimental Study of the Effects of Vent Geometry on the Dispersion of a Buoyant Gas in a Small Enclosure
Sep 2011
Publication
We present an experimental study on the dispersion of helium in an enclosure of 1 m3 with natural ventilation through one vent. Three vent geometries have been studied. Injection parameters have been varied so that the injection Richardson number ranges from 2·10−6 to 9 and the volume Richardson number which gives the ability of the release to mix the enclosure content ranges from 8·10−4 to 900. It has been found that the vertical distribution of helium volume fraction can exhibit significant gradient. Nevertheless the results are compared to the simple analytical model based on the homogenous mixture hypothesis which gives fairly good estimates of the maximum helium volume fraction.
A Study of Decrease Burst Strength on Compressed-hydrogen Containers by Drop Test
Sep 2019
Publication
We investigate an appropriate initial burst pressure of compressed hydrogen containers that correlates with a residual burst pressure requirement at the end of life (EOL) and report an influence of hydraulic sequential tests on residual burst pressure. Results indicate that a container damage caused by a drop test during hydraulic sequential tests has a large influence on burst pressure. The container damage induced through hydraulic sequential tests is investigated using non-destructive evaluations to clarify a strength decreasing mechanism. An ultrasonic flaw detection analysis is conducted before and after the drop test and indicated that the damage occurred at the cylindrical and dome parts of the container after the drop test. An X-ray computed tomography imaging identifies a delamination inside laminated structure made of carbon fiber reinforced plastics (CFRP) layer with some degree of delamination reaching the end boss of the container. Results suggest that a load profile fluctuates in the CFRP layer at the dome part and that a burst strength of the dome part decreases. Therefore an observed decreasing in drop damage at the dome part can be used to prevent a degradation of EOL container burst strength.
Hydrogen Safety- New Challenges Based on BMW Hydrogen 7
Sep 2007
Publication
The BMW Hydrogen 7 is the world’s first premium sedan with a bi-fuelled internal combustion engine concept that has undergone the series development process. This car also displays the BMW typical driving pleasure. During development the features of the hydrogen energy source were emphasized. Engine tank system and vehicle electronics were especially developed as integral parts of the vehicle for use with hydrogen. The safety-oriented development process established additional strict hydrogen-specific standards for the Hydrogen 7. The fulfilment of these standards were demonstrated in a comprehensive experimentation and testing program which included all required tests and a large number of additional hydrogen-specific crash tests such as side impacts to the tank coupling system or rear impacts. Furthermore the behaviour of the hydrogen tank was tested under extreme conditions for instance in flames and after strong degradation of the insulation. Testing included over 1.7 million km of driving; and all tests were passed successfully proving the intrinsic safety of the vehicle and also confirming the success of the safety-oriented development process which is to be continued during future vehicle development. A safety concept for future hydrogen vehicles poses new challenges for vehicles and infrastructure. One goal is to develop a car fuelled by hydrogen only while simultaneously optimizing the safety concept. Another important goal is removal of (self-imposed) restrictions for parking in enclosed spaces such as garages. We present a vision of safety standards requirements and a program for fulfilling them.
Hydrogen Jet Fires in a Passively Ventilated Enclosure
Oct 2015
Publication
This paper describes a combined experimental analytical and numerical modelling investigation into hydrogen jet fires in a passively ventilated enclosure. The work was funded by the EU Fuel Cells and Hydrogen Joint Undertaking project Hyindoor. It is relevant to situations where hydrogen is stored or used indoors. In such situations passive ventilation can be used to prevent the formation of a flammable atmosphere following a release of hydrogen. Whilst a significant amount of work has been reported on unignited releases in passively ventilated enclosures and on outdoor hydrogen jet fires very little is known about the behaviour of hydrogen jet fires in passively ventilated enclosures. This paper considers the effects of passive ventilation openings on the behaviour of hydrogen jet fires. A series of hydrogen jet fire experiments were carried out using a 31 m3 passively ventilated enclosure. The test programme included subsonic and chocked flow releases with varying hydrogen release rates and vent configurations. In most of the tests the hydrogen release rate was sufficiently low and the vent area sufficiently large to lead to a well-ventilated jet fire. In a limited number of tests the vent area was reduced allowing under-ventilated conditions to be investigated. The behaviour of a jet fire in a passively ventilated enclosure depends on the hydrogen release rate the vent area and the thermal properties of the enclosure. An analytical model was used to quantify the relative importance of the hydrogen release rate and vent area whilst the influence of the thermal properties of the enclosure were investigated using a CFD model. Overall the results indicate that passive ventilation openings that are sufficiently large to safely ventilate an unignited release will tend to be large enough to prevent a jet fire from becoming under-ventilated.
Simulation of Hydrogen Dispersion under Cryogenic Release Conditions
Sep 2013
Publication
The use of hydrogen as fuel should always be accompanied by a safety assessment in case of an accidental release. To evaluate the potential hazards in a spill accident both experiments and simulations are performed. In the present work the CFD code ADREA-HF is used to simulate the liquefied hydrogen (LH2) spill experiments (test 5 6 7) conducted by the Health and Safety Laboratory (HSL). In these tests LH2 was spilled at a fixed rate of 60lt/min in several directions and for several durations. The factors that influence the vapor dispersion under cryogenic release conditions that were examined in this study are: the air humidity the wind direction and the slip effect of droplets formed by both the cryogenic liquid and the condensation of air humidity. The numerical results were compared with the experimental measurements and the effect of each abovementioned factors in the vapor dispersion is being discussed.
Numerical investigation of hydrogen leakage from a high pressure tank and pipeline
Sep 2017
Publication
We numerically investigated high-pressure hydrogen leakage from facilities in storage and transportation phases. In storage phase assuming a tank placed in a hydrogen station we examined unsteady diffusion distance up to 100 ms after leakage. A series of simulations led us to develop an equation of unsteady hydrogen diffusion distance as a function of mass flow rate leakage opening diameter and tank pressure. These results helped us develop a safety standard for unsteady hydrogen diffusion. In transportation phase we simulated (in three dimensions) the dominant factor of steady mass flow rate from a square opening of a rectangular pipeline and the pressure distribution in the pipeline after leakage. The mass flow rate was smaller than the maximum mass flow rate and the pressure distribution converged to a steady state that was 16% higher than the pressure after the passage of expansion waves in a shock tube model. We introduced a theoretical model by dividing the flow with the leakage opening into two phases of the unsteady expansion waves’ propagation and acceleration. The simulation results showed good agreement with the modeling equation when the shrink coefficient was set to 0.8. When the leakage opening was rectangular the simulation results again showed good agreement with the modelling equation suggesting that our simulated results are independent of the leakage opening shape.
Radiation from Hydrogen Jet Fires Investigated by Time-resolved Spectroscopy
Sep 2013
Publication
Jet fires develop on release of hydrogen from pressurized storage depending on orifice pressures and volumes. Risks arise from flame contact dispersion of hot gases and heat radiation. The latter varies strongly in time at short scales down to milliseconds caused by turbulent air entrainment and fluctuations. These jets emit bands of OH in the UV and water in the NIR and IR spectral range. These spectra enable the temperature measurement and the estimation of the air number of the measuring spot which can be used to estimate the total radiation at least from the bright combustion zones. Compared to video and IR camera frames the radiation enables to estimate species and temperatures distributions and total emissions. Impurities generate continuum radiation and the emission of CO2 in the IR indicates air entrainment which can be compared to CHEMKIN II calculation of the reaction with air.
Explosion Venting of Rich Hydrogen-air Mixtures in a Cylindrical Vessel with Two Symmetrical Vents
Oct 2015
Publication
The safety issues related to explosion venting of hydrogen-air mixtures are significant and deserve more detailed investigation. Vented hydrogen-air explosion has been studied extensively in vessels with a single vent. However little attention has been paid to the cases with more than one vent. In this paper experiments about explosion venting of rich hydrogen-air mixtures were conducted in a cylindrical vessel with two symmetrical vents to investigate the effect of vent area and distribution on pressure build up and flame behaviours. Venting accelerates the flame front towards the vent but has nearly no effect on the opposite side. The maximum internal overpressure decreases and the maximum external flame length increases with the increase of vent area. Two pressure peaks can be identified outside of vessel which correspond to the external explosion and the burnt gas jet respectively. Compared with single vent two vents with same total vent area leads to nearly unchanged maximum internal and external overpressure but much smaller external flame length.
Application of Risk Assessment Approach on a Hydrogen Station
Sep 2013
Publication
An accident modelling approach is used to assess the safety of a hydrogen station as part of a ground transportation network. The method incorporates prevention barriers associated to human factors management and organizational failures in a risk assessment framework. Failure probabilities of these barriers and end-states events are predicted using Fault Tree Analysis and Event Tree Analysis respectively. Results from the case study considered revealed the capability of the proposed method in estimating the likelihood of various outcomes as well as predicting the future probability. In addition the scheme offers opportunity to provide dynamic adjustment by updating the failure probability with actual plant data. Results from the analysis can be used to plan maintenance and management of change as required by the plant condition.
Polymer Behaviour in High Pressure Hydrogen, Helium and Argon Environments as Applicable to the Hydrogen Infrastructure
Sep 2017
Publication
Polymers for O-rings valve seats gaskets and other sealing applications in the hydrogen infrastructure face extreme conditions of high-pressure H2 (0.1 to 100 MPa) during normal operation. To fill current knowledge gaps and to establish standard test methods for polymers in H2 environments these materials can be tested in laboratory scale H2 manifolds mimicking end use pressure and temperature conditions. Beyond the influence of high pressure H2 the selection of gases used for leak detection in the H2 test manifold their pressures and times of exposure gas types relative diffusion and permeation rates are all important influences on the polymers being tested. These effects can be studied ex-situ with post-exposure characterization. In a previous study four polymers (Viton A Buna N High Density Polyethylene (HDPE) and Polytetrafluoroethylene (PTFE)) commonly used in the H2 infrastructure were exposed to high-pressure H2 (100 MPa). The observed effects of H2 were consistent with typical polymer property-structure relationships; in particular H2 affected elastomers more than thermoplastics. However since high pressure He was used for purging and leak detection prior to filling with H2 a study of the influence of the purge gas on these polymers was considered necessary to isolate the effects of H2 from those of the purge gas. Therefore in this study Viton A Buna N and PTFE were exposed to the He purge procedure without the subsequent H2 exposure. Additionally six polymers Viton A Buna N PTFE Polyoxymethylene (POM) Polyamide 11 (Nylon) and Ethylenepropylenediene monomer rubber (EPDM) were subjected to high pressure Ar (100 MPa) followed by high pressure H2 (100 MPa) under the same static isothermal conditions to identify the effect of a purge gas with a significantly larger molecular size than He. Viton A and Buna N elastomers are more prone to irreversible changes as a result of H2 exposure from both Ar and He leak tests as indicated by influences on storage modulus extent of swelling and increased compression set. EPDM even though it is an elastomer is not as prone to high-pressure gas influences. The thermoplastics are generally less influenced by high pressure regardless of the gas type. Conclusions from these experiments will provide insight into the influence of purging processes and purge gases on the subsequent testing in high pressure gaseous H2. Control for the influence of purging on testing results is essential for the development of robust test methods for evaluating the effects of H2 and other high-pressure gases on the properties of polymers.
Deploying Fuel Cell Systems, What Have We Learned
Sep 2013
Publication
The Hydrogen Safety Panel brings a broad cross-section of expertise from the industrial government and academic sectors to help advise the U.S. Department of Energy's (DOE) Fuel Cell Technologies Office through its work in hydrogen safety codes and standards. The Panel's initiatives in reviewing safety plans conducting safety evaluations identifying safety-related technical data gaps and supporting safety knowledge tools and databases cover the gamut from research and development to demonstration. The Panel's recent work has focused on the safe deployment of hydrogen and fuel cell systems in support of DOE efforts to accelerate fuel cell commercialization in early market applications: vehicle refuelling material handling equipment backup power for warehouses and telecommunication sites and portable power devices. This paper summarizes the work and learnings from the Panel's early efforts the transition to its current focus and the outcomes and conclusions from recent work on the deployment of hydrogen and fuel cell systems.
Experimental Investigation of Nozzle Aspect Ratio Effects on Under Expanded Hydrogen Jet Release Characteristics
Sep 2013
Publication
Most experimental investigations of underexpanded hydrogen jets have been limited to circular nozzles in an attempt to better understand the fundamental jet-exit flow physics and model this behaviour with pseudo source models. However realistic compressed storage leak exit geometries are not always expected to be circular. In the present study jet dispersion characteristics from rectangular slot nozzles with aspect ratios from 2 to 8 were investigated and compared with an equivalent circular nozzle. Schlieren imaging was used to observe the jet-exit shock structure while quantitative Planar Laser Rayleigh Scattering was used to measure downstream dispersion characteristics. These results provide physical insight and much needed model validation data for model development.
Hydrogen Storage – Industrial Prospectives
Sep 2011
Publication
The topic of this paper is to give an historical and technical overview of hydrogen storage vessels and to detail the specific issues and constraints of hydrogen energy uses. Hydrogen as an industrial gas is stored either as a compressed or as a refrigerated liquefied gas. Since the beginning of the last century hydrogen is stored in seamless steel cylinders. At the end of the 60 s tubes also made of seamless steels were used; specific attention was paid to hydrogen embrittlement in the 70 s. Aluminum cylinders were also used for hydrogen storage since the end of the 60 s but their cost was higher compared to steel cylinders and smaller water capacity. To further increase the service pressure of hydrogen tanks or to slightly decrease the weight metallic cylinders can be hoop-wrapped. Then with specific developments for space or military applications fully-wrapped tanks started to be developed in the 80 s. Because of their low weight they started to be used in for portable applications: for vehicles (on-board storages of natural gas) for leisure applications (paint-ball) etc… These fully-wrapped composite tanks named types III and IV are now developed for hydrogen energy storage; the requested pressure is very high (from 700 to 850 bar) leads to specific issues which are discussed. Each technology is described in term of materials manufacturing technologies and approval tests. The specific issues due to very high pressure are depicted. Hydrogen can also be stored in liquid form (refrigerated liquefied gases). The first cryogenic vessels were used in the 60s. In the following the main characteristics of this type of storage will be indicated.
What is an Explosion?
Sep 2013
Publication
We are going to focus our discussion on “Explosions” its definitions from a scientific regulatory and societal perspective. We will point out that as defined these definitions are not consistent and lead to ambiguity. Of particular interest to this work is how this current ambiguity affects the emerging Regulation Codes and Standards (RCS) as applied to hydrogen technologies. While this manuscript has its roots in combustion science with extension to both the standard development and regulatory communities for hazards at large the unique behavior of hydrogen in many configurations motivates examining the relevant definitions and language used in these communities. We will point out the ambiguities how this leads to confusion in supporting definitions and how it leads to overly restrictive RCS for hydrogen applications. We will then suggest terminology which is not ambiguous internally self-consistent and allows appropriate RCS to be promulgated to ensure the safety of the public and capital to ensure the correct response of first responders and allow cost effective development of hydrogen technologies in our infrastructure.
Material Testing and Design Recommendations for Components Exposed to Hydrogen Enhanced Fatigue – the Mathryce Project
Sep 2013
Publication
The three years European MATHRYCE project dedicated to material testing and design recommendations for components exposed to hydrogen enhanced fatigue started in October 2012. Its main goal is to provide an “easy” to implement methodology based on lab-scale experimental tests under hydrogen gas to assess the service life of a real scale component taking into account fatigue loading under hydrogen gas. Dedicated experimental tests will be developed for this purpose. In the present paper the proposed approach is presented and compared to the methodologies currently developed elsewhere in the world.
Experimental Investigation on Helium Jet Release and Distribution in a Vented Cylindrical Enclosure – Effect of Wall Temperature Conditions
Oct 2015
Publication
Hydrogen generated during core meltdown accidents in nuclear reactors can cause serious threat to the structural integrity of the containment and safe operation of nuclear power plants. The study of hydrogen release and mixing within the containments is an important area of safety research as hydrogen released during such accidents in nuclear power plants can lead to hydrogen explosions and catastrophic consequences. A small scale experimental setup called the AERB-IIT Madras Hydrogen Mixing Studies (AIHMS) facility is setup at IIT Madras to study the distribution of hydrogen subsequent to release as a jet followed by its response to various wall thermal conditions. The present paper gives details of the design fabrication and instrumentation of the AIHMS facility and a comparison of features of the facility with respect to other facilities existing for hydrogen mitigation studies. Then it gives details of the experiments conducted and the results of the preliminary experiments on concentration build-up as a result of injection of gases (air and helium) and effect of thermally induced natural convection on gas mixing performed in this experimental facility.
Cryogenic Hydrogen Jets: Flammable Envelope Size and Hazard Distances for Jet Fire
Sep 2019
Publication
Engineering tools for calculation of hazard distances for cryogenic hydrogen jets are currently missing. This study aims at the development of validated correlations for calculation of hazard distances for cryogenic unignited releases and jet fires. The experiments performed by Sandia National Laboratories (SNL) on jets from storage temperature in the range 46-295 K and pressure up to 6 bar abs are used to expand the validation domain of the correlations. The Ulster’s under-expanded jet theory is applied to calculate parameters at the real nozzle exit. The similarity law for concentration decay in momentum-dominated jets is shown to be capable to reproduce experimental data of SNL on 9 unignited cryogenic releases. The accuracy of the similarity law to predict experimentally measured axial concentration decay improves with the increase of the release diameter. This is thought due to decrease of the effect of friction and minor losses for large release orifices. The dimensionless flame length correlation is applied to analyse 30 cryogenic jet fire tests. The deviation of calculated flame length from measured in experiments is mostly within acceptable accuracy for engineering correlations 20% similarly to releases from storage and equipment at atmospheric temperatures. It is concluded that the similarity law and the dimensionless flame correlation can be used as universal engineering tools for calculation of hazard distances for hydrogen releases at any storage temperature including cryogenic.
A Turbulent Combustion Model for Ignition of Rapidly Expanding Hydrogen Jets
Mar 2013
Publication
A turbulent combustion model based on the Linear Eddy Model for Large Eddy Simulation (LEM- LES) is currently proposed to study self-ignition events of rapidly expanding hydrogen jets. The model is a one-dimensional treatment of a diffusion-reaction system within each multi-dimensional LES cell. This reduces the expense of solving a complete multi-dimensional problem while preserving micro-scale hotspots and their effects on ignition. The current approach features a Lagrangian description of fluid particles on the sub-grid for increased accuracy. Also Adaptive Mesh Refinement (AMR) is implemented for increased computational efficiency. In this paper the model is validated for various inviscid laminar 1-D mixing and ignition problems shock tube problems flames and detonations.
CFD Benchmark Based on Experiments of Helium Dispersion in a 1m3 Enclosure–intercomparisons for Plumes
Sep 2013
Publication
In the context of the French DIMITRHY project ANR-08-PANH006 experiments have been carried out to measure helium injections in a cubic 1 m3 box - GAMELAN in a reproducible and quantitative manner. For the present work we limit ourselves to the unique configuration of a closed box with a small hole at its base to prevent overpressure. This case leads to enough difficulties of modelisations to deserve our attention. The box is initially filled with air and injections of helium through a tube of diameter 20 mm is operated. The box is instrumented with catharometres to measure the helium volume concentration within an accuracy better than 0.1%. We present the CFD (Fluent and CASTEM ANSYS-CFX and ADREA-HF) calculations results obtained by 5 different teams participating to the benchmark in the following situation: the case of a plume release of helium in a closed box (4NL/min). Parts of the CFD simulations were performed in the European co-funded project HyIndoor others were performed in the French ANR-08-PANH006 DimitrHy project.
Hydrogen Storage: Recent Improvements and Industrial Perspectives
Sep 2017
Publication
Efficient storage of hydrogen is crucial for the success of hydrogen energy markets (early markets as well as transportation market). Hydrogen can be stored either as a compressed gas a refrigerated liquefied gas a cryo-compressed gas or in hydrides. This paper gives an overview of hydrogen storage technologies and details the specific issues and constraints related to the materials behaviour in hydrogen and conditions representative of hydrogen energy uses. It is indeed essential for the development of applications requiring long-term performance to have good understanding of long-term behaviour of the materials of the storage device and its components under operational loads.
Numerical Investigation on the Dispersion of Hydrogen Leaking from a Hydrogen Fuel Cell Vehicle in Seaborne Transportation
Oct 2015
Publication
The International Maritime Organization under the United Nations has developed safety requirements for seaborne transportation of hydrogen fuel cell vehicles in consideration of a recent increase in such transportation. Japan has led the development of new regulations in the light of some research outcomes including numerical simulations on hydrogen dispersion in a cargo space of a vehicle carrier in case of accidental leakage of hydrogen from the vehicle. Numerical results indicate that the region of space occupied by flammable hydrogen/air mixture strongly depends on the direction of ventilation openings. These findings have contributed to the development of new international regulations.
Numerical Modelling of Hazards of Hydrogen Storage
Sep 2017
Publication
For the general public to use hydrogen as a vehicle fuel they must be able to handle hydrogen with the same degree of confidence as conventional liquid and gaseous fuels. The hazards associated with jet releases from accidental leaks in a vehicle-refuelling environment must be considered if hydrogen is stored and used as a high-pressure gas since a jet release can result in a fire or explosion. This paper describes the work done by us in modelling some of the consequences of accidental releases of hydrogen implemented in our Fire Explosion Release Dispersion (FRED) software. The new dispersion model is validated against experimental data available in the open literature. The model predictions of hydrogen gas concentration as a function of distance are in good agreement with experiments. In addition FRED has been used to model the consequence of the bursting of a vessel containing compressed hydrogen. The results obtained from FRED i.e. overpressure as a function of distance match well in comparison to experiments. Overall it is concluded that FRED can model the consequences of an accidental release of hydrogen and the blast waves generated from bursting of vessel containing compressed hydrogen
The Correlation Method to Analyze the Gas Mixing Process On The Basis Of BOS Method
Sep 2011
Publication
Structures formed during gas mixing following an injection of a gas into atmosphere are analyzed using optic methods based on the detection of density non-uniformities. Methods for determination of fractal parameters for a random distribution of these non-uniformities are described and information revealed on the gas mixing structure is analyzed. The BOS (background oriented schlieren) technique is utilized to obtain the optical image of the forming structures which afterward is processed using the correlation procedure allowing to extract the quantitative information on the mixing. Additionally a possibility to link the characteristics of the injected gas source and the system fractal parameters was demonstrated. The method can be used in the development of the non-contact methods for the evaluation of the gaseous system parameters based on the optical diagnostics and potentially for the obtaining more detailed information of the gaseous turbulence.
IPHE Regulations Codes and Standards Working Group-type IV COPV Round Robin Testing
Oct 2015
Publication
This manuscript presents the results of a multi-lateral international activity intended to understand how to execute a cycle stress test as specified in a chosen standard (GTR SAE ISO EIHP …). The purpose of this work was to establish a harmonized test method protocol to ensure that the same results would be achieved regardless of the testing facility. It was found that accurate temperature measurement of the working fluid is necessary to ensure the test conditions remain within the tolerances specified. Continuous operation is possible with adequate cooling of the working fluid but this becomes more demanding if the cycle frequency increases. Recommendations for future test system design and operation are presented.
Hydrogen Monitoring Requirements in the Global Technical Regulation on Hydrogen and Fuel Cell Vehicles
Oct 2015
Publication
The United Nations Economic Commission for Europe Global Technical Regulation (GTR) Number 13 (Global Technical Regulation on Hydrogen and Fuel Cell Vehicles) is the defining document regulating safety requirements in hydrogen vehicles and in particular fuel cell electric vehicles (FCEVs). GTR Number 13 has been formally adopted and will serve as the basis for the national regulatory standards for FCEV safety in North America (led by the United States) Japan Korea and the European Union. The GTR defines safety requirements for these vehicles including specifications on the allowable hydrogen levels in vehicle enclosures during in-use and post-crash conditions and on the allowable hydrogen emissions levels in vehicle exhaust during certain modes of normal operation. However in order to be incorporated into national regulations that is to be legally binding methods to verify compliance with the specific requirements must exist. In a collaborative program the Sensor Laboratories at the National Renewable Energy Laboratory in the United States and the Joint Research Centre Institute for Energy and Transport in the Netherlands have been evaluating and developing analytical methods that can be used to verify compliance with the hydrogen release requirements as specified in the GTR.
Accumulation of Hydrogen Released into a Vented Enclosure - Experimental Results
Sep 2013
Publication
This paper reports experimental results from a series of experiments in which gaseous hydrogen was released into a 31 m3 enclosure and the hydrogen concentrations at a number of points within the enclosure were monitored to assess whether hydrogen accumulation occurred and whether a homogeneous or stratified mixture was formed. The enclosure was located in the open air and therefore subject to realistic and therefore variable wind conditions. The hydrogen release rate and the passive vent arrangements were varied. The experiments were carried out as part of the EU Hyindoor Project.
An Investigation of Mobile Hydrogen and Fuel Cell Technology Applications
Sep 2019
Publication
Safe practices in the production storage distribution and use of hydrogen are essential for the widespread acceptance of hydrogen and fuel cell technologies. A significant safety incident in any project could damage public perception of hydrogen and fuel cells. A recent incident involving a hydrogen mobile storage trailer in the United States has brought attention to the potential impacts of mobile hydrogen storage and transport. Road transport of bulk hydrogen presents unique hazards that can be very different from those for stationary equipment and new equipment developers may have less experience and expertise than seasoned gas providers. In response to the aforementioned incident and in support of hydrogen and fuel cell activities in California the Hydrogen Safety Panel (HSP) has investigated the safety of mobile hydrogen and fuel cell applications (mobile auxiliary/emergency fuel cell power units mobile fuellers multi-cylinder trailer transport unmanned aircraft power supplies and mobile hydrogen generators). The HSP examined the applications requirements and performance of mobile applications that are being used extensively outside of California to understand how safety considerations are applied. This paper discusses the results of the HSP’s evaluation of hydrogen and fuel cell mobile applications along with recommendations to address relevant safety issues.
Hydrogen Systems Component Safety
Sep 2013
Publication
The deployment of hydrogen technologies particularly the deployment of hydrogen dispensing systems for passenger vehicles requires that hydrogen components perform reliably in environments where they have to meet the following performance parameters:
The paper will use incident frequency data from NREL’s Technology Validation project to more quantitatively identify safety concerns in hydrogen dispensing and storage systems.
- Perform safely where the consumer will be operating the dispensing equipment
- Dispense hydrogen at volumes comparable to gasoline dispensing stations in timeframes comparable to gasoline stations
- Deliver a fueling performance that is within the boundaries of consumer tolerance
- Perform with maintenance/incident frequencies comparable to gasoline dispensing systems
The paper will use incident frequency data from NREL’s Technology Validation project to more quantitatively identify safety concerns in hydrogen dispensing and storage systems.
Application of Natural Ventilation Engineering Models to Hydrogen Build Up in Confined Zones
Sep 2013
Publication
Correlative engineering models (Linden 1994) are compared to recent published (Cariteau et al. (2009) Pitts et al. (2009) Barley and Gawlick (2009) Swain et al. (1999) Merilo et al. (2010)) and unpublished (CEA experiments in a 1 m3 with two openings) experimental hydrogen or helium distribution in enclosures (with one and two openings). The modelling-experiments comparison is carried out in transient and in steady state conditions. On this basis recommendations and limits of use of these models are proposed.
Turbulent Flame Propagation in Large Unconfined H2/O2/N2 Clouds
Oct 2015
Publication
Turbulence is a key aspect in hydrogen explosions. Unfortunately only limited experimental data is available and the current understanding of flame turbulence interactions is too limited to permit safe predictions. New experimental data are presented in which the flame trajectory and pressure history are interpreted for unconfined explosions of H2/O2/N2 clouds of 7 m3. The intensity of the turbulence is varied between 0 and 5 m/s and the integral scale of the turbulence is on the order of 10 cm which is at least an order of magnitude larger than lab scale.
Detection of Hydrogen Released In a Full-Scale Residential Garage
Sep 2011
Publication
Experiments were conducted to assess detectability of a low-level leak of hydrogen gas and the uniformity of hydrogen concentration at selected sensor placement locations in a realistic setting. A 5%2hydrogen/95%2nitrogen gas mixture was injected at a rate of 350 L/min for about 3/4 hour into a 93m3 residential garage space through a 0.09 m2 square open-top dispersion box located on the floor. Calibrated catalytic sensors were placed on ceiling and wall locations and the sensors detected hydrogen early in the release and continued to measure concentrations to peak and diminishing levels. Experiments were conducted with and without a car parked over the dispersion box. The results show that a car positioned over the dispersion box tends to promote dilution of the hydrogen cause a longer time for locations to reach a fixed threshold and produce lower peak concentrations than with no car present.
Near-term Location of Hydrogen Refueling Stations in Yokohama City from the Perspective of Safety
Sep 2019
Publication
The roll-out of hydrogen refuelling stations is a key step in the transition to a hydrogen economy. Since Japan has been shifting from the demonstration stage to the implementation stage of a hydrogen economy a near-term city-level roll-out plan is required. The aim of this study is to plan near-term locations for building hydrogen refuelling stations in Yokohama City from a safety perspective. Our planning provides location information for hydrogen refuelling stations in Yokohama City for the period 2020–2030. Mobile type and parallel siting type refuelling stations have been considered in our planning and locations were determined by matching supply and demand to safety concerns. Supply and demand were estimated from hybrid vehicle ownership data and from space availability in existing gas stations. The results reaffirmed the importance of hydrogen station location planning and showed that use of mobile type stations is a suitable solution in response to the uncertain fuel cell vehicle fuel demand level during the implementation stage of a hydrogen economy.
3D Quantitative Risk Assessment on a Hydrogen Refuelling Station in Shanghai
Sep 2019
Publication
The number of hydrogen refuelling stations worldwide is growing rapidly in recent years. The first large capacity hydrogen refuelling station in China is under construction. A 3D quantitative risk assessment QRA)is conducted for this station. Hazards associated with hydrogen systems are identified. Leakage frequency of hydrogen equipment are analyzed. Jet flame explosion scenarios and corresponding accident consequences are simulated. Risk acceptance criteria for hydrogen refuelling stations are discussed. The results show that the risk of this refuelling station is acceptable. And the maximum lethality frequency is 6.3*10-6. The area around compressors has the greatest risk. People should be avoided as far as possible from the compressor when the compressor does not need to be maintained. With 3D QRA the visualization of the evaluation results will help stakeholders to observe the hazardous areas of the hydrogen refuelling station at a glance.
A Comparative Study of Detonability and Propensity to Sustain High-speed Turbulent Deflagrations in Hydrogen and Methane Mixtures
Sep 2013
Publication
We’ve studied the conditions enabling a detonation to be quenched when interacting with an obstruction and the propensity for establishing subsequent fast-flame. Oxy-hydrogen detonations were found quench more easily than oxy-methane detonations when comparing the ratio of gap size and the detonation cell size. High-speed turbulent deflagrations that re-accelerate back to a detonation were only observed in methane-oxygen mixtures. Separate hot-spot ignition calculations revealed that the higher detonability of methane correlates with its stronger propensity to develop localized hot-spots. The results suggest that fast-flames are more difficult to form in hydrogen than in methane mixtures.
Hydrogen Compatibility of Austenitic Stainless Steel Tubing and Orbital Tube Welds
Sep 2013
Publication
Refueling infrastructure for use in gaseous hydrogen powered vehicles requires extensive manifolding for delivering the hydrogen from the stationary fuel storage at the refueling station to the vehicle as well as from the mobile storage on the vehicle to the fuel cell or combustion engine. Manifolds for gas handling often use welded construction (as opposed to compression fittings) to minimize gas leaks. Therefore it is important to understand the effects of hydrogen on tubing and tubing welds. This paper provides a brief overview of on-going studies on the effects of hydrogen precharging on the tensile properties of austenitic stainless tubing and orbital tube welds of several austenitic stainless steels.
Hydrogen Related Risks Within a Private Garage: Concentration Measurements in a Realistic Full Scale Experimental Facility
Sep 2007
Publication
Next generation of hydrogen energy based vehicles is expected to come into widespread use in the near future. Various topics related to hydrogen including production storage and application of hydrogen as an energy carrier have become subjects of discussion in the framework of various European and International projects. Safety information is vital to support the successful introduction into mainstream and public acceptance of hydrogen as an energy carrier. One of such issues which is seeking major attention is related to hydrogen powered vehicles parked inside a confined area (such as in a private garage). It is of utmost importance to predict if uncontrolled release of hydrogen from a vehicle parked inside a confined area can create an explosive atmosphere. Subsequently how the preventive measures can be implied to control these explosive atmospheres if present inside a confined area? There is a little guidance currently developed for confined areas accommodating hydrogen fuelled vehicles. It is essential that mitigation measures for such conditions become established.<br/>Characterization of different scenarios those may arise in a real situation from hydrogen fuelled vehicle parked inside a garage and furthermore the investigation of an optimal ventilation rate for hydrogen risk mitigation are some of the main objectives described in the framework of the present study. This work is an effort to provide detail experimental information’s in view of establishing guidelines for hydrogen powered vehicles parked inside a private garage. The present work is developed in the framework of a European Network of Excellence HySafe and French project DRIVE. Present paper describes a purpose built realistic Garage test facility at CEA to study the dispersion of hydrogen leakage. The studied test cases evaluate the influence of injected volumes of hydrogen and the initial conditions at the leakage source on the dispersion and mixing characteristics inside the free volume of the unventilated garage. The mixing process and build-up of hydrogen concentration is measured for the duration of 24 hours. Due to safety reasons helium gas is used to simulate the hydrogen dispersion characteristics.
The Study on Permissible Value of Hydrogen Gas Concentration in Purge Gas of Fuel Cell Vehicles
Sep 2019
Publication
Ignition conditions and risks of ignition on a permissible value of hydrogen concentration in purge gas prescribed by HFCV-GTR were reevaluated. Experiments were conducted to investigate burning behavior and thermal influence of continuous evacuation of hydrogen under continuous purge of air / hydrogen premixed gas which is close to an actual purge condition of FCV and thermal evacuation of hydrogen. As a result of the re-evaluation it was shown from the viewpoint of safety that the permissible value of hydrogen concentration in purge gas prescribed by the current HFCV GTR is appropriate.
Acoustic Emission Characteristics of Used 70 MPa Type IV Hydrogen Storage Tanks During Hydrostatic Burst Tests
Sep 2019
Publication
Currently the periodic inspection of composite tanks is typically achieved via hydrostatic test combined with internal and external visual inspections. Acoustic emission (AE) technology demonstrates a promising non destructive testing method for damage mode identification and damage assessment. This study focuses on AE signals characteristics and evolution behaviours for used 70 MPa Type IV hydrogen storage tanks during hydrostatic burst tests. AE-based tensile tests for epoxy resin specimen and carbon fiber tow were implemented to obtain characteristics of matrix cracking and fiber breakage. Then broadband AE sensors were used to capture AE signals during multi-step loading tests and hydrostatic burst tests. K-means ++ algorithm and wavelet packet transform are performed to cluster AE signals and verify the validity. Combining with tensile tests three clusters are manifested via matrix cracking fiber/matrix debonding and fiber breakage according to amplitude duration counts and absolute energy. The number of three clustering signals increases with the increase of pressure showing accumulated and aggravated damage. The sudden appearance of a large number of fiber breakage signals during hydrostatic burst tests suggests that the composite tank structure is becoming mechanically unstable namely the impending burst failure of the tank.
Effect of the Time Dependent Loading of Type IV Cylinders Using a Multi-scalemodel
Sep 2019
Publication
The current requirements for composite cylinders are still based on an arbitrary approach derived from the behaviour of metal structures that the designed burst pressure should be at least 2.5 times the maximum in-service pressure. This could lead to an over-designed composite cylinder for which the weight saving would be less than optimum. Moreover predicting the lifetime of composite cylinders is a challenging task due to their anisotropic characteristics. A federal research institute in Germany (BAM) has proposed a minimum load-cycle requirement that mitigates this issue by using a MonteCarlo analysis of the burst test results. To enrich this study more experiments are required however they are normally limited by the necessity of long duration testing times (loading rate and number of cylinders) and the design (stacking sequence of the composite layer). A multi-scale model incorporating the micromechanical behaviour of composite structures has been developed at Mines ParisTech. The model has shown similar behaviour to that of composite cylinders under different loading rates. This indicates that the model could assist the Monte-Carlo analysis study. An evaluation of the multi-scale model therefore has been carried out to determine its limitations in predicting lifetimes of composite cylinders. The evaluation starts with the comparison of burst pressures with type IV composite cylinders under different loading rates. A μCT-Scan of a type IV cylinder has been carried out at the University of Southampton. The produced images were analysed using the Fast-Fourier Transform (FFT) technique to determine the configuration of the composite layers which is required by the model. Finally the time dependent effect studied by using the multi scale model has been described. In the long-term this study can be used to conduct a parametric study for creating more efficient design of type IV cylinders.
Validated Equivalent Source Model for an Under-expanded Hydrogen Jet
Oct 2015
Publication
As hydrogen fuel cell vehicles become more widely adopted by consumers the demand for refuelling stations increases. Most vehicles require high-pressure (either 350 or 700 bar) hydrogen and therefore the refuelling infrastructure must support these pressures. Fast running reduced order physical models of releases from high-pressure sources are needed so that quantitative risk assessment can guide the safety certification of these stations. A release from a high pressure source is choked at the release point forming the complex shock structures of an under-expanded jet before achieving a characteristic Gaussian pro le for velocity density mass fraction etc. downstream. Rather than using significant computational resources to resolve the shock structure an equivalent source model can be used to quickly and accurately describe the ow in terms of velocity diameter and thermodynamic state after the shock structure. In this work we present correlations for the equivalent boundary conditions of a subsonic jet as a high-pressure jet downstream of the shock structure. Schlieren images of under-expanded jets are used to show that the geometrical structure of under-expanded jets scale with the square root of the static to ambient pressure ratio. Correlations for an equivalent source model are given and these parameters are also found to scale with square root of the pressure ratio. We present our model as well as planar laser Rayleigh scattering validation data for static pressures up to 60 bar.
An Experimental Study Dedicated to Wind Influence on Helium Build-up and Concentration Distribution Inside a 1 m 3 Semi-confined Enclosure Considering Hydrogen Energy Applications Conditions of Use
Oct 2015
Publication
Hydrogen energy applications can be used outdoor and thus exposed to environmental varying conditions like wind. In several applications natural ventilation is the first mitigation means studied to limit hydrogen build-up inside a confined area. This study aims at observing and understanding the influence of wind on light gas build-up in addition. Experiments were performed with helium as releasing gas in a 1-m 3 enclosure equipped with ventilation openings varying wind conditions openings location release flow rate; obstructions in front of the openings to limit effects of wind were studied as well. Experimental results were compared together and with the available analytical models.
CFD Evaluation Against a Large Scale Unconfined Hydrogen Deflagration
Oct 2015
Publication
In the present work CFD simulations of a large scale open deflagration experiment are performed. Stoichiometric hydrogen–air mixture occupies a 20 m hemisphere. Two combustion models are compared and evaluated against the experiment: the Eddy Dissipation Concept model and a multi-physics combustion model which calculates turbulent burning velocity based on Yakhot's equation. Sensitivity analysis on the value of fractal dimension of the latter model is performed. A semi-empirical relation which estimates the fractal dimension is also tested. The effect of the turbulence model on the results is examined. LES approach and k-ε models are used. The multi-physics combustion model with constant fractal dimension value equal to 2.3 using the RNG LES turbulence model achieves the best agreement with the experiment.
The Effect of Vacancy Concentration on Hydrogen Diffusion in Alpha-Fe by Molecular Dynamic
Sep 2017
Publication
Diffusion coefficient is in significant dependence on vacancy concentration due to that migration of vacancy is the dominant mechanism of atom transport or diffusion in processes such as void formation dislocation movement and solid phase transformation. This study aims to investigate the effect of vacancy concentration on hydrogen diffusion in alpha-Fe by molecular dynamics simulations especially at low temperatures and with loading. Comparisons of the diffusion coefficients between alpha-Fe with a perfect structure and different-concentration vacancies as well as comparisons between experimental and theoretical results had been made to characterize and summarize the effect of vacancy on hydrogen diffusion coefficient.
Visualisation of Jet Fires from Hydrogen Release
Sep 2009
Publication
In order to achieve a high level of safety while using hydrogen as a vehicle fuel the possible hazards must be estimated. Especially hydrogen release tests with defined ignition represent a very important way to characterize the basics of hydrogen combustion in a potential accident. So ICT participated on a hydrogen jet release campaign at HSL (Buxton) in 2008 to deploy their measurement techniques and evaluation methods to visualize jets ignition and subsequent flames. The following paper shows the application of high speed cinematography in combination with image processing techniques the Background Oriented Schlieren (BOS) and a difference method to visualize the shape of hydrogen jet. In addition these methods were also used to observe ignition and combustion zone after defined initiation. In addition the combustion zone was recorded by a fast spectral radiometer and a highspeed-IR-camera. The IR-camera was synchronized with a rotating filter wheel to generate four different motion pictures at 100Hz each on a defined spectral range. The results of this preliminary evaluation provide some detailed information that might be used for improving model predictions.
Characterising the Performance of Hydrogen Sensitive Coatings for Nuclear Safety Applications
Sep 2017
Publication
The detection of hydrogen gas is essential in ensuring the safety of nuclear plants. However events at Fukushima Daiichi NPP highlighted the vulnerability of conventional detection systems to extreme events where power may be lost. Herein chemochromic hydrogen sensors have been fabricated using transition metal oxide thin films sensitised with a palladium catalyst to provide passive hydrogen detection systems that would be resilient to any plant power failures. To assess their viability for nuclear safety applications these sensors have been gamma-irradiated to four total doses (0 5 20 50 kGy) using a Co-60 gamma radioisotope. Optical properties of both un-irradiated and irradiated samples were investigated to compare the effect of increased radiation dose on the sensors resultant colour change. The results suggest that gamma irradiation at the levels examined (>5 kGy) has a significant effect on the initial colour of the thin films and has a negative effect on the hydrogen sensing abilities.
CFD Investigation of Filling and Emptying of Hydrogen Tanks
Oct 2015
Publication
During the filling of hydrogen tanks high temperatures can be generated inside the vessel because of the gas compression while during the emptying low temperatures can be reached because of the gas expansion. The design temperature range goes from −40 °C to 85 °C. Temperatures outside that range could affect the mechanical properties of the tank materials. CFD analyses of the filling and emptying processes have been performed in the HyTransfer project. To assess the accuracy of the CFD model the simulation results have been compared with new experimental data for different filling and emptying strategies. The comparison between experiments and simulations is shown for the temperatures of the gas inside the tank for the temperatures at the interface between the liner and the composite material and for the temperatures on the external surface of the vessel.
Overview of the DOE Hydrogen Safety, Codes and Standards Program Part 3- Advances in Research and Development to Enhance the Scientific Basis for Hydrogen Regulations, Codes and Standards
Oct 2015
Publication
Hydrogen fuels are being deployed around the world as an alternative to traditional petrol and battery technologies. As with all fuels regulations codes and standards are a necessary component of the safe deployment of hydrogen technologies. There has been a focused effort in the international hydrogen community to develop codes and standards based on strong scientific principles to accommodate the relatively rapid deployment of hydrogen-energy systems. The need for science-based codes and standards has revealed the need to advance our scientific understanding of hydrogen in engineering environments. This brief review describes research and development activities with emphasis on scientific advances that have aided the advancement of hydrogen regulations codes and standards for hydrogen technologies in four key areas: (1) the physics of high-pressure hydrogen releases (called hydrogen behaviour); (2) quantitative risk assessment; (3) hydrogen compatibility of materials; and (4) hydrogen fuel quality.
Continuous Codes and Standards Improvement (CCSI)
Oct 2015
Publication
As of 2014 the majority of the Codes and Standards required to initially deploy hydrogen technologies infrastructure in the US have been promulgated1. These codes and standards will be field tested through their application to actual hydrogen technologies projects. CCSI is process of identifying code issues that arise during project deployment and then develop codes solutions to these issues. These solutions would typically be proposed amendments to codes and standards. The process is continuous because of technology and the state of safety knowledge develops there will be a need for monitoring the application of codes and standards and improving them based on information gathered during their application. This paper will discuss code issues that have surfaced through hydrogen technologies infrastructure project deployment and potential code changes that would address these issues. The issues that this paper will address include:
- Setback distances for bulk hydrogen storage
- Code mandated hazard analyses
- Sensor placement and communication
- The use of approved equipment
- System monitoring and maintenance requirements
Overview of the DOE Hydrogen Safety, Codes and Standards Program part 2- Hydrogen and Fuel Cells, Emphasizing Safety to Enable Commercialization
Oct 2015
Publication
Safety is of paramount importance in all facets of the research development demonstration and deployment work of the U.S. Department of Energy’s (DOE) Fuel Cell Technologies Program. The Safety Codes and Standards sub-program (SC&S) facilitates deployment and commercialization of fuel cell and hydrogen technologies by developing and disseminating information and knowledge resources for their safe use. A comprehensive safety management program utilizing the Hydrogen Safety Panel to raise safety consciousness at the project level and developing/disseminating a suite of safety knowledge resources is playing an integral role in DOE and SC&S efforts. This paper provides examples of accomplishments achieved while reaching a growing and diverse set of stakeholders involved in research development and demonstration; design and manufacturing; deployment and operations. The work of the Hydrogen Safety Panel highlights new knowledge and the insights gained through interaction with project teams. Various means of collaboration to enhance the value of the program’s safety knowledge tools and training resources are illustrated and the direction of future initiatives to reinforce the commitment to safety is discussed.
HYRAM: A Methodology and Toolkit for Quantitative Risk Assessment of Hydrogen Systems
Oct 2015
Publication
HyRAM is a methodology and accompanying software toolkit which is being developed to provide a platform for integration of state-of-the-art validated science and engineering models and data relevant to hydrogen safety. As such the HyRAM software toolkit establishes a standard methodology for conducting quantitative risk assessment (QRA) and consequence analysis relevant to assessing the safety of hydrogen fueling and storage infrastructure. The HyRAM toolkit integrates fast-running deterministic and probabilistic models for quantifying risk of accident scenarios for predicting physical effects and for characterizing the impact of hydrogen hazards (thermal effects from jet fires thermal and pressure effects from deflagrations and detonations). HyRAM incorporates generic probabilities for equipment failures for nine types of hydrogen system components generic probabilities for hydrogen ignition and probabilistic models for the impact of heat flux and pressure on humans and structures. These are combined with fast-running computationally and experimentally validated models of hydrogen release and flame behaviour. HyRAM can be extended in scope via user contributed models and data. The QRA approach in HyRAM can be used for multiple types of analyses including codes and standards development code compliance safety basis development and facility safety planning. This manuscript discusses the current status and vision for HyRAM.
Overview of the DOE Hydrogen Safety, Codes and Standards Program Part 1- Regulations, Codes and Standards (RCS) for Hydrogen Technologies - An Historical Overview
Oct 2015
Publication
RCS for hydrogen technologies were first developed approximately sixty years ago when hydrogen was being sold as an industrial commodity. The advent of new hydrogen technologies such as Fuel Cell Electric Vehicles (FCEVs) created a need for new RCS. These RCS have been developed with extensive support from the US DOE. These new hydrogen technologies are approaching commercial deployment and this process will produce information on RCS field performance that will create more robust RCS.
First Responder Training Supporting Commercialization of Hydrogen and Fuel Cell Technologies
Oct 2015
Publication
A properly trained first responder community is critical to the successful introduction of hydrogen fuel cell applications and their transformation in how we use energy. Providing resources with accurate information and current knowledge is essential to the delivery of effective hydrogen and fuel cell-related first responder training. The California Fuel Cell Partnership and the Pacific Northwest National Laboratory have over 15 years of experience in developing and delivering hydrogen safety-related first responder training materials and programs. A National Hydrogen and Fuel Cell Emergency Response Training Resource was recently released. This training resource serves the delivery of a variety of training regimens. Associated materials are adaptable for different training formats ranging from high-level overview presentations to more comprehensive classroom training. This paper presents what has been learned from the development and delivery of hydrogen safety-related first responder training programs (online classroom hands-on) by the respective organizations. The collaborative strategy being developed for enhancing training materials and methods for greater accessibility based on stakeholder input will be discussed.
Modeling of Cryogenic Hydrogen jets
Oct 2015
Publication
In the present work the CFD modeling of cryogenic hydrogen releases in quiescent environment is presented. Two tests from the series of experiments performed in the ICESAFE facility at KIT (Karlsruhe Institute for Technology) have been simulated within the SUSANA project. During these tests hydrogen at temperature of 37K and 36K and at pressure of 19 and 29 bars respectively is released horizontally. The release at the nozzle is sonic and the modeling of the under-expanded jet was performed using two different approaches: the Ewan and Moodie approach and a modification of the Ewan and Moodie approach (modified Ewan and Moodie) that is introduced here and employs the momentum balance to calculate the velocity in the under-expanded jet. Using these approaches a pseudo-diameter is calculated and this diameter is set as source boundary in the simulation. Predictions are consistent with measurements for both experiments with both approaches. However the Ewan and Moodie approach seems to perform better.
Guidelines and Recommendations for Indoor Use of Fuel Cells and Hydrogen Systems
Oct 2015
Publication
Deborah Houssin-Agbomson,
Simon Jallais,
Elena Vyazmina,
Guy Dang-Nhu,
Gilles Bernard-Michel,
Mike Kuznetsov,
Vladimir V. Molkov,
Boris Chernyavsky,
Volodymyr V. Shentsov,
Dmitry Makarov,
Randy Dey,
Philip Hooker,
Daniele Baraldi,
Evelyn Weidner,
Daniele Melideo,
Valerio Palmisano,
Alexandros G. Venetsanos,
Jan Der Kinderen and
Béatrice L’Hostis
Hydrogen energy applications often require that systems are used indoors (e.g. industrial trucks for materials handling in a warehouse facility fuel cells located in a room or hydrogen stored and distributed from a gas cabinet). It may also be necessary or desirable to locate some hydrogen system components/equipment inside indoor or outdoor enclosures for security or safety reasons to isolate them from the end-user and the public or from weather conditions.<br/>Using of hydrogen in confined environments requires detailed assessments of hazards and associated risks including potential risk prevention and mitigation features. The release of hydrogen can potentially lead to the accumulation of hydrogen and the formation of a flammable hydrogen-air mixture or can result in jet-fires. Within Hyindoor European Project carried out for the EU Fuel Cells and Hydrogen Joint Undertaking safety design guidelines and engineering tools have been developed to prevent and mitigate hazardous consequences of hydrogen release in confined environments. Three main areas are considered: Hydrogen release conditions and accumulation vented deflagrations jet fires and including under-ventilated flame regimes (e.g. extinguishment or oscillating flames and steady burns). Potential RCS recommendations are also identified.
Benchmark Exercise on Risk Assessment Methods Applied to a Virtual Hydrogen Refuelling Station
Sep 2009
Publication
A benchmarking exercise on quantitative risk assessment (QRA) methodologies has been conducted within the project HyQRA under the framework of the European Network of Excellence (NoE) HySafe. The aim of the exercise was basically twofold: (i) to identify the differences and similarities in approaches in a QRA and their results for a hydrogen installation between nine participating partners representing a broad spectrum of background in QRA culture and history and (ii) to identify knowledge gaps in the various steps and parameters underlying the risk quantification. In the first step a reference case was defined: a virtual hydrogen refuelling station (HRS) in virtual surroundings comprising housing school shops and other vulnerable objects. All partners were requested to conduct a QRA according to their usual approach and experience. Basically participants were free to define representative release cases to apply models and frequency assessments according their own methodology and to present risk according to their usual format. To enable inter-comparison a required set of results data was prescribed like distances to specific thermal radiation levels from fires and distances to specific overpressure levels. Moreover complete documentation of assumptions base data and references was to be reported. It was not surprising that a wide range of results was obtained both in the applied approaches as well as in the quantitative outcomes and conclusions. This made it difficult to identify exactly which assumptions and parameters were responsible for the differences in results as the paper will show. A second phase was defined in which the QRA was determined by a more limited number of release cases (scenarios). The partners in the project agreed to assess specific scenarios in order to identify the differences in consequence assessment approaches. The results of this phase provide a better understanding of the influence of modelling assumptions and limitations on the eventual conclusions with regard to risk to on-site people and to the off-site public. This paper presents the results and conclusions of both stages of the exercise.
A Study on Dispersion Resulting From Liquefied Hydrogen Spilling
Oct 2015
Publication
For massive utilization of hydrogen energy it is necessary to transport a large quantity of hydrogen by liquefied hydrogen carriers. However the current rule on ships carrying liquefied hydrogen in bulks do not address the maritime transport of liquefied hydrogen and the safety assessment of liquefied hydrogen carriage is thus very important. In the present study we spilled liquefied hydrogen and LNG (Liquefied Natural Gas) on the surface of various materials and compared the difference of their spread and dispersion. Liquefied hydrogen immediately dispersed upward compared to LNG. Furthermore we also measured the flammability limit of low temperature hydrogen gas. Its range at low temperature was narrower than the range at normal temperature.
Towards a Set of Design Recommendations for Pressure Relief Devices On-board Hydrogen Vehicles
Oct 2015
Publication
Commercial use of hydrogen on-board fuel cell vehicles necessitates the compression of hydrogen gas up to 700 bar raising unique safety challenges. Potential hazards to be addressed include jet fires from high-pressure hydrogen on-board storage. Previous studies investigated effects of jet fires that occur when pressure relief devices (PRDs) on hydrogen fuel cell vehicles activate. This investigation examines plane jets’ axis switching and flame length accounting for compressibility effects and turbulent combustion near the point of release. Comparison with experimental data and previous plane jet simulation results reveal that combustion process does not affect flow dynamics in compressible region of jet flow. Furthermore a theoretical design of a variable aperture pressure relief device is examined which would enable the blow-down time to be minimized while reducing deterministic separation distances is examined using Computational Fluid Dynamics (CFD) techniques. Design recommendations are suggested for a novel PRD design.
Application of Quantitative Risk Assessment for Performance-based Permitting of Hydrogen Fueling Stations
Oct 2015
Publication
NFPA 2 Hydrogen Technologies Code allows the use of risk-informed approaches to permitting hydrogen fuelling installations through the use of performance-based evaluations of specific hydrogen hazards. However the hydrogen fuelling industry in the United States has been reluctant to implement the performance-based option because the perception is that the required effort is cost prohibitive and there is no guarantee that the Authority Having Jurisdiction (AHJ) would accept the results. This report provides a methodology for implementing a performance-based design of an outdoor hydrogen refuelling station that does not comply with specific prescriptive separation distances. Performance-based designs are a code-compliant alternative to meeting prescriptive requirements. Compliance is demonstrated by evaluating a compliant prescriptive-based refuelling station design with a performance-based design approach using Quantitative Risk Assessment (QRA) methods and hydrogen risk tools. This template utilizes the Sandia-developed QRA tool Hydrogen Risk Analysis Model (HyRAM) to calculate risk values when developing risk-equivalent designs. HyRAM combines reduced-order deterministic models that characterize hydrogen release and flame behaviour with probabilistic risk models to quantify risk values. Each project is unique and this template is not intended to cover unique site-specific characteristics. Instead example content and a methodology are provided for a representative hydrogen refuelling site which can be built upon for new hydrogen applications.
Characteristics of Hydrogen Leakage Sound from a Fuel-cell Vehicle by Hearing
Oct 2015
Publication
Fuel-cell vehicle run on hydrogen is known that it has better energy efficiency than existing gasoline cars. The vehicles are designed so that hydrogen leaks from the tank are stopped automatically upon detection of hydrogen leakage or detection of impact in a collision. However we investigated the characteristics of hydrogen leakage sound from a hydrogen-leaking vehicle and the threshold of discrimination of hydrogen leakage from noise at a crossing with much traffic to examine a method to rescue people safely depending on the sense of hearing in the event of a continuous hydrogen leak. Here in the discrimination threshold test we conducted the test by using helium which is alternative gas of hydrogen leakage sound. We clarified that hydrogen leakage sound from vehicles has directivity height dependence and distance dependence. Furthermore we confirmed the threshold flow rate for distinguishing hydrogen gas when hydrogen leakage is heard at a distance of 5–10 m from the center of the hydrogen leaking vehicle in a 74 dB traffic noise environment.
Best Practice in Numerical Simulation and CFD Benchmarking. Results from the SUSANA Project
Sep 2017
Publication
Correct use of Computational Fluid Dynamics (CFD) tools is essential in order to have confidence in the results. A comprehensive set of Best Practice Guidelines (BPG) in numerical simulations for Fuel Cells and Hydrogen applications has been one of the main outputs of the SUSANA project. These BPG focus on the practical needs of engineers in consultancies and industry undertaking CFD simulations or evaluating CFD simulation results in support of hazard/risk assessments of hydrogen facilities as well as on the needs of regulatory authorities. This contribution presents a summary of the BPG document. All crucial aspects of numerical simulations are addressed such as selection of the physical models domain design meshing boundary conditions and selection of numerical parameters. BPG cover all hydrogen safety relative phenomena i.e. release and dispersion ignition jet fire deflagration and detonation. A series of CFD benchmarking exercises are also presented serving as examples of appropriate modelling strategies.
The Effect of Polyurethane Sponge Blockage Ratio on Premixed Hydrogen-air Flame Propagation in a Horizontal Tube
Oct 2015
Publication
The effects of sponge blockage ratio on flame structure evolution and flame acceleration were experimentally investigated in an obstructed cross-section tube filled with stoichiometric hydrogen-air mixture. Experimental results show that the mechanisms responsible for flame acceleration can be in terms of the positive feedback of the unburned gas field generated ahead of the flame the area change of the gap between the sponge and the tube and the interaction between the flame and the shear layer appearing at the sponge left top corner. Especially the last one dominates the flame acceleration and causes its speed to be sonic. Then both the second and third contribute to the violent flame acceleration. In addition the unburned gas pockets can be found in both upstream and downstream regions of the sponge. With increasing blockage ratio the unburned gas pockets disappear easier and the flame acceleration is more pronounced. Moreover the sponge tilts more evidently and resultantly the maximum tilt angle increases.
Effects of Radiation on the Flame Front of Hydrogen-air Explosions
Oct 2015
Publication
The flame velocities of unconfined gas explosions depend on the cloud size and the distance from the initiating source. The mechanisms for this effect are not fully understood; a possible explanation is turbulence generated by the propagating flame front. The molecular bands in the flame front are exposed to continuously increasing radiation intensity of water bands in the interior of the reaction product ball. A first approach to verifying this assumption is described in this paper. The flame propagation was observed by high speed video techniques including time resolved spectroscopy in the UV-Vis-NIR spectral range with a time resolution up to 3000 spectra/s. Ignition flame head velocity flame contours reacting species and temperatures were evaluated. The evaluation used video brightness subtraction and 1-dimensional image contraction to obtain traces of the movements perpendicular to the direction of propagation. Flame front velocities are found to be between 16m/s and 25 m/s. Analysis focused in particular on the flame front which is not smooth. Salients emerge on the surface to result in the well-known cellular structures. The radiation of various bands from the fire ball on the reacting species is estimated to have an influence on the flame velocity depending on the distance from initiation. Evaluation of OH-band and water band spectra might indicate might indicate higher temperatures of the flame front induced by radiation of the fireball. But it is difficult to verify the effect relative to competing flame acceleration mechanisms.
Numerical Simulation of Deflagration-to-detonation Transition in Hydrogen-air Mixtures with Concentration Gradients
Oct 2015
Publication
Flame acceleration in inhomogeneous combustible gas mixture has largely been overlooked despite being relevant to many accidental scenarios. The present study aims to validate our newly developed density-based solver ExplosionFoam for flame acceleration and deflagration-to-detonation transition. The solver is based on the open source computational fluid dynamics (CFD) platform OpenFOAM®. For combustion it uses the hydrogen-air single-step chemistry and the corresponding transport coefficients developed by the authors. Numerical simulations have been conducted for the experimental set up of Ettner et al. [1] which involves flame acceleration and DDT in both homogeneous hydrogen-air mixture as well as an inhomogeneous mixture with concentration gradients in an obstucted channel. The predictions demonstrate good quantitative agreement with the experimental measurements in flame tip position speed and pressure profiles. Qualitatively the numerical simulations reproduce well the flame acceleration and DDT phenomena observed in the experiment. The results have shown that in the computed cases DDT is induced by the interaction of the precursor inert shock wave with the wall close to high hydrogen concentration rather than with the obstacle. Some vortex pairs appear ahead of the flame due to the interaction between the obstacles and the gas flow caused by combustion-induced expansion but they soon disappear after the flame passes through them. Hydrogen cannot be completely consumed especially in the fuel rich region. This is of additional safety concern as the unburned hydrogen can potentially re-ignite once more fresh air is available in an accidental scenario causing subsequent explosions. The results demonstrate the potential of the newly developed density based solver for modelling flame acceleration and DDT in both homogeneous/inhomogeneous hydrogen-air mixture. Further validation needs to be carried out for other mixtures and large-scale cases.
Autoignition of Hydrogen/Ammonia Blends at Elevated Pressures and Temperatures
Sep 2019
Publication
Hydrogen stored or transported as ammonia has been proposed as a sustainable carbon-free alternative for fossil-fuels in high-temperature industrial processes including power generation. Although ammonia itself is toxic and exhibits both a low flame speed and calorific value it rapidly decomposes to hydrogen in high temperature environments suggesting the potential use in applications which incorporate fuel preheating. In this work the rate of ammonia-to-hydrogen decomposition is initially simulated at elevated temperatures to indicate the proportion of fuel conversion in conditions similar to gas pipelines gas-turbines or furnaces with exhaust-gas recirculation. Following this different proportions of hydrogen and ammonia are numerically simulated in independent zero-dimensional plug-flow-reactors at pressures ranging from atmospheric to 50 MPa and pre-heating temperatures from 600 K to 1600 K. Deflagration of very-lean-to-fuel-rich mixtures was investigated employing air as the oxidant stream. Analyses of these reactors provide estimates of autoignition thresholds of the hydrogen/ammonia blends which are relevant for the safe implementation and operation of hydrogen/ammonia blends or pure ammonia as a fuel source. Further operational considerations are subsequently identified for using ammonia or hydrogen/ammonia blends as a hydrogen fuel carrier by quantifying residual concentrations of hydrogen and ammonia fuel products as well as other toxic emissions within the hot exhaust products.
Measurement of Hydrogen Mixing Process by High Response Hydrogen Sensor
Sep 2017
Publication
According to the Global technical regulation on hydrogen and fuel cell vehicles (FCV) fuel cell discharge system at the vehicle exhaust system`s point of discharge the hydrogen concentration level shall not exceed 4 % average by volume during any moving three-second time interval during normal operation including start-up and shut down [1]. FC stack need to washout by the concentrated hydrogen as the purge gas and how to exhaust gas without exceeding 4 % is the most concerns. Also how to measure hydrogen pulse of millisecond in exhaust is also the rising up issue. In this paper model of FCV hydrogen discharge system was composed and variety of simple experiments were carried out to control the H2 concentration and release. In the case which the semiconductor sensor with porous material (average size less than quench distance) were applied to check H2 concentration the short pulse of high concentration of H2 in millisecond was hard to find. In this experiment the simple exhaust gas model H2/N2 flow was used instead of Air/H2. In the exhaust gas test experiment was conducted under the atmospheric condition in room temperature with small pressure difference and the fast solenoid valve to create quick hydrogen control. Most of the experiments except the turbulent flow experiments laminar flow is expected to be dominated when steady state condition is satisfied but the most result discussed here is the measurement of H2 concentration during the start point at the time of discharge within seconds. The results showed when H2 was added to N2 flow the boundary layer between N2 and H2 contained the high concentration of H2 at the initial wave front and decrease to reach steady state. This H2 pulse is typical in the FCV exhaust gas and topics of this paper.
Hazard Distance Nomograms for a Blast Wave from a Compressed Hydrogen Tank Rupture in a Fire
Sep 2017
Publication
Nomograms for assessment of hazard distances from a blast wave generated by a catastrophic rupture of stand-alone (stationary) and onboard compressed hydrogen cylinder in a fire are presented. The nomograms are easy to use hydrogen safety engineering tools. They were built using the validated and recently published analytical model. Two types of nomograms were developed – one for use by first responders and another for hydrogen safety engineers. The paper underlines the importance of an international effort to unify harm and damage criteria across different countries as the discrepancies identified by the authors gave the expected results of different hazard distances for different criteria.
Simulation Analysis on the Risk of Hydrogen Releases and Combustion in Subsea Tunnels
Oct 2015
Publication
Hydrogen is considered to be a very promising potential energy carrier due to its excellent characteristics such as abundant resources high fuel value clean and renewable. Its safety features greatly influence the potential use. Several safety problems need to be analyzed before using in transportation industry. With the development of the tunnel transportation technology the safe use of hydrogen in tunnels will receive a lot of research attentions. In this article the risk associated with hydrogen release from onboard high-pressure vessels and the induced combustion in tunnels was analyzed using the Partially Averaged Navier–Stokes (PANS) turbulence model. The influences of the tunnel ventilation facilities on the hydrogen flow characteristics and the flammable hydrogen cloud sizes were studied. The tunnel layouts were designed according to the subsea tunnel. And a range of longitudinal ventilation conditions had been considered to investigate the hydrogen releases and the sizes of the flammable hydrogen cloud. Then the hydrogen combustion simulation was carried out after the fixed leaking time. The overpressures induced after the ignition of leaking hydrogen were studied. The influences of ventilation and ignition delay time on the overpressure were also investigated. The main aim was to research the phenomena of hydrogen releases and combustion risk inside subsea tunnels and to lay the foundation of risk assessment methodology developed for hydrogen energy applications on transportation.
Hazid for CO2-free Hydrogen Supply Chain Feed (Front End Engineering Design)
Oct 2015
Publication
We at Kawasaki have proposed a “CO2 free H2 chain” using the abundant brown coal of Australia as a hydrogen source. We developed the basic design package and finished the Front End Engineering Design (FEED) in 2014. There are not only the hazards of the processing plant system but also the characteristic hazards of a hydrogen plant system. We considered and carried out Hazard Identification (HAZID) as the most appropriate approach for safety design in this stage. This paper describes the safety design and HAZID which we practiced for the CO2-Free Hydrogen Supply Chain FEED.
Experimental Study on Vented Hydrogen Deflagrations in a Low Strength Enclosure
Oct 2015
Publication
This paper describes an experimental programme on vented hydrogen deflagrations which formed part of the Hyindoor project carried out for the EU Fuel Cells and Hydrogen Joint Undertaking. The purpose of this study was to investigate the validity of analytical models used to calculate overpressures following a low concentration hydrogen deflagration. Other aspects of safety were also investigated such as lateral flame length resulting from explosion venting. The experimental programme included the investigation of vented hydrogen deflagrations from a 31 m3 enclosure with a maximum internal overpressure target of 10 kPa (100 mbar). The explosion relief was provided by lightly covered openings in the roof or sidewalls. Uniform and stratified initial hydrogen distributions were included in the test matrix and the location of the ignition source was also varied. The maximum hydrogen concentration used within the enclosure was 14% v/v. The hydrogen concentration profile within the enclosure was measured as were the internal and external pressures. Infrared video images were obtained of the gases vented during the deflagrations. Findings show that the analytical models were generally conservative for overpressure predictions. Flame lengths were found to be far less than suggested by some guidance. Along with the findings the methodology test conditions and corresponding results are presented.
CFD Study of the Unignited and Ignited Hydrogen Releases from TRPD Under a Fuel Cell Car
Oct 2015
Publication
This paper describes a CFD study of a scenario involving the vertical downward release of hydrogen from a thermally-activated pressure relief device (TPRD) under a fuel cell car. The volumetric source model is applied to simulate hydrogen release dynamics during the tank blowdown process. Simulations are conducted for both unignited and ignited releases from onboard storage at 35 MPa and 70 MPa with TPRD orifice 4.2 mm. Results show that after TPRD opening the hazards associated with the release of hydrogen lasts less than two minutes and the most hazardous timeframe occurs within ten seconds of the initiation of the release. The deterministic separation distances for unignited releases are longer than those for ignited releases indicating that the separation distances are dominated by delayed ignition events rather than immediate ignition events. The deterministic separation distances for both unignited and ignited hydrogen downward releases under the car are significantly shorter than those of free jets. To ensure the safety of people a deterministic separation distance of at least 10 m for 35 MPa releases is required. This distance should be increased to 12 m for the 70 MPa release case. To ensure that the concentration of hydrogen is always less than 4% at the location of the air intake of buildings the deterministic separation distance should be at least 11 m for 35 MPa releases and 13 m for 70 MPa releases.
Overview of the DOE Hydrogen Safety, Codes and Standards Program part 4- Hydrogen Sensors
Oct 2015
Publication
Hydrogen sensors are recognized as a critical element in the safety design for any hydrogen system. In this role sensors can perform several important functions including indication of unintended hydrogen releases activation of mitigation strategies to preclude the development of dangerous situations activation of alarm systems and communication to first responders and to initiate system shutdown. The functionality of hydrogen sensors in this capacity is decoupled from the system being monitored thereby providing an independent safety component that is not affected by the system itself. The importance of hydrogen sensors has been recognized by DOE and by the Fuel Cell Technologies Office’s Safety and Codes Standards (SCS) program in particular which has for several years supported hydrogen safety sensor research and development. The SCS hydrogen sensor programs are currently led by the National Renewable Energy Laboratory Los Alamos National Laboratory and Lawrence Livermore National Laboratory. The current SCS sensor program encompasses the full range of issues related to safety sensors including development of advance sensor platforms with exemplary performance development of sensor-related code and standards outreach to stakeholders on the role sensors play in facilitating deployment technology evaluation and support on the proper selection and use of sensors.
Transferring the Retail of Hydrogen Economy and Missing Safety Assurance
Sep 2019
Publication
Australian regional communities are moving ahead of governments. Enterprising individuals are pushing ahead to find global solutions to local issues that governments (local or state or federal) have abandoned stalled mothballed or failed to resolve. We are faced with a flaw in retail of hydrogen economy as fatal as Walgett running dry or a million fish killed in Murray-Darling. The challenge in Australian regional communities will be to interpret safety assurance requirements in an appropriate manner even in severe economic swings such as drought bushfire or floods. In this context the efficacious cultural embrace by regional communities of three key program elements is essential - Australian Hydrogen Safety Panel Hydrogen Safety Knowledge Tools and Dissemination Hydrogen Safety First Responder Training. What are the odds of no accident in retailing hydrogen for examples to vehicles? Place is everything in regional communities of Australia because in nature (as in the ocean) there is no spin. This paper examines the safety assurance issues associated with the cultural integration of Hydrogen’s three key program elements in a country Australia that is fed-up with government.
Hydrogen Fast Filling to a Type IV Tank Developed for Motorcycles
Oct 2015
Publication
If Hydrogen is expected to be highly valuable some improvements should be conducted mainly regarding the storage safety. To prevent from high pressure hydrogen composite tanks bursting the comprehension of the thermo-mechanics phenomena in the case of fire should be improved. To understand the kinetic of strength loss the heat flux produced by fire of various intensities should be assessed. This is the objective of this real scale experimental campaign which will allow studying in future works the strength loss of composite high-pressure vessels in similar fire conditions to the ones determined in this study. Fire calibration tests were performed on metallic cylinder vessels. These tests with metallic cylinders are critical in the characterization of the thermal load of various fire sources (pool fire propane gas fire hydrogen gas fire) so as to evaluate differences related to different thermal load. Radiant panels were also used as thermal source for reference of pure radiation heat transfer. The retained thermal load might be representative of accidental situations in worst case scenarios and relevant for a standardized testing protocol. The tests performed show that hydrogen gas fires and heptane pool fire allow reaching the target in terms of absorbed energy regarding the results of risk analysis performed previously. Other considerations can be taken into account that will led to retain an hydrogen gas fire for further works. Firstly hydrogen gas fire is the more realistic scenario: Hydrogen is the combustible that we every time find near an hydrogen storage. Secondly as one of the objectives of the project is to make recommendations for standardization issues it's important to note that gas fires are not too complex to calibrate control and reproduce. Finally due to previous considerations Hydrogen gas fire will be retained for thermal load of composite cylinders in future works.
Humidity Tolerant Hydrogen-oxygen Recombination Catalysts for Hydrogen Safety Applications
Sep 2017
Publication
Catalytic hydrogen-oxygen recombination is a non-traditional method to limit hydrogen accumulation and prevent combustion in the hydrogen industry. Outside of conventional use in the nuclear power industry this hydrogen safety technology can be applied when traditional hydrogen mitigation methods (i.e. active and natural ventilation) are not appropriate or when a back-up system is required. In many of these cases it is desirable for hydrogen to be removed without the use of power or other services which makes catalytic hydrogen recombination attractive. Instances where catalytic recombination of hydrogen can be utilized as a stand-alone or back-up measure to prevent hydrogen accumulation include radioactive waste storage (hydrogen generated from water radiolysis or material corrosion) battery rooms hydrogen-cooled generators hydrogen equipment enclosures etc.<br/>Water tolerant hydrogen-oxygen recombiner catalysts for non-nuclear applications have been developed at Canadian Nuclear Laboratories (CNL) through a program in which catalyst materials were selected prepared and initially tested in a spinning-basket type reactor to benchmark the catalyst’s performance with respect to hydrogen recombination in dry and humid conditions. Catalysts demonstrating high activity for hydrogen recombination were then selected and tested in trickle-bed and gas phase recombiner systems to determine their performance in more typical deployment conditions. Future plans include testing of selected catalysts after exposure to specific poisons to determine the catalysts’ tolerance for such poisons.
Performance Evaluation of the Miniaturized Catalytic Combustion Type Hydrogen Sensor
Oct 2015
Publication
Fast response and high durability hydrogen sensor is required in the safety management of hydrogen station and fuel cell vehicle. We had developed the catalytic combustion type hydrogen sensor in the shape of the miniature beads. It is using the optimized Pd-Pt/Al2O3 catalyst and the Pt micro-heater coil. Both warm-up time and response time of this sensor achieved less than 1 second by downsizing the element to 200μm diameter. Furthermore we improved the resistance of sensor poisoning to silicone vapor and confirmed long term stability within +/-10% of output error up to 8 years. Therefore we assume that our sensor technology contribute to hydrogen safety.
Risk Analysis of Complex Hydrogen Infrastructures
Oct 2015
Publication
Building a network of hydrogen refuelling stations is essential to develop the hydrogen economy within transport. Additional hydrogen is regarded a likely key component to store and convert back excess electrical power to secure future energy supply and to improve the quality of biomass-based fuels. Therefore future hydrogen supply and distribution chains will have to address several objectives. Such a complexity is a challenge for risk assessment and risk management of these chains because of the increasing interactions. Improved methods are needed to assess the supply chain as a whole. The method of “Functional modelling” is discussed in this paper. It will be shown how it could be a basis for other decision support methods for comprehensive risk and sustainability assessments.
Modelling and Numerical Simulation of Hydrogen Jet Fires for Industrial Safety Analyses – Comparison with Large-scale Experiments
Sep 2019
Publication
Reliable predictive tools for hydrogen safety engineering are needed to meet increased and more widespread use of hydrogen in the society. Industrial models and methods used to establish thermal radiation hazard safety distances from hydrogen jet fires are often based on models previously developed for hydrocarbon jet fires. Their capability of predicting radiative heat fluxes from hydrogen jet fires has often only been validated against small-scale or medium-scale jet flame experiments. However large-scale hydrogen jet fire experiments have shown that thermal radiation levels can be significantly higher than one might expect from extrapolation of experience on smaller hydrogen flames. Here two large-scale horizontal hydrogen jet fires (from a 20.9 mm and a 52.5 mm diameter release respectively) have been modelled and simulated with the advanced industrial CFD code KAMELEON FIREEX KFX® based on the Eddy Dissipation Concept by Magnussen for turbulent combustion modelling. The modelling of the high-pressure hydrogen gas releases is based on a pseudo-source concept using real-gas thermodynamic data for hydrogen. The discrete transport method of Lockwood and Shah is used to calculate the radiative heat transfer and radiative properties of water vapour are modelled according to Leckner. The predicted thermal radiation is compared to data from large-scale hydrogen jet fire experiments and discussed. This work was conducted as part of a KFX-H2 R&D project supported by the Research Council of Norway.
Full Scale Experimental Campaign to Determine the Actual Heat Flux Produced by Fire on Composite Storages - Calibration Tests on Metallic Vessels
Oct 2015
Publication
If Hydrogen is expected to be highly valuable some improvements should be conducted mainly regarding the storage safety. To prevent from high pressure hydrogen composite tanks bursting the comprehension of the thermo-mechanics phenomena in the case of fire should be improved. To understand the kinetic of strength loss the heat flux produced by fire of various intensities should be assessed. This is the objective of this real scale experimental campaign which will allow studying in future works the strength loss of composite high-pressure vessels in similar fire conditions to the ones determined in this study. Fire calibration tests were performed on metallic cylinder vessels. These tests with metallic cylinders are critical in the characterization of the thermal load of various fire sources (pool fire propane gas fire hydrogen gas fire) so as to evaluate differences related to different thermal load. Radiant panels were also used as thermal source for reference of pure radiation heat transfer. The retained thermal load might be representative of accidental situations in worst case scenarios and relevant for a standardized testing protocol. The tests performed show that hydrogen gas fires and heptane pool fire allow reaching the target in terms of absorbed energy regarding the results of risk analysis performed previously. Other considerations can be taken into account that will led to retain an hydrogen gas fire for further works. Firstly hydrogen gas fire is the more realistic scenario: Hydrogen is the combustible that we every time find near an hydrogen storage. Secondly as one of the objectives of the project is to make recommendations for standardization issues it’s important to note that gas fires are not too complex to calibrate control and reproduce. Finally due to previous considerations Hydrogen gas fire will be retained for thermal load of composite cylinders in future works.
Experimental Study on Accumulation of Helium Released into a Semi-confined Enclosure without Ventilation
Sep 2019
Publication
This paper examines the helium dispersion behaviour in a 16.6 m3 enclosure with a small opening in the floor and distributed leaks along the edges. Helium a simulant for hydrogen was injected near the center of the floor with an injection rate ranging from 2 to 50 standard liters per minute (Richardson number of 0.3–134) through an upward-facing nozzle. In a short-term transient the helium distribution predicted with the models of Baines & Turner (1969) and Worster & Huppert (1983) matched the measured distributions reasonably well. In a long-term transient the vertical helium profile always reached a steady state which consisted of a homogenous layer at the top overlaying a stratified layer at the bottom. The helium transients in the uniform layer predicted with the models of Lowesmith (2009) and Prasad & Yang (2010) assuming a vent was located in the ceiling were in good agreement with the measured transients.
Cylinders and Tubes Used as Buffers in Filling Stations
Oct 2015
Publication
Buffers are key components for hydrogen filling stations that are currently being developed. Type 1 or composite cylinders are used for this application. The type used depends on many parameters including pressure level cost and space available for the filling station. No international standards exist for such high pressure vessels whereas many standards exist covering Types 123 and 4 used for transport of gas or on-board fuel tanks. It is suggested to use the cylinders approved for transport or on-board applications as buffers. This solution appears to be safe if at least one issue is solved. The main difference is that transport or on-board cylinders are cycled from a low pressure to a high pressure during service whereas buffers are cycled from a relatively high pressure (corresponding to the vehicle’s filling pressure) to the MAWP. Another difference is that buffers are cycled many times per day. For standards developers requesting to systematically verify that buffers pass millions of cycles at low pressure amplitude would be impractical. Several standards and codes give formulae to estimate the number of shallow cycles when number of deep cycles are known. In this paper we describe tests performed on all types of composite cylinders to verify or determine the appropriate formulae.
Simulation of Deflagration-to-detonation Transition of Lean H2-CO-Air Mixtures in Obstructed Channels
Sep 2019
Publication
The possibility of flame acceleration (FA) and deflagration-to-detonation transition (DDT) when homogeneous hydrogen-carbon monoxide-air (H2-CO-air) mixtures are used rises the need for an efficient simulation approach for safety assessment. In this study a modelling approach for H2-CO-air flames incorporating deflagration and detonation within one framework is presented. It extends the previous work on H2-air mixtures. The deflagration is simulated by means of the turbulent flame speed closure model incorporating a quenching term. Since high flow velocities e.g. the characteristic speed of sound of the combustion products are reached during FA the flow passing obstacles generates turbulence at high enough levels to partially quench the flame. Partial flame quenching has the potential to stall the onset of detonation. An altered formulation for quenching is introduced to the modelling approach to better account for the combustion characteristics for accelerating lean H2-CO-air flames. The presented numerical approach is validated with experimental flame velocity data of the small-scale GraVent test rig [1] with homogeneous fuel contents of 22.5 and 25.0 vol-% and fuel compositions of 75/25 and 50/50 vol-% H2/CO respectively. The impact of the quenching term is further discussed on simulations of the FZK-7.2m test rig [2] whose obstacle spacing is smaller than the spacing in the GraVent test rig.
CFD Modeling for Helium Releases in a Private Garage Without Forced Ventilation.
Sep 2005
Publication
In the course towards a safe future hydrogen based society one of the tasks to be considered is the investigation of the conditions under which the use or storage of hydrogen systems inside buildings becomes too dangerous to be accepted. One of the relevant scenarios which is expected to have a relatively high risk is a slow (and long lasting) hydrogen release from a vehicle stored in a closed private garage without any forced ventilation i.e. only with natural ventilation. This scenario has been earlier investigated experimentally (by M. Swain) using He (helium) to simulate the hydrogen behavior. In the present work the CFD code ADREA-HF is used to simulate three of the abovementioned experiments using the standard k- turbulence model. For each case modeled the predicted concentration (by vol.) time series are compared against the experimental at the given sensor locations. In addition the structure of the flow is investigated by presenting the helium concentration field.
Rayleigh-Taylor Instability: Modelling and Effect on Coherent Deflagrations
Sep 2013
Publication
The modelling of Rayleigh–Taylor instability during premixed combustion scenarios is presented. Experimental data obtained from experiments undertaken by FM Global using their large-scale vented deflagration chamber was used to develop the modelling approach. Rayleigh–Taylor instability is introduced as an additional time-dependent combustion enhancing mechanism. It is demonstrated that prior to the addition of this mechanism the LES deflagration model under-predicted the experimental pressure transients. It is confirmed that the instability plays a significant role throughout the coherent deflagration process. The addition of the mechanism led to the model more closely replicating the pressure peak associated with the external deflagration.
Dynamic Crush Test on Hydrogen Pressurized Cylinder
Sep 2005
Publication
It is necessary to investigate cylinder crush behavior for improvement of fuel cell vehicle crash safety. However there have been few crushing behaviour investigations of high pressurized cylinders subjected to external force. We conducted a compression test of pressurized cylinders impacted by external force. We also investigated the cylinder strength and crushing behaviour of the cylinder. The following results were obtained.
- The crush force of high pressurized cylinders is different from the direction of external force. The lateral crush force of high pressurized cylinders is larger than the external axial crush force.
- Tensile stress occurs in the boundary area between the cylinder dome and central portion when the pressurized cylinder is subjected to axial compression force and the cylinder is destroyed.
- However the high pressurized cylinders tested had a high crush force which exceeded the assumed range of vehicle crash test procedures
Development of High-pressure Hydrogen Gas Barrier Materials
Oct 2015
Publication
We prepared several gas barrier resins based on amorphous PVA derivative that has the T1C (13C spin-lattice relaxation time) of a long time component in amorphous phase. We confirmed it was important to control state in amorphous phase of gas barrier resin in order to achieve both moldability and good gas barrier property. Polymer alloy was designed to improve flexibility. Polymer alloy made of amorphous PVA and elastomer resin showed good hydrogen resistance. Even after its polymer alloy were repeatedly exposed to 70MPa hydrogen gas the influence on higher-order structure in amorphous phase was in negligible level.
Application of Reactive Discrete Equation Method to the ENACCEF Test 13h
Sep 2011
Publication
The Reactive Discrete Equation Method (RDEM) was recently introduced in [12] adapted to combustion modelling in [3] and implemented in the TONUS code [4]. The method has two major features: the combustion constant having velocity dimension is the fundamental flame speed and the combustion wave now is an integral part of the Reactive Riemann Problem. In the present report the RDEM method is applied to the simulation of the combustion Test 13H performed in the ENACCEF facility. Two types of computations have been considered: one with a constant fundamental flame speed the other with time dependent fundamental flame speed. It is shown that by using the latter technique we can reproduce the experimental visible flame velocity. The ratio between the fundamental flame speed and the laminar flame speed takes however very large values compared to the experimental data based on the tests performed in spherical bombs or cruciform burner.
Numerical Investigation of a Mechanical Device Subjected to a Deflagration-to-detonation Transition
Sep 2011
Publication
In this work we evaluate the consequences of the combustion of a stoichiometric mixture of hydrogen-air on a mechanical device which can be considered as a long tube. In order to choose the most dangerous combustion regime for the mechanical device we devote a particular attention to the investigation of the 1D deflagration-to-detonation transition. Then once established the most dangerous combustion regime we compute the reacting flow and the stress and strain in the mechanical device. Analyses are performed using both semi-analytical solutions and Europlexus a computer program for the simulation of fluid-structure systems under transient dynamic loading.
Effect of Hydrogen Concentration on Vented Explosion Overpressures from Lean Hydrogen–air Deflagrations
Sep 2011
Publication
Experimental data from vented explosion tests using lean hydrogen–air mixtures with concentrations from 12 to 19% vol. are presented. A 63.7-m3 chamber was used for the tests with a vent size of either 2.7 or 5.4 m2. The tests were focused on the effect of hydrogen concentration ignition location vent size and obstacles on the pressure development of a propagating flame in a vented enclosure. The dependence of the maximum pressure generated on the experimental parameters was analyzed. It was confirmed that the pressure maxima are caused by pressure transients controlled by the interplay of the maximum flame area the burning velocity and the overpressure generated outside of the chamber by an external explosion. A model proposed earlier to estimate the maximum pressure for each of the main pressure transients was evaluated for the various hydrogen concentrations. The effect of the Lewis number on the vented explosion overpressure is discussed.
Experimental Study of Ignited Unsteady Hydrogen Jets into Air
Sep 2009
Publication
In order to simulate an accidental hydrogen release from the low pressure pipe system of a hydrogen vehicle a systematic study on the nature of transient hydrogen jets into air and their combustion behaviour was performed at the FZK hydrogen test site HYKA. Horizontal unsteady hydrogen jets with an amount of hydrogen up to 60 STP dm3 and initial pressures of 5 and 16 bar have been investigated. The hydrogen jets were ignited with different ignition times and positions. The experiments provide new experimental data on pressure loads and heat releases resulting from the deflagration of hydrogen-air clouds formed by unsteady turbulent hydrogen jets released into a free environment. It is shown that the maximum pressure loads occur for ignition in a narrow position and time window. The possible hazard potential arising from an ignited free transient hydrogen jet is described.
Numerical Study of Spontaneous Ignition in Pressurized Hydrogen Release Through a Length of Tube with Local Contraction
Sep 2011
Publication
Numerical investigations have been conducted on the effect of the internal geometry of a local contraction on the spontaneous ignition of pressurized hydrogen release through a length of tube using a 5th-order WENO scheme. A mixture-averaged multi-component approach was used for accurate calculation of molecular transport. The auto-ignition and combustion chemistry were accounted for using a 21-step kinetic scheme. It is found that a local contraction can significantly facilitate the occurrence of spontaneous ignition by producing elevated flammable mixture and enhancing turbulent mixing from shock formation reflection and interaction. The first ignition kernel is observed upstream the contraction. It then quickly propagates along the contact interface and transits to a partially premixed flame due to the enhanced turbulent mixing. The partially premixed flames are highly distorted and overlapped with each other. Flame thickening is observed which is due to the merge of thin flames. The numerical predictions suggested that sustained flames could develop for release pressure as low as 25 bar. For the release pressure of 18 bar spontaneous ignition was predicted but the flame was soon quenched. To some extent this finding is consistent with Dryer et al.'s experimental observation in that the minimum release pressure required to induce a spontaneous ignition for the release through a tube with internal geometries is only 20.4 bar.
Risk Assessment of Hydrogen Explosion for Private Car with Hydrogen-driven Engine
Sep 2009
Publication
The aim of the study is to identify and quantify the additional risks related to hydrogen explosions during the operation of a hydrogen-driven car. In a first attempt the accidents or failures of a simple one-tank hydrogen storage system have been studied as a main source of risk. Three types of initiators are taken into account: crash accidents fire accidents without crash (no other cars are involved) and hydrogen leakages in normal situation with following ignition. The consequences of hydrogen ignition and/or explosion depend strongly on environmental conditions (geometry wind etc.) therefore the different configurations of operational and environmental conditions are specified.<br/>Then Event Tree/Fault Tree methods are applied for the risk assessment.<br/>The results of quantification permit to draw conclusions about the overall added risk of hydrogen technology as well as about the main contributors to the risk. Results of this work will eventually contribute to the on-going pre-normative research in the field of hydrogen safety.
Safety Aspects in the Production and Separation of Hydrogen from Biomass
Sep 2011
Publication
Tecnalia is working in the development of gasification technology for the production of hydrogen from biomass. Biomass is an abundant and disperse renewable energy source that can be important for the production of hydrogen. The development of hydrogen system from biomass requires multifaceted studies on hydrogen production systems hydrogen separation methods and hydrogen safety aspects. Steam gasification of biomass produces a syngas with high hydrogen content but this syngas requires a post-treatment to clean and to separate the hydrogen. As a result of this analysis Tecnalia has defined a global process for the production cleaning enrichment and separation of hydrogen from the syngas produced from biomass gasification. But besides the technical aspects safety considerations affecting all the described processes have been identified. For that reason it is being developed a procedure to establish the technical requirements and the recommended practices to ensure the highest level of safety in the production and handing of hydrogen.
No more items...