Safety
Comparative Study of Regulations, Codes and Standards and Practices on Hydrogen Fuelling Stations
Oct 2015
Publication
This work deals with a comparative study of regulations codes and standards for hydrogen fuelling station dedicated for light duty land vehicles in the following countries: United States (California) United Kingdom Italy Germany Canada Sweden Norway Denmark and Spain.<br/>The following technical components of a hydrogen fuelling station are included in the scope of the study: the hydrogen storage systems (cryogenic or compressed gases) and buffer storage the compressor stations the high pressure buffer storage the cooling systems for hydrogen the dispensing equipments and the dispensing area. The hydride storage the pipelines on site production and the hydrogen vehicle have been excluded.<br/>The analysis performed in September 2014 in a report from INERIS DRA-14-141532-06227C BENCHMARK STATIONS-SERVICE HYDROGENE is based on documents collected by bibliographic review and information obtained through a questionnaire sent to authorities and IA HySafe members in the above mentioned countries.<br/>This paper gives a synthesis of the regulations and on permitting process in the different studied countries (including the new European Directive on the deployment of alternative fuels infrastructure in Europe) it develops the required safety barriers in the different parts of a fuelling station and specially for the dispensing area gives an overview of the different approaches for safety distances and processes to obtain licences to operate.
Auto-ignition Mechanism Near the Boundary Layer for High-pressure Hydrogen Release into Circular and Rectangular Tubes
Oct 2015
Publication
The accidents that hydrogen ignites without ignition source are reported in several cases which phenomenon is called “auto-ignition.” Since the use of high pressure hydrogen will be increased for the hydrogen society it must be necessary to understand auto-ignition mechanism in detail to prevent such accidents. In this study we performed three-dimensional numerical simulations to clarify the autoignition mechanism using the three-dimensional compressive Navier-Stokes equations and a hydrogen chemical reaction model including nine species and twenty elementary reactions. We focus on the effects of the shape of the cross-section on the hydrogen auto-ignition mechanism applying for a rectangular and cylindrical tube. The results obtained indicate that the Richtmyer-Meshukov instability involves these auto-ignition.
Flammability Profiles Associated with High-pressure Hydrogen Jets Released in Close Proximity to Surfaces
Oct 2015
Publication
This paper describes experimental and numerical modelling results from an investigation into the flammability profiles associated with high pressure hydrogen jets released in close proximity to surfaces. This work was performed under a Transnational Access Agreement activity funded by the European Research Infrastructure project H2FC.<br/>The experimental programme involved ignited and unignited releases of hydrogen at pressures of 150 and 425 barg through nozzles of 1.06 and 0.64 mm respectively. The proximity of the release to a ceiling or the ground was varied and the results compared with an equivalent free-jet test. During the unignited experiments concentration profiles were measured using hydrogen sensors. During the ignited releases thermal radiation was measured using radiometers and an infra-red camera. The results show that the flammable volume and flame length increase when the release is in close proximity to a surface. The increases are quantified and the safety implications discussed.<br/>Selected experiments were modelled using the CFD model FLACS for validation purposes and a comparison of the results is also included in this paper. Similarly to experiments the CFD results show an increase in flammable volume when the release is close to a surface. The unstable atmospheric conditions during the experiments are shown to have a significant impact on the results.
Catalysts for Hydrogen Removal: Kinetic Paradox and Functioning at High Concentration of Hydrogen
Sep 2009
Publication
Platinum metals dispersed on a porous carrier e.g. -Al2O3 are used as catalysts for removal of small amounts of hydrogen from the air where the excess of oxygen is significant.<br/>The recombination reaction of H2 and O2 on smooth platinum proceeds at a high rate only in gas mixes with an excess of hydrogen. When the concentration of oxygen exceeds that of hydrogen in terms of stoichiometric ratio the process slows down sharply and eventually stops completely. In research undertaken at the Karpov Institute of Physical Chemistry (Moscow) forty years ago the electrochemical mechanism of red-ox reactions was proposed as an explanation for this inhibition by excess oxygen. The results of ellipsometric analysis pointed to the formation of a protective monolayer of PtO molecules on the Pt surface in an oxygen-rich atmosphere. It was observed that the recombination reaction proceeds at a high rate with the use of a porous catalyst at any concentrations of reactant gases. The reason for that lies in the mechanism of the catalysis: the reaction proceeds at a certain depth in the porous body of the catalyst. Hydrogen which has higher mobility penetrates in larger quantity than oxygen thus creating there the stoichiometric excess. To test the proposed mechanism of recombination the catalytic reaction was studied ) with porous carriers of various thicknesses and b) with metal grids of various porosities covering the catalyst. The data obtained have confirmed unequivocally the earlier hypothesis of hydrogenation of a porous catalyst.<br/>Such insight has allowed the authors to develop more effective prototypes of catalyst for removal of hydrogen. In particular by using a porous grid cover to remove excess heat in the reaction zone of the catalyst plate we achieved a considerable expansion of the region of hydrogen concentrations where the catalyst is both effective and reliable.
Numerical Study on the Influence of Different Boundary Conditions on the Efficiency of Hydrogen Recombiners Inside a Car Garage
Oct 2015
Publication
Passive auto-catalytic recombiners (PARs) have the potential to be used in the future for the removal of accidentally released hydrogen inside confined areas. PARs could be operated both as stand-alone or backup safety devices e.g. in case of active ventilation failure.
Recently computational fluid dynamics (CFD) simulations have been performed in order to demonstrate the principal performance of a PAR during a postulated hydrogen release inside a car garage. This fundamental study has now been extended towards a variation of several boundary conditions including PAR location hydrogen release scenario and active venting operation. The goal of this enhanced study is to investigate the sensitivity of the PAR operational behaviour for changing boundary conditions and to support the identification of a suitable PAR positioning strategy. For the simulation of PAR operation the in-house code REKO-DIREKT has been implemented in the CFD code ANSYS-CFX 15.
In a first step the vertical position of the PAR and the thermal boundary conditions of the garage walls have been modified. In a subsequent step different hydrogen release modes have been simulated which result either in a hydrogen-rich layer underneath the ceiling or in a homogeneous hydrogen distribution inside the garage. Furthermore the interaction of active venting and PAR operation has been investigated.
As a result of this parameter study the optimum PAR location was identified to be close underneath the garage ceiling. In case of active venting failure the PAR efficiently reduces the flammable gas volume (hydrogen concentration > 4 vol.%) for both stratified and homogeneous distribution. However the simulations indicate that the simultaneous operation of active venting and PAR may in some cases reduce the overall efficiency of hydrogen removal. Consequently a well-matched arrangement of both safety systems is required in order to optimize the overall efficiency. The presented CFD-based approach is an appropriate tool to support the assessment of the efficiency of PAR application for plant design and safety considerations with regard to the use of hydrogen in confined areas.
Recently computational fluid dynamics (CFD) simulations have been performed in order to demonstrate the principal performance of a PAR during a postulated hydrogen release inside a car garage. This fundamental study has now been extended towards a variation of several boundary conditions including PAR location hydrogen release scenario and active venting operation. The goal of this enhanced study is to investigate the sensitivity of the PAR operational behaviour for changing boundary conditions and to support the identification of a suitable PAR positioning strategy. For the simulation of PAR operation the in-house code REKO-DIREKT has been implemented in the CFD code ANSYS-CFX 15.
In a first step the vertical position of the PAR and the thermal boundary conditions of the garage walls have been modified. In a subsequent step different hydrogen release modes have been simulated which result either in a hydrogen-rich layer underneath the ceiling or in a homogeneous hydrogen distribution inside the garage. Furthermore the interaction of active venting and PAR operation has been investigated.
As a result of this parameter study the optimum PAR location was identified to be close underneath the garage ceiling. In case of active venting failure the PAR efficiently reduces the flammable gas volume (hydrogen concentration > 4 vol.%) for both stratified and homogeneous distribution. However the simulations indicate that the simultaneous operation of active venting and PAR may in some cases reduce the overall efficiency of hydrogen removal. Consequently a well-matched arrangement of both safety systems is required in order to optimize the overall efficiency. The presented CFD-based approach is an appropriate tool to support the assessment of the efficiency of PAR application for plant design and safety considerations with regard to the use of hydrogen in confined areas.
Comparisons of Hazard Distances and Accident Durations Between Hydrogen Vehicles and CNG Vehicles
Sep 2017
Publication
For the emerging hydrogen-powered vehicles the safety concern is one of the most important barriers for their further development and commercialization. The safety of commercial natural gas vehicles has been well accepted and the total number of natural gas vehicles operating worldwide was approximately 23 million by November 2016. Hydrogen vehicles would be more acceptable for the general public if their safety is comparable to that of commercialized CNG vehicles. A comparison study is conducted to reveal the differences of hazard distances and accident durations between hydrogen vehicles and CNG vehicles during a representative accident in an open environment. The tank blowdown time for hydrogen and CNG are calculated separately to compare the accident durations. CFD simulations for real world situations are performed to study the hazard distances from impinging jet fires under vehicle. Results show that the release duration for CNG vehicle is over two times longer than that for hydrogen vehicle indicating that CNG vehicle jet fire accident is more timeconsuming and firefighters have to wait a longer time before they can safely approach the vehicle. For both hydrogen vehicle and CNG vehicle the longest hazard distance near the ground occur about 1 to 4 seconds after the initiation of the thermally-activated pressure relief devices. Afterwards the flames will shrink and the hazard distances will decrease. For firefighters with bunker gear they must stand 6 m and 14 m away from the hydrogen vehicle and CNG vehicle respectively. For general public a perimeter of 12 m and 29 m should be set around the accident scene for hydrogen vehicle and CNG vehicle respectively.
Hydrogen Storage: Recent Improvements and Industrial Prospective
Oct 2015
Publication
Efficient storage of hydrogen is crucial for the success of hydrogen energy markets (early markets as well as transportation market). Hydrogen can be stored either as a compressed gas a refrigerated liquefied gas a cryo-compressed gas or in hydrides. This paper gives an overview of hydrogen storage technologies and details the specific issues and constraints related to the materials behaviour in hydrogen and conditions representative of hydrogen energy uses. It is indeed essential for the development of applications requiring long-term performance to have good understanding of long-term behaviour of the materials of the storage device and its components under operational loads.
Explosion and Fire Risk Analyses of Maritime Fuel Cell Rooms with Hydrogen
Sep 2017
Publication
A methodology for explosion and fire risk analyses in enclosed rooms is presented. The objectives of this analysis are to accurately predict the risks associated with hydrogen leaks in maritime applications and to use the approach to provide decision support regarding design and risk-prevention and risk mitigating measures. The methodology uses CFD tools and simpler consequence models for ventilation dispersion and explosion scenarios as well as updated frequency for leaks and ignition. Risk is then efficiently calculated with a Monte Carlo routine capturing the transient behavior of the leak. This makes it possible to efficiently obtain effects of sensitivities and design options maintaining safety and reducing costs.
Public Perception on Hydrogen Infrastructure in Japan
Oct 2015
Publication
A public survey was conducted in March 2015 in Japan asking public awareness knowledge perception and acceptance regarding hydrogen hydrogen infrastructure and fuel cell vehicle adopting the same key questions contained in the public surveys conducted six and seven years ago. Changes in answers between two different times of survey implementation were analyzed by comparing results of current survey to those of the previous surveys. Regression analyses were conducted and revealed influence of respondents’ awareness knowledge and perception about hydrogen hydrogen infrastructure and fuel cell vehicle on their acceptance on hydrogen station. We found a large increase in the awareness and relatively a small improvement on knowledge on hydrogen energy hydrogen infrastructure and fuel cell vehicle from the previous surveys. In contrast we did not find much changes in perception of risk and benefit perception on hydrogen society and hydrogen station and public acceptance of hydrogen infrastructure. Through the regression analyses we found large influences of negative risk perception of hydrogen itself and technology of hydrogen station and perception of necessity of hydrogen station on public acceptance of hydrogen station and the small influence of time background on the acceptance. Through the results of analyses implications to public communication in building public infrastructure are presented.
Hazard Identification Study for Risk Assessment of a Hybrid Gasoline-hydrogen Fueling Station with an Onsite Hydrogen Production System Using Organic Hydride
Oct 2015
Publication
Hydrogen infrastructures are important for the commercialization of fuel cell vehicles. Hydrogen storage and transportation are significant topics because it is difficult to safely and effectively treat large amounts of hydrogen because of hydrogen hazards. An organic chemical hydride method keeps and provides hydrogen using hydrogenation and dehydrogenation chemical reactions with aromatic compounds. This method has advantages in that the conventional petrochemical products are used as a hydrogen carrier and petrochemicals are more easily treated than hydrogen because of low hazards. Hydrogen fueling stations are also crucial infrastructures for hydrogen supply. In Japan hybrid gasoline-hydrogen fuelling stations are needed for effective space utilization in urban areas. It is essential to address the safety issues of hybrid fueling stations for inherently safer station construction. We focused on a hybrid gasoline-hydrogen fuelling station with an on-site hydrogen production system using methylcyclohexane as an organic chemical hydride. The purpose of this study is to reveal unique hybrid risks in the station with a hazard identification study (HAZID study). As a result of the HAZID study we identified 314 accident scenarios involving gasoline and organic chemical hydride systems. In addition we suggested improvement safety measures for uniquely worst-case accident scenarios to prevent and mitigate the scenarios.
Venting Deflagrations of Local Hydrogen-air Mixture
Oct 2015
Publication
The paper describes a lumped-parameter model for vented deflagrations of localised and layered fuel air mixtures. Theoretical model background is described to allow insight into the model development with focus on lean mixtures and overpressures significantly below 0.1 MPa for protection of low strength equipment and buildings. Phenomena leading to combustion augmentation was accounted based on conclusions of recent CFD studies. Technique to treat layered mixtures with concentration gradient is demonstrated. The model is validated against 25 vented deflagration experiments with lean non-uniform and layered hydrogen-air mixtures performed in Health and Safety Laboratory (UK) and Karlsruhe Institute of Technology (Germany).
Modeling of 2LiBH4+MgH2 Hydrogen Storage System Accident Scenarios Using Empirical and Theoretical Thermodynamics
Sep 2009
Publication
It is important to understand and quantify the potential risk resulting from accidental environmental exposure of condensed phase hydrogen storage materials under differing environmental exposure scenarios. This paper describes a modelling and experimental study with the aim of predicting consequences of the accidental release of 2LiBH4+MgH2 from hydrogen storage systems. The methodology and results developed in this work are directly applicable to any solid hydride material and/or accident scenario using appropriate boundary conditions and empirical data.
The ability to predict hydride behaviour for hypothesized accident scenarios facilitates an assessment of the risk associated with the utilization of a particular hydride. To this end an idealized finite volume model was developed to represent the behaviour of dispersed hydride from a breached system. Semi-empirical thermodynamic calculations and substantiating calorimetric experiments were performed in order to quantify the energy released energy release rates and to quantify the reaction products resulting from water and air exposure of a lithium borohydride and magnesium hydride combination.
The hydrides LiBH4 and MgH2 were studied individually in the as-received form and in the 2:1 “destabilized” mixture. Liquid water hydrolysis reactions were performed in a Calvet calorimeter equipped with a mixing cell using neutral water. Water vapor and oxygen gas phase reactivity measurements were performed at varying relative humidities and temperatures by modifying the calorimeter and utilizing a gas circulating flow cell apparatus. The results of these calorimetric measurements were compared with standardized United Nations (UN) based test results for air and water reactivity and used to develop quantitative kinetic expressions for hydrolysis and air oxidation in these systems. Thermodynamic parameters obtained from these tests were then inputted into a computational fluid dynamics model to predict both the hydrogen generation rates and concentrations along with localized temperature distributions. The results of these numerical simulations can be used to predict ignition events and the resultant conclusions will be discussed.
The ability to predict hydride behaviour for hypothesized accident scenarios facilitates an assessment of the risk associated with the utilization of a particular hydride. To this end an idealized finite volume model was developed to represent the behaviour of dispersed hydride from a breached system. Semi-empirical thermodynamic calculations and substantiating calorimetric experiments were performed in order to quantify the energy released energy release rates and to quantify the reaction products resulting from water and air exposure of a lithium borohydride and magnesium hydride combination.
The hydrides LiBH4 and MgH2 were studied individually in the as-received form and in the 2:1 “destabilized” mixture. Liquid water hydrolysis reactions were performed in a Calvet calorimeter equipped with a mixing cell using neutral water. Water vapor and oxygen gas phase reactivity measurements were performed at varying relative humidities and temperatures by modifying the calorimeter and utilizing a gas circulating flow cell apparatus. The results of these calorimetric measurements were compared with standardized United Nations (UN) based test results for air and water reactivity and used to develop quantitative kinetic expressions for hydrolysis and air oxidation in these systems. Thermodynamic parameters obtained from these tests were then inputted into a computational fluid dynamics model to predict both the hydrogen generation rates and concentrations along with localized temperature distributions. The results of these numerical simulations can be used to predict ignition events and the resultant conclusions will be discussed.
Modelling Heat Transfer in an Intumescent Paint and its Effect on Fire Resistance of On-board Hydrogen Storage
Oct 2015
Publication
This paper describes a 1-D numerical model for the prediction of heat and mass transfer through an intumescent paint that is applied to an on-board high-pressure GH2 storage tank. The intumescent paint is treated as a composite system consisting of three general components decomposing in accordance with independent finite reaction rates. A moving mesh that is employed for a better prediction of the expansion process of the intumescent paint is based on the local changes of heat and mass. The numerical model is validated against experiments by Cagliostro et al. (1975). The overall model results are used to estimate effect of intumescent paint on fire resistance of carbon-fibre reinforced GH2 storage.
Development of Hydrogen Behavior Simulation Code System
Oct 2015
Publication
In the Fukushima Daiichi Nuclear Power Station (NPS) accident hydrogen generated by oxidation reaction of the cladding and water etc. was leaked into the NPS building and finally led to occurrence of hydrogen explosion in the building. This resulted in serious damage to the environment. To improve the safety performance of the NPS especially on the hydrogen safety under severe accident conditions a simulation code system has been developed to analyze hydrogen behaviour including diffusion combustion explosion and structural integrity evaluation. This developing system consists of CFD and FEM tools in order to support various hydrogen user groups consisting of students researchers and engineers. Preliminary analytical results obtained with above mentioned tools especially with open source codes including buoyancy turbulent model and condensation model agreed well with the existing test data.
Modeling Thermal Response of Polymer Composite Hydrogen Cylinders
Oct 2015
Publication
With the anticipated introduction of hydrogen fuel cell vehicles to the market there is an increasing need to address the fire resistance of hydrogen cylinders for onboard storage. Sufficient fire resistance is essential to ensure safe evacuation in the event of car fire accidents. The authors have developed a Finite Element (FE) model for predicting the thermal response of composite hydrogen cylinders within the frame of the open source FE code Elmer. The model accounts for the decomposition of the polymer matrix and effects of volatile gas transport in the composite. Model comparison with experimental data has been conducted using a classical one-dimensional test case of polymer composite subjected to fire. The validated model was then used to analyze a type-4 hydrogen cylinder subjected to an engulfing external propane fire mimicking a published cylinder fire experiment. The external flame is modelled and simulated using the open source code FireFOAM. A simplified failure criteria based on internal pressure increase is subsequently used to determine the cylinder fire resistance.
Adapted Tube Cleaning Practices to Reduce Particulate Contamination at Hydrogen Fueling Stations
Sep 2017
Publication
The higher rate of component failure and downtime during initial operation in hydrogen stations is not well understood. The National Renewable Energy Laboratory (NREL) has been collecting failed components from retail and research hydrogen fuelling stations in California and Colorado and analyzing them using an optical zoom and scanning electron microscope. The results show stainless steel metal particulate contamination. While it is difficult to definitively know the origin of the contaminants a possible source of the metal particulates is improper tube cleaning practices. To understand the impact of different cleaning procedures NREL performed an experiment to quantify the particulates introduced from newly cut tubes. The process of tube cutting threading and bevelling which is performed most often during station fabrication is shown to introduce metal contaminants and thus is an area that could benefit from improved cleaning practices. This paper shows how these particulates can be reduced which could prevent station downtime and costly repair. These results are from the initial phase of a project in which NREL intends to further investigate the sources of particulate contamination in hydrogen stations.
Numerical Study of Hydrogen Explosions in a Vehicle Refill Environment
Sep 2009
Publication
Numerical simulations have been carried out for pressurised hydrogen release through a nozzle in a simulated vehicle refilling environment of an experiment carried out in a joint industry project by Shell bp Exxon and the UK HSE Shirvill[1]. The computational domain mimics the experimental set up for a vertical downwards release in a vehicle refuelling environment. Due to lack of detailed data on pressure decay in the storage cylinder following the release a simple analytical model has also been developed to provide the transient pressure conditions at nozzle exit. The modelling is carried out using the traditional Computational fluid dynamics (CFD) approach based on Reynolds averaged Navier Stokes equations. The Pseudo diameter approach is used to bypass the shock-laden flow structure in the immediate vicinity of the nozzle. For combustion the Turbulent Flame Closure (TFC) model is used while the shear stress transport (SST) model is used for turbulence
Licensing a Fuel Cell Bus and a Hydrogen Fueling Station in Brazil
Sep 2011
Publication
The Brazilian Fuel Cell Bus Project is being developed by a consortium comprising 14 national and international partners. The project was initially supported by the GEF/UNDP and MME/FINEP Brazil. The national coordination is under responsibility of MME and EMTU/SP the São Paulo Metropolitan Urban Transport Company that also controls the bus operation and bus routes. This work reports the efforts done in order to obtain the necessary licenses to operate the first fuel cell buses for regular service in Brazil as well as the first commercial hydrogen fueling station to attend the vehicles.
Experimental Results and Comparison with Simulated Data of a Low Pressure Hydrogen Jet
Sep 2011
Publication
Experiments with a hydrogen jet were performed at two different pressures 96 psig (6.6 bars) and 237 psig (16.3 bars). The hydrogen leak was generated at two different hole sizes 1/16 inch (1.6 mm) and 1/32 inch (0.79 mm). The flammable shape of the plume was characterised by numerous measurements of the hydrogen concentration inside of the jet. The effect of the nearby horizontal surface on the shape of the plume was measured and compared with results of CFD numerical simulations. The paper will present results and an interpretation on the nature of the plume shape.
Performance-Based Requirements for Hydrogen Detection Allocation and Actuation
Sep 2009
Publication
The hydrogen detection system is a key component of the hydrogen safety systems (HSS). Any HSS forms a second layer of protection for the assets under accidental conditions when a first layer of protection - passive protection systems (separation at “safe” distance natural ventilation) are inoperable or failed. In this report a performance-based risk-informed methodology for establishing of the explicit quantitative requirements for hydrogen detectors allocation and actuation is proposed. The main steps of the proposed methodology are described. It is suggested (as a first approximation) to use in a process of quantification of a hydrogen detection system performance (from safety viewpoint) a five-tiered hierarchy namely 1) safety goals 2) risk-informed safety objectives 3) performance goal and metrics 4) rational safety criteria 5) safety factors. Unresolved issues of the proposed methodology of Safety Performance Analysis for development of the risk-informed and performance based standards on the hydrogen detection systems are synopsized.<br/><br/>
No more items...