Safety
Feasibility of Hydrogen Detection by the Use of Uncoated Silicon Microcantilever-based Sensors
Sep 2013
Publication
Hydrogen is a key parameter to monitor radioactive disposal facility such as the envisioned French geological repository for nuclear wastes. The use of microcantilevers as chemical sensors usually involves a sensitive layer whose purpose is to selectively sorb the analyte of interest. The sorbed substance can then be detected by monitoring either the resonant frequency shift (dynamic mode) or the quasi-static deflection (static mode). The objective of this paper is to demonstrate the feasibility of eliminating the need for the sensitive layer in the dynamic mode thereby increasing the long-term reliability. The microcantilever resonant frequency allows probing the mechanical properties (mass density and viscosity) of the surrounding fluid and thus to determine the concentration of a species in a binary gaseous. Promising preliminary work has allowed detecting concentration of 200 ppm of hydrogen in air with non-optimized geometry of silicon microcantilever with integrated actuation and read-out.
Impact Assessments on People and Buildings for Hydrogen Pipeline Explosions
Sep 2019
Publication
Hydrogen has the potential to act as the energy carrier of the future. It will be then produced in large amounts and will certainly need to be transported for long distances. The safest way to transport hydrogen is through pipelines. Failure of pipelines carrying gaseous hydrogen can have several effects some of which can pose a significant threat of damage to people and buildings in the immediate proximity of the failure location. This paper presents a probabilistic risk assessment procedure for the estimation of damage to people and buildings endangered by high-pressure hydrogen pipeline explosions. The procedure provides evaluation of annual probability of damage to people and buildings under an extreme event as a combination of the conditional probability of damage triggered by an explosion and the probability of occurrence of the explosion as a consequence of the pipeline failure. Physical features such as the gas jet release process flammable cloud size blast generation and explosion effects on people and buildings are considered and evaluated through the SLAB integral model TNO model Probit equations and Pressure-Impulse diagrams. For people both direct and indirect effects of overpressure events are considered. For buildings a comparison of the damage to different types of buildings (i.e. reinforced concrete buildings and tuff stone masonry buildings) is made. The probabilistic procedure presented may be used for designing a new hydrogen pipeline network and will be an advantageous tool for safety management of hydrogen gas pipelines.
Safety Issues of the Liquefaction, Storage and Transportation of Liquid Hydrogen
Sep 2013
Publication
The objectives of the IDEALHY project which receives funding from the European Union’s 7th Framework Programme (FP7/2007-2013) for the Fuel Cells and Hydrogen Joint Technology Initiative under grant agreement No. 278177 are to design a novel process that will significantly increase the efficiency of hydrogen liquefaction and be capable of delivering liquid hydrogen at a rate that is an order of magnitude greater than current plants. The liquid hydrogen could then be delivered to refueling stations in road tankers. As part of the project the safety management of the new large scale process and the transportation of liquid hydrogen by road tanker into urban areas are being considered. Effective safety management requires that the hazards are identified and well understood. This paper describes the scope of the safety work within IDEALHY and presents the output of the work completed so far. Initially a review of available experimental data on the hazards posed by releases of liquid hydrogen was undertaken which identified that generally there is a dearth of data relevant to liquid hydrogen releases. Subsequently HAZIDs have been completed for the new liquefaction process storage of liquid hydrogen and its transportation by road. This included a review of incidents relevant to these activities. The principal causes of the incidents have been analysed. Finally the remaining safety work for the IDEALHY project is outlined.
Detonation Wave Propagation in Semi-confined Layers of Hydrogen-air and Hydrogen-oxygen Mixtures
Oct 2015
Publication
This paper presents results of an experimental investigation on detonation wave propagation in semi-confined geometries. Large scale experiments were performed in layers up to 0.6 m filled with uniform and non-uniform hydrogen–air mixtures in a rectangular channel (width 3 m; length 9 m) which is open from below. A semi confined driver section is used to accelerate hydrogen flames from weak ignition to detonation. The detonation propagation was observed in a 7 m long unobstructed part of the channel. Pressure measurements ionization probes soot-records and high speed imaging were used to observe the detonation propagation. Critical conditions for detonation propagation in different layer thicknesses are presented for uniform H2/air-mixtures as well as experiments with uniform H2/O2 mixtures in a down scaled transparent channel. Finally detail investigations on the detonation wave propagation in H2/air-mixtures with concentration gradients are shown.
Boundary Layer Effects on the Critical Nozzle of Hydrogen Sonic Jet
Oct 2015
Publication
When hydrogen flows through a small finite length constant exit area nozzle the viscous effects create a fluid throat which acts as a converging-diverging nozzle and lead to Mach number greater than one at the exit if the jet is under-expanded. This phenomenon influences the mass flow rate and the dispersion cloud size. In this study the boundary layer effect on the unsteady hydrogen sonic jet flow through a 1 mm diameter pipe from a high pressure reservoir (up to 70 MPa) is studied using computational fluid dynamics with a large eddy simulation turbulence model. This viscous flow simulation is compared with a non-viscous simulation to demonstrate that the velocity is supersonic at the exit of a small exit nozzle and that the mass flow is reduced.
Experiments on Flame Acceleration and DDT for Stoichiometric Hydrogen/Air Mixture in a Thin Layer Geometry
Sep 2017
Publication
A series of experiments in a thin layer geometry performed at the HYKA test site of the KIT. The experiments on different combustion regimes for lean and stoichiometric H2/air mixtures were performed in a rectangular chamber with dimensions of 20 x 90 x h cm3 where h is the thickness of the layer (h = 1 2 4 6 8 10 mm). Three different layer geometries:
- a smooth channel without obstructions;
- the channel with a metal grid filled 25% of length and
- a metal grid filled 100% of length.
Development of a Model Evaluation Protocol for CFD Analysis of Hydrogen Safety Issues – The SUSANA Project
Oct 2015
Publication
The “SUpport to SAfety aNAlysis of Hydrogen and Fuel Cell Technologies (SUSANA)” project aims to support stakeholders using Computational Fluid Dynamics (CFD) for safety engineering design and assessment of FCH systems and infrastructure through the development of a model evaluation protocol. The protocol covers all aspects of safety assessment modelling using CFD from release through dispersion to combustion (self-ignition fires deflagrations detonations and Deflagration to Detonation Transition - DDT) and not only aims to enable users to evaluate models but to inform them of the state of the art and best practices in numerical modelling. The paper gives an overview of the SUSANA project including the main stages of the model evaluation protocol and some results from the on-going benchmarking activities.
Effects of Oxidants on Hydrogen Spontaneous Ignition: Experiments and Modelling
Sep 2017
Publication
Experiments were performed on the influence of oxidants (air pure oxygen O2 and pure nitrous oxide N2O at atmospheric pressure) in the straight expansion tube after the burst disk on the hydrogen spontaneous ignition. The lowest pressure at which the spontaneous ignition is observed has been researched for a 4 mm diameter tube with a length of 10 cm for the two oxidant gases. The ignition phenomenon is observed with a high speed camera and the external overpressures are measured. Numerical simulations have also been conducted with the high resolution CFD approach detailed chemistry formerly developed by Wen and co-workers. Comparison is made between the predictions and the experimental data.
Advancing the Hydrogen Safety Knowledge Base
Sep 2013
Publication
The International Energy Agency's Hydrogen Implementing Agreement (IEA HIA) was established in 1977 to pursue collaborative hydrogen research and development and information exchange among its member countries. Information and knowledge dissemination is a key aspect of the work within IEA HIA tasks and case studies technical reports and presentations/publications often result from the collaborative efforts. The work conducted in hydrogen safety under Task 31 and its predecessor Task 19 can positively impact the objectives of national programs even in cases for which a specific task report is not published. The interactions within Task 31 illustrate how technology information and knowledge exchange among participating hydrogen safety experts serve the objectives intended by the IEA HIA.
A Comparative CFD Assessment Study of Cryogenic Hydrogen and Liquid Natural Gas Dispersion
Sep 2017
Publication
The introduction of hydrogen to the commercial market as alternative fuel brings up safety concerns. Its storage in liquid or cryo-compressed state to achieve volumetric efficiency involves additional risks and their study is crucial. This work aims to investigate the behaviour of cryogenic hydrogen release and to study factors that affect the vapor dispersion. We focus on the effect of ambient humidity and air's components (nitrogen and oxygen) freezing in order to identify the conditions under which these factors have considerable influence. The study reveals that the level of influence depends highly on the release conditions and that humidity can reduce conspicuously the longitudinal distance of the Lower Flammability Limit (LFL). Low Froude (Fr) number (<1000) at the release allows the generated by the humidity phase change buoyancy to affect the dispersion while for higher Fr number - that usually are met in cryo-compressed releases - the momentum forces are the dominant forces and the buoyancy effect is trivial. Simulations with liquid methane release have been also performed and compared to the liquid hydrogen simulations in order to detect the differences in the behaviour of the two fuels as far as the humidity effect is concerned. It is shown that in methane spills the buoyancy effect in presence of humidity is smaller than in hydrogen spills and it can be considered almost negligible.
Risk Assessment on Life Safety and Financial Loss for Road Accident of Fuel Cell Vehicles
Sep 2017
Publication
Vehicular use of hydrogen is the first attempt to apply hydrogen energy in consumers’ environment in large scale and has raised safety concerns in both public authorities and private bodies such as fire services and insurance companies. This paper analyzes typical accident progressions of hydrogen fuel cell vehicles in a road collision accident. Major hydrogen consequences including impinging jet fires and catastrophic tank ruptures are evaluated separately in terms of accident duration and hazard distances. Results show that in a 70 MPa fuel cell car accident the hazards associated with hydrogen releases would normally last for no more than 1.5 min due to the empty of the tank. For the safety of general public a perimeter of 100 m is suggested in the accident scene if no hissing sound is heard. However the perimeter can be reduced to 10 m once the hissing sound of hydrogen release is heard. Furthermore risks of fatalities injuries and damages are all quantified in financial terms to assess the impacts of the accident. Results show that costs of fatalities and injuries contribute most to the overall financial loss indicating that the insurance premium of fatalities and injuries should be set higher than that of property loss.
JRC Reference Data from Experiments of Onboard Hydrogen Tanks Fast Filling
Sep 2013
Publication
At the JRC-IET on-board hydrogen tanks have been subjected to filling–emptying cycles to investigate their long-term mechanical and thermal behaviour and their safety performance. The local temperature history inside the tanks has been measured and compared with the temperatures outside and at the tank metallic bosses which is the measurement location identified by some standards. The outcome of these activities is a set of experimental data which will be made publicly available as reference for safety studies and validation of computational fluid dynamics.
Safe Operation of Natural Gas Appliances Fuelled with Hydrogen & Natural Gas Mixtures (Progress Obtained in the Naturalhy-Project)
Sep 2007
Publication
Considering the transition towards the hydrogen economy dependent on hydrogen penetration scenario the cost of a new hydrogen pipeline infrastructure in Europe may amount to several thousands of billions of EURO’s. Therefore the examination of the potential contribution of the existing natural gas assets is a practical and logical first step. As the physical and chemical properties of hydrogen differ significantly from those of natural gas it is not at all possible to simply exchange natural gas by hydrogen in the existing infrastructure. In this paper first a brief overview will be given of the NATURALHY-project. Further the focus will be on the impact of added hydrogen on the performance of existing natural gas domestic end user appliances which is related to the operation of the natural gas grid connecting the different types of appliance. The application of the fundamental insights and carefully designed experiments comparing the behaviour of gases using justified reference conditions have been shown to offer essential progress. The Wobbe index limits of the natural gas distributed pose a first limiting factor upon the maximum allowable hydrogen concentration. Constant-Wobbe index and decreasing-Wobbe index options of H2 admixture have been studied. Considering the appliance light back H2 limiting factor for domestic appliances fuel-rich appliances are the critical ones. Also taking into account stationary gas engines gas turbines industrial applications and natural gas grid management it is not yet justified to present statements on what level of hydrogen concentration could be safely allowed in which specific natural gas distribution region. But more clarity has been obtained on combustion safety aspects of existing domestic appliances on the connection with Wobbe distribution conditions and on the bottlenecks still to be handled.
Prevention of Hydrogen Accumulation Inside the Vacuum Vessel Pressure Suppression System of the ITER Facility by Means of Passive Auto-catalytic Recombiners
Sep 2017
Publication
Hydrogen safety is a relevant topic for both nuclear fission and fusion power plants. Hydrogen generated in the course of a severe accident may endanger the integrity of safety barriers and may result in radioactive releases. In the case of the ITER fusion facility accident scenarios with water ingress consider the release of hydrogen into the suppression tank (ST) of the vacuum vessel pressure suppression system (VVPSS). Under the assumption of additional air ingress the formation of flammable gas mixtures may lead to explosions and safety component failure.<br/>The installation of passive auto-catalytic recombiners (PARs) inside the ST which are presently used as safety devices inside the containments of nuclear fission reactors is one option under consideration to mitigate such a scenario. PARs convert hydrogen into water vapor by means of passive mechanisms and have been qualified for operation under the conditions of a nuclear power plant accident since the 1990s.<br/>In order to support on-going hydrogen safety considerations simulations of accident scenarios using the CFD code ANSYS-CFX are foreseen. In this context the in-house code REKO-DIREKT is coupled to CFX to simulate PAR operation. However the operational boundary conditions for hydrogen recombination (e.g. temperature pressure gas mixture) of a fusion reactor scenario differ significantly from those of a fission reactor. In order to enhance the code towards realistic PAR operation a series of experiments has been performed in the REKO-4 facility with specific focus on ITER conditions. These specifically include operation under sub-atmospheric pressure (0.2–1.0 bar) gas compositions ranging from lean to rich H2/O2 mixtures and superposed flow conditions.<br/>The paper gives an overview of the experimental program presents results achieved and gives an outlook on the modelling approach towards accident scenario simulation.
European Hydrogen Safety Training Programme for First Responders: Hyresponse Outcomes and Perspectives
Sep 2017
Publication
The paper presents the outcomes of the HyResponse project i.e. the European Hydrogen Safety Training Programme for first responders. The threefold training is described: the content of the educational training is presented the operational training platform and its mock-up real scale transport and hydrogen stationary installations are detailed and the innovative virtual tools and training exercises are highlighted. The paper underlines the outcomes the three pilot sessions as well as the Emergency Response Guide available on the HyResponse’s public website. The next steps for widespread dissemination into the community are discussed.
The Pressure Peaking Phenomenon: Validation for Unignited Releases in Laboratory-scale Enclosure
Oct 2015
Publication
This study is aimed at the validation of the pressure peaking phenomenon against laboratory-scale experiments. The phenomenon was discovered recently as a result of analytical and numerical studies performed at Ulster University. The phenomenon is characterized by the existence of a peak on the overpressure transient in an enclosure with vent(s) at some conditions. The peak overpressure can significantly exceed the steady-state pressure and jeopardise a civil structure integrity causing serious life safety and property protection problems. However the experimental validation of the phenomenon was absent until recently. The validation experiments were performed at Karlsruhe Institute of Technology within the framework of the HyIndoor project. Tests were carried out with release of three different gases (air helium and hydrogen) within a laboratory-scale enclosure of about 1 m3 volume with a vent of comparatively small size. The model of pressure peaking phenomenon reproduced closely the experimental pressure dynamics within the enclosure for all three used gases. The prediction of pressure peaking phenomenon consists of two steps which are explained in detail. Examples of calculation for typical hydrogen applications are presented.
Dynamic Load Analysis of Explosion in Inhomogeneous Hydrogen-air Mixtures
Sep 2017
Publication
This paper presents results from experiments on gas explosions in inhomogeneous hydrogen-air mixtures. The experimental channel is 3 m with a cross section of 100 mm by 100 mm and a 0.25 mm ID nozzle for hydrogen release into the channel. The channel is open in one end. Spectral analysis of the pressure in the channel is used to determine dynamic load factors for SDOF structures. The explosion pressures in the channel will fluctuate with several frequencies or modes and a theoretical high DLF is seen when the pressure frequencies and eigen frequencies of the structure matches.
Development of a Generalized Integral Jet Model
Sep 2017
Publication
Integral type models to describe stationary plumes and jets in cross-flows (wind) have been developed since about 1970. These models are widely used for risk analysis to describe the consequences of many different scenarios. Alternatively CFD codes are being applied but computational requirements still limit the number of scenarios that can be dealt with using CFD only. The integral models however are not suited to handle transient releases such as releases from pressurized equipment where the initially high release rate decreases rapidly with time. Further on gas ignition a second model is needed to describe the rapid combustion of the flammable part of the plume (flash fire) and a third model has to be applied for the remaining jet fire. The objective of this paper is to describe the first steps of the development of an integral-type model describing the transient development and decay of a jet of flammable gas after a release from a pressure container. The intention is to transfer the stationary models to a fully transient model capable to predict the maximum extension of short-duration high pressure jets. The model development is supported by conducting a set of transient ignited and unignited spontaneous releases at initial pressures between 25bar and 400bar. These data forms the basis for the presented model development approach.
Hydrogen Risk Analysis for a Generic Nuclear Containment Ventilation System
Oct 2015
Publication
Hydrogen safety issue in a ventilation system of a generic nuclear containment is studied. In accidental scenarios a large amount of burnable gas mixture of hydrogen with certain amount of oxygen is released into the containment. In case of high containment pressure the combustible mixture is further ventilated into the chambers and the piping of the containment ventilation system. The burnable even potentially detonable gas mixture could pose a risk to the structures of the system once being ignited unexpectedly. Therefore the main goal of the study is to apply the computational fluid dynamics (CFD) computer code – GASFLOW to analyze the distribution of the hydrogen in the ventilation system and to find how sensitive the mixture is to detonation in different scenarios. The CFD simulations manifest that a ventilation fan with sustained power supply can extinguish the hydrogen risk effectively. However in case of station blackout with loss of power supply to the fan hydrogen/oxygen mixture could be accumulated in the ventilation system. A further study proves that steam injection could degrade the sensitivity of the hydrogen mixture significantly.
Effect of Expansion Ratio on Flame Acceleration During Hydrogen Fueled Gas Explosions
Sep 2019
Publication
A precise understanding of the flame turbulence induced by cellular instabilities is indispensable to perform an appropriate risk assessment of hydrogen fuelled gas explosion. In this research Darrieus Landau instability (DL instability) whose effect on gas explosion is remarkable was experimentally examined. The DL instability is essentially caused by a volumetric expansion of burned gas at flame front. Therefore in order to examine the effects of volumetric expansion ratio the experiments were conducted using H2-O2-N2-Ar gas mixtures of various volumetric expansion ratio conditions by changing N2-Ar ratio. When Ar content ratio is increased the flame temperature becomes higher and volumetric expansion ratio is increased owing to lower specific heat of Ar. The experiments were conducted in nearly unconfined conditions of laboratory-scale and large-scale. Gas mixtures were filled in a 10 cm diameter soap bubble for the laboratory-scale and in a plastic tent of thin vinyl sheet of 1m3 for the large-scale. The gas mixtures were ignited by an electric spark and blast wave and flame speed were measured simultaneously by using a pressure sensor and a high-speed video camera. The DL instability owing to volumetric expansion accelerates flame propagation. In addition the intensity of blast wave was greatly raised depending on flame acceleration which can be explained by an acoustic theory. The effects of expansion ratio and experimental scales on flame propagation and blast wave were analyzed in detail. These results are quite important to perform an appropriate consequence analysis of accidental explosion of hydrogen.
No more items...