Safety
Introduction to Hydrogen Safety Engineering
Sep 2011
Publication
The viability and public acceptance of the hydrogen and fuel cell (HFC) systems and infrastructure depends on their robust safety engineering design education and training of the workforce regulators and other stakeholders in the state-of-the-art in the field. This can be provided only through building up and maturity of the hydrogen safety engineering (HSE) profession. HSE is defined as an application of scientific and engineering principles to the protection of life property and environment from adverse effects of incidents/accidents involving hydrogen. This paper describes a design framework and overviews a structure and contents of technical sub-systems for carrying out HSE. The approach is similar to British standard BS7974 for application of fire safety engineering to the design of buildings and expanded to reflect on specific for hydrogen safety related phenomena including but not limited to high pressure under-expanded leaks and dispersion spontaneous ignition of sudden hydrogen releases to air deflagrations and detonations etc. The HSE process includes three main steps. Firstly a qualitative design review is undertaken by a team that can incorporate owner hydrogen safety engineer architect representatives of authorities having jurisdiction e.g. fire services and other stakeholders. The team defines accident scenarios suggests trial safety designs and formulates acceptance criteria. Secondly a quantitative safety analysis of selected scenarios and trial designs is carried out by qualified hydrogen safety engineer(s) using the state-of-the-art knowledge in hydrogen safety science and engineering and validated models and tools. Finally the performance of a HFC system and/or infrastructure under the trial safety designs is assessed against predefined by the team acceptance criteria. This performance-based methodology offers the flexibility to assess trial safety designs using separately or simultaneously three approaches: deterministic comparative or combined probabilistic/deterministic.
Fuel Cell in Maritime Applications Challenges, Chances and Experiences
Sep 2011
Publication
The shipping industry is becoming increasingly visible on the global environmental agenda. Shipping's share of air pollution is becoming significant and public concern has led to ongoing political pressure to reduce shipping emissions. International legislation at the IMO governing the reduction of SOx and NOx emissions from shipping is being enforced and both the European Union and the USA are planning to introduce further regional laws to reduce emissions. Therefore new approaches for more environmental friendly and energy efficient energy converter are under discussion. One possible solution will be the use of fuel cell systems for auxiliary power or even main propulsion. The paper summarizes the legal background in international shipping related to the use of fuel cells and gas as fuel in ships. The focus of the paper will be on the first experiences on the use of fuel cell systems on board of ships. In this respect an incident on a fuel cell ship in Hamburg will be discussed. Moreover the paper will point out the potential for the use of fuel cell systems on board. Finally an outlook is given on ongoing and planed projects for the use of fuel cells on board of ships.
LES Modelling Of Hydrogen Release and Accumulation Within a Non-Ventilated Ambient Pressure Garage Using The Adrea-HF CFD Code
Sep 2011
Publication
Computational Fluid Dynamics (CFD) has already proven to be a powerful tool to study the hydrogen dispersion and help in the hydrogen safety assessment. In this work the Large Eddy Simulation (LES) recently incorporated into the ADREA-HF CFD code is evaluated against the INERIS-6C experiment of hydrogen leakage in a supposed garage which provides detailed experimental measurements visualization of the flow and availability of previous CFD results from various institutions (HySafe SBEP-V3). The short-term evolution of the hydrogen concentrations in this confined space is examined and comparison with experimental data is provided along with comments about the ability of LES to capture the transient phenomena occurring during hydrogen dispersion. The influence of the value of the Smagorinsky constant on the resolved and on the unresolved turbulence is also presented. Furthermore the renormalization group (RNG) LES methodology is also tested and its behaviour in both highly-turbulent and less-turbulent parts of the flow is highlighted.
Experimental Study of Hydrogen Releases in the Passenger Compartment of a Piaggio Porter
Sep 2011
Publication
There are currently projects and demonstration programs aiming at introducing Hydrogen powered Fuel Cell (HFC) vehicles into the market. Regione Toscana has been cofounder of the project “H2 Filiera Idrogeno” whose goal is to achieve a clean and sustainable mobility through HFC vehicle studies covering their production storage and use. Among the goals of the project was the substitution of the electric propulsion system with a hydrogen fuel cells propulsion system. This work presents a brief overview of the necessary modifications of the electric propulsion version of a Piaggio Porter to host a H2 fuel cell and experimental studies of realistic H2 releases from the vehicle. The scenarios covered H2 unintended releases underneath the vehicle when at rest and focused on three types of releases diffusive major and minor that might reach the interior of the vehicle and potentially pose a direct risk to the passengers.
Comparison of Numerical and Algebraic Models of Low and High Pressure Hydrogen Jet Flows with Ideal and Real Gas Models
Sep 2013
Publication
Hydrogen transportation systems require very high pressure hydrogen storage containers to enable sufficient vehicle range for practical use. Current proposed designs have pressures up to 70 MPa with leakage due to damage or deterioration at such high pressures a great safety concern. Accurate models are needed to predict the flammability envelopes around such leaks which rapidly vary with time. This paper compares CFD predictions of jet flows for low pressure jets with predictions using the integral turbulent buoyant jet model. The results show that the CFD model predicts less entrainment and that the turbulent Schmidt number should be smaller with 0.55 giving better results. Then CFD predictions for very high pressure flows are compared with analytical models for choked flows that generate underexpanded jets into the ambient to evaluate the effects of the model assumptions and the effects of real exit geometries. Real gas effects are shown to accelerate the blowdown process and that real flow effects in the CFD model slow the flow rate and increase the exit temperature.
Strong and Mild Ignition Mechanism behind Reflected Shock Waves in Hydrogen Mixture
Sep 2013
Publication
A reflected shock wave in two-dimensional shock tube is studied numerically using Navier-Stokes equations with the detailed oxy-hydrogen reaction mechanism. The results show detailed process of mild ignition. The interaction between the reflected shock wave and the boundary layer yielded behind the incident shock wave produces clockwise and counter-clockwise vortices. These vortices generate compression waves. The future study related wall conditions (adiabatic or isothermal) will be shown at the conference site.
Numerical Simulation and Experiments of Hydrogen Diffusion Behaviour for Fuel Cell Electric Vehicle
Sep 2011
Publication
Research was conducted on hydrogen diffusion behaviour to construct a simulation method for hydrogen leaks into complexly shaped spaces such as around the hydrogen tank of a fuel cell electric vehicle (FCEV). To accurately calculate the hydrogen concentration distribution in the vehicle underfloor space it is necessary to take into account the effects of hydrogen mixing and diffusion due to turbulence. The turbulence phenomena that occur in the event that hydrogen leaks into the vehicle underfloor space were classified into the three elements of jet flow wake flow and wall turbulence. Experiments were conducted for each turbulence element to visualize the flows and the hydrogen concentration distributions were measured. These experimental values were then compared with calculated values to determine the calculation method for each turbulence phenomenon. Accurate calculations could be performed by using the k-ω Shear Stress Transport (SST) model for the turbulence model in the jet flow calculations and the Reynolds Stress Model (RSM) in the wall turbulence calculations. In addition it was found that the large fluctuations produced by wake flow can be expressed by unsteady state calculations with the steady state calculation solutions as the initial values. Based on the above information simulations of hydrogen spouting were conducted for the space around the hydrogen tank of an FCEV. The hydrogen concentration calculation results matched closely with the experimental values which verified that accurate calculations can be performed even for the complex shapes of an FCEV.
From Research Results to Published Codes And Standards - Establishing Code Requirements For NFPA 55 Bulk Hydrogen Systems Separation Distances
Sep 2009
Publication
Performing research in the interest of providing relevant safety requirements is a valuable and essential endeavor but translating research results into enforceable requirements adopted into codes and standards a process sometimes referred to as codification can be a separate and challenging task. This paper discusses the process utilized to successfully translate research results related to bulk gaseous hydrogen storage separation (or stand-off) distances into code requirements in NFPA 55:Storage Use and Handling of Compressed Gases and Cryogenic Fluids in Portable and StationaryContainers Cylinders and Tanks and NFPA 2: Hydrogen Technologies. The process utilized can besummarized as follows: First the technical committees for the documents to be revised were engaged to confirm that the codification process was endorsed by the committee. Then a sub-committee referred to as a task group was formed. A chair must be elected or appointed. The chair should be a generalist with code enforcement or application experience. The task group was populated with several voting members of each technical committee. By having voting members as part of the task group the group becomes empowered and uniquely different from any other code proposal generating body. The task group was also populated with technical experts as needed but primarily the experts needed are the researchers involved. Once properly populated and empowered the task group must actively engage its members. The researchers must educate the code makers on the methods and limitations of their work and the code makers must take the research results and fill the gaps as needed to build consensus and create enforceable code language and generate a code change proposal that will be accepted. While this process seems simple there are pitfalls along the way that can impede or nullify the desired end result – changes to codes and standards. A few of these pitfalls include: wrong task group membership task group not empowered task group not supported in-person meetings not possible consensus not achieved. This paper focuses on the process used and how pitfalls can be avoided for future efforts.
Numerical Investigation of Hydrogen Release from Varying Diameter Exit
Sep 2011
Publication
Computational fluid dynamics is used to simulate the release of high pressure Hydrogen from a reservoir with an exit of increasing diameter. Abel-Noble real gas equation of state is used to accurately simulate this high pressure release. Parallel processing based on Message Passing Interface for domain decomposition is employed to decrease the solution time. The release exit boundary is increased in time to simulate a scenario when the exit area increases during the release. All nodes and elements are moved accordingly at each time step to maintain the quality of the mesh. Different speeds of increasing diameter are investigated to see the impact on this unsteady flow.
The International Energy Agency Hydrogen Implementing Agreement Task on Hydrogen Safety
Sep 2009
Publication
The International Energy Agency’s Hydrogen Implementing Agreement (www.ieahia.org) initiated a collaborative task on hydrogen safety in 1994 and this has proved to an effective method of pooling expert knowledge to address the most significant problems associated with the barriers to the commercial adoption of hydrogen energy. Presently there are approximately 10 countries participating in the task and it has proven a valuable method of efficiently combining efforts and resources. The task is now in the fifth year of a six year term and will end in October 2010. This paper will describe the scope of the task the progress made and plans for future work. There are also a number of other tasks underway and this paper will give a brief summary of those activities. Because of the nature of the International Energy Agency which is an international agreement between governments it is intended that such collaboration will complement other efforts to help build the technology base around which codes and standards can be developed. This paper describes the specific scope and work plan for the collaboration that has been developed to date.
Ignition Energy and Ignition Probability of Methane-Hydrogen-Air Mixtures
Sep 2009
Publication
The European Commission are funding an investigation of the feasibility of using existing natural gas infrastructures to transport and distribute hydrogen as a mixture of natural gas and hydrogen from the point of hydrogen production to the point of use. Since hydrogen has different chemical and physical properties to that of natural gas and these will affect the integrity and durability of the pipeline network and the ignition and combustion behaviour of released gas it is necessary to assess the change in risk to the public that would result. The subject of this paper is an experimental study of the effect of the hydrogen content of the natural gas-hydrogen mixture on the minimum energy required for ignition and the probability of achieving ignition given a particular level of energy discharge. It was possible to normalize the results for ignition energy such that given information on the minimum ignition energy and the equivalence ratio at which the minimum ignition energy occurs the lowest ignition energy for any other equivalence ratio can be predicted. The results also showed that the ignition process has a probabilistic element and that the probability of ignition is related to the equivalence ratio and the energy level of the source. It was observed that the probability of ignition increased with increasing energy of the source and that the rate of rise in probability was steepest for the equivalence ratios close to the equivalence ratio at which the minimum ignition energy occurs.
The Role of Trust and Familiarity in Risk Communication
Sep 2009
Publication
In socio-economics it is well known that the success of an innovation process not only depends upon the technological innovation itself or the improvement of economic and institutional system boundaries but also on the public acceptance of the innovation. The public acceptance can as seen with genetic engineering for agriculture be an obstacle for the development and introduction of a new and innovative idea. In respect to hydrogen technologies this means that the investigation compilation and communication of scientific risk assessments are not sufficient to enhance or generate public acceptance. Moreover psychological social and cultural aspects of risk perception have to be considered when introducing new technologies. Especially trust and familiarity play an important role for risk perception and thus public acceptance of new technologies.
Hysafe SBEP-V20: Numerical Predictions of Release Experiments Inside a Residential Garage With Passive Ventilation
Sep 2009
Publication
This work presents the results of the Standard Benchmark Exercise Problem (SBEP) V20 of Work Package 6 (WP6) of HySafe Network of Excellence (NoE) co-funded by the European Commission in the frame of evaluating the quality and suitability of codes models and user practices by comparative assessments of code results. The benchmark problem SBEP-V20 covers release scenarios that were experimentally investigated in the past using helium as a substitute to hydrogen. The aim of the experimental investigations was to determine the ventilation requirements for parking hydrogen fuelled vehicles in residential garages. Helium was released under the vehicle for 2 h with 7.200 l/h flow rate. The leak rate corresponded to a 20% drop of the peak power of a 50 kW fuel cell vehicle. Three double vent garage door geometries are considered in this numerical investigation. In each case the vents are located at the top and bottom of the garage door. The vents vary only in height. In the first case the height of the vents is 0.063 m in the second 0.241 m and in the third 0.495 m. Four HySafe partners participated in this benchmark. The following CFD packages with the respective models were applied to simulate the experiments: ADREA-HF using k–ɛ model by partner NCSRD FLACS using k–ɛ model by partner DNV FLUENT using k–ɛ model by partner UPM and CFX using laminar and the low-Re number SST model by partner JRC. This study compares the results predicted by the partners to the experimental measurements at four sensor locations inside the garage with an attempt to assess and validate the performance of the different numerical approaches.
Comparison of Convective Schemes in Hydrogen Impinging Jet CFD Simulation
Oct 2015
Publication
Hydrogen impinging jets can be formed in the case of an accidental release indoors or outdoors. The CFD simulation of hydrogen impinging jets suffers from numerical errors resulting in a non-physical velocity and hydrogen concentration field with a butterfly like structure. In order to minimize the numerical errors and to avoid the butterfly effect high order schemes need to be used. The aim of this work is to give best practices guidelines for hydrogen impinging jet simulations. A number of different numerical schemes is evaluated. The number of cells which discretize the source is also examined.
Hot Surface Ignition of Hydrogen-air Mixtures
Oct 2015
Publication
Hot surface ignition is relevant in the context of industrial safety. In the present work two-dimensional simulations with detailed chemistry and study of the reaction pathways of the buoyancy-driven flow and ignition of a stoichiometric hydrogen-air mixture by a rapidly heated surface (glowplug) are reported. Experimentally ignition is observed to occur regularly at the top of the glowplug; numerical results for hydrogen-air reproduce this trend and shed light on this behaviour. The simulations show the importance of flow separation in creating zones where convective losses are minimized and heat diffusion is maximized resulting in the critical conditions for ignition to take place.
Let’s Go Green With Hydrogen! The General Public’s Perspective
Sep 2011
Publication
It is well known in socio-economics that the success of an innovation process depends to a great extent on public acceptance. The German HyTrust project analyzes the current state of public acceptance in hydrogen technology in the mobility sector. This paper focuses on cutting-edge results of interviews focus groups and a representative survey. Based on these results almost 80% of the Germans are in favor of introducing hydrogen vehicles. But from the perspective of the general public it is important that hydrogen is produced in an environmentally friendly way. HyTrust is the socio-scientific research project that accompanies the German Federal Government's National Innovation Programme.
Hydrogen Safety Aspects Related to High Pressure - PEM Water Electrolysis
Sep 2007
Publication
Polymer electrolyte membrane (PEM) water electrolysis has demonstrated its potentialities in terms of cell efficiency (energy consumption ≈ 4.0-4.2 kW/Nm3 H2) and gas purity (> 99.99% H2). Current research activities are aimed at increasing operating pressure up to several hundred bars for direct storage of hydrogen in pressurized vessels. Compared to atmospheric pressure electrolysis high-pressure operation yields additional problems especially with regard to safety considerations. In particular the rate of gases (H2 and O2) cross-permeation across the membrane and their water solubility both increase with pressure. As a result gas purity is affected in both anodic and cathodic circuits and this can lead to the formation of explosive gas mixtures. To prevent such risks two different solutions reported in this communication have been investigated. First the chemical modification of the solid polymer electrolyte in order to reduce cross-permeation phenomena. Second the use of catalytic H2/O2 recombiners to maintain H2 levels in O2 and O2 levels in H2 at values compatible with safety requirements.
Experimental Characterization and Modelling of Helium Dispersion in a ¼ - Scale Two-Car Residential Garage
Sep 2009
Publication
A series of experiments are described in which helium was released at a constant rate into a 1.5 m × 1.5 m × 0.75 m enclosure designed as a ¼-scale model of a two car garage. The purpose was to provide reference data sets for testing and validating computational fluid dynamics (CFD) models and to experimentally characterize the effects of a number of variables on the mixing behaviour within an enclosure and the exchange of helium with the surroundings. Helium was used as a surrogate for hydrogen and the total volume released was scaled as the amount that would be released by a typical hydrogen fuelled automobile with a full tank. Temporal profiles of helium were measured at seven vertical locations within the enclosure during and following one hour and four hour releases. Idealized vents in one wall sized to provide air exchange rates typical of actual garages were used. The effects of vent size number and location were investigated using three different vent combinations. The dependence on leak location was considered by releasing helium from three different points within the enclosure. It is shown that the National Institute of Standards and Technology (NIST) CFD code Fire Dynamics Simulator (FDS) provides time resolved predictions for helium concentrations that agree well with the experimental measurements.
Natural and Forced Ventilation Study In An Enclosure Hosting a Fuel Cell
Sep 2009
Publication
The purpose of the experimental work is to determine the conditions for which an enclosure can guest a fuel cell for civil use. Concerning the installation permitting guide this study allows the safe use of the fuel cell in case of small not catastrophic leakages. In fact the correct plan of the vents in the enclosure guarantees the low concentration of hydrogen (H2) below the LFL.
Predictions of Solid-State Hydrogen Storage System Contamination Processes
Sep 2009
Publication
Solid state materials such as metal and chemical hydrides have been proposed and developed for high energy density automotive hydrogen storage applications. As these materials are implemented into hydrogen storage systems developers must understand their behavior during accident scenarios or contaminated refueling events. An ability to predict thermal and chemical processes during contamination allows for the design of safe and effective hydrogen storage systems along with the development of appropriate codes and standards. A model for the transport of gases within an arbitrary-geometry reactive metal hydride bed (alane -AlH3) is presented in this paper. We have coupled appropriate Knudsen-regime permeability models for flow through packed beds with the fundamental heat transfer and chemical kinetic processes occurring at the particle level. Using experimental measurement to determine and validate model parameters we have developed a robust numerical model that can be utilized to predict processes in arbitrary scaled-up geometries during scenarios such as breach-in-tank or contaminated refueling. Results are presented that indicate the progression of a reaction front through a compacted alane bed as a result of a leaky fitting. The rate of this progression can be limited by; 1) restricting the flow of reactants into the bed through densification and 2) maximizing the rate of heat removal from the bed.
No more items...