Safety
Guidelines for Fire Corps Standard Operating Procedures in the Event of Hydrogen Releases
Sep 2007
Publication
This paper presents a study on the Standard Operating Procedures (P.O.S.s) for the operation of the Fire Corps squads in the event of accidents with a hydrogen release fire or explosion. This study has been carried out by the Italian Working Group on the fire prevention safety issues as one of its main objectives. The Standard Operating Procedures proved to be a basic tool in order to improve the effectiveness of the Fire Corps rescue activity. The unique physical and chemical properties of the hydrogen its use without odorization and its almost invisible flame require a review of the already codified approaches to the rescue operations where conventional gases are involved. However this is only the first step; a Standard Operating Procedure puts together both the theoretical and practical experience achieved on the management of the rescue operations; therefore its arrangement is a cyclic process by nature always under continuous revision updating and improvement.
Safety Study of Hydrogen Supply Stations for the Review of High Pressure Gas Safety Law in Japan
Sep 2005
Publication
A safety study of gaseous hydrogen supply stations with 40MPa storage system is undertaken through a risk based approach. Accident scenarios are identified based on a generic model of hydrogen station. And risks of identified accident scenarios are estimated and evaluated comparing with risk acceptance criteria. Also safety measures for risk reduction are discussed. Especially for clearance distance it is proposed that the distance from high-pressurized equipment to site borders should be at least 6 meters. As a result of the study it is concluded that risks of accidental scenarios can be mitigated to acceptable level under the proposed safety measures with several exceptions. These exceptional scenarios are very unlikely to occur but expected to have extremely severe consequence once occurred.
Addressing Hydrogen Embrittlement of Metals in the Sae J2579 Fuel Cell Vehicle Tank Standard
Sep 2013
Publication
The SAE Technical Information Report (TIR) J2579 (Technical Information Report for Fuel Systems in Fuel Cell and Other Hydrogen Vehicles) has been created to address the safety performance of hydrogen storage and handling systems on vehicles. Safety qualification of the compressed hydrogen storage system is demonstrated through performance testing on prototype containment vessels. The two performance tests currently included in the SAE J2579 for evaluating unacceptable leakage and burst do not account for the potential effects of hydrogen embrittlement on structural integrity. This report describes efforts to address hydrogen embrittlement of structural metals in the framework of performance-based safety qualification. New safety qualification pathways that account for hydrogen embrittlement in the SAE J2579 include an additional pneumatic performance test using hydrogen gas or materials tests that demonstrate acceptable hydrogen embrittlement resistance of candidate structural metals.
Compatibility of Materials with Hydrogen Particular Case- Hydrogen Assisted Stress Cracking of Titanium Alloys
Sep 2007
Publication
A review of the effect of hydrogen on materials is addressed in this paper. General aspects of the interaction of hydrogen and materials hydrogen embrittlement low temperature effects material suitability for hydrogen service and materials testing are the main subjects considered in the first part of the paper. As a particular case of the effect of hydrogen in materials the hydride formation of titanium alloys is considered. Alpha titanium alloys are considered corrosion resistant materials in a wide range of environments. However hydrogen absorption and the possible associated problems must be taken into account when considering titanium as a candidate material for high responsibility applications. The sensitivity of three different titanium alloys Ti Gr-2 Ti Gr-5 and Ti Gr-12 to the Hydrogen Assisted Stress Cracking phenomena has been studied by means of the Slow Strain Rate Technique (SSRT). The testing media has been sea water and hydrogen has been produced on the specimen surface during the test by cathodic polarization. Tested specimens have been characterized by metallography and scanning electron microscopy. Results obtained show that the microstructure of the materials particularly the β phase content plays an important role on the sensitivity of the studied alloys to the Hydrogen Assisted Stress Cracking Phenomena.
H2 High Pressure On-board Storage Considering Safety Issues
Sep 2007
Publication
The present paper reviews the state-of-the-art of integrated structural integrity monitoring systems applicable to hydrogen on-board applications. Storage safety and costs are key issues for the success of the hydrogen technology considered for replacing the conventional fuel systems in transport applications. An in-service health monitoring procedure for high pressure vessels would contribute to minimize the risks associated to high pressure hydrogen storage and to improve the public acceptance. Such monitoring system would also enable a reduction on design burst criteria enabling savings in material costs and weight. This paper reviews safety and maintenance requirements based on present standards for high pressure vessels. A state-of-the-art of storage media and materials for onboard storage tank is presented as well as of current European programmes on hydrogen storage technologies for transport applications including design safety and system reliability. A technological road map is proposed for the development and validation of a prototype within the framework of the Portuguese EDEN project. To ensure safety an exhaustive test procedure is proposed. Furthermore requirements of a safety on-board monitoring system is defined for filament wound hydrogen tanks.
Hydrogen Safety, Training and Risk Assessment System
Sep 2007
Publication
The rapid evolution of information related to hydrogen safety is multidimensional ranging from developing codes and standards to CFD simulations and experimental studies of hydrogen releases to a variety of risk assessment approaches. This information needs to be transformed into system design risk decision-making and first responder tools for use by hydrogen community stakeholders. The Canadian Transportation Fuel Cell Alliance (CTFCA) has developed HySTARtm an interactive Hydrogen Safety Training And Risk System. The HySTARtm user interacts with a Web-based 3-D graphical user interface to input hydrogen system configurations. The system includes a Codes and Standards Expert System that identifies the applicable codes and standards in a number of national jurisdictions that apply to the facility and its components. A Siting Compliance and Planning Expert System assesses compliance with clearance distance requirements in these jurisdictions. Incorporating the results of other CTFCA projects HySTARtm identifies stand-out hydrogen release scenarios and their corresponding release condition that serves as input to built-in consequence and risk assessment programs that output a variety of risk assessment metrics. The latter include on- and off-site individual risk probability of loss of life and expected number of fatalities. These results are displayed on the graphical user interface used to set up the facility. These content and graphical tools are also used to educate regulatory approval and permitting officials and build a first-responder training guide.
The Hydrogen Executive Leadership Panel (HELP) Initiative for Emergency Responder Training
Sep 2007
Publication
In close cooperation with their Canadian counterparts United States public safety authorities are taking the first steps towards creating a proper infrastructure to ensure the safe use of the new hydrogen fuel cells now being introduced commercially. Currently public safety officials are being asked to permit hydrogen fuel cells for stationary power and as emergency power backups for the telecommunications towers that exist everywhere. Consistent application of the safety codes is difficult – in part because it is new – yet it is far more complex to train emergency responders to deal safely with the inevitable hydrogen incidents. The US and Canadian building and fire codes and standards are similar but not identical. The US and Canadian rules are unlikely to be useful to other nations without modification to suit different regulatory systems. However emergency responder safety training is potentially more universal. The risks strategies and tactics are unlikely to differ much by region. The Hydrogen Executive Leadership Panel (HELP) made emergency responder safety training its first priority because the transition to hydrogen depends on keeping incidents small and inoffensive and the public and responders safe from harm. One might think that advising 1.2 million firefighters and 800000 law enforcement officers about hydrogen risks is no more complicated than adding guidance to a website. One would be wrong. The term “training” has specific legal implications which may vary by state. For hazardous materials federal requirements apply. Insurance companies place training requirements on the policies they sell to fire departments including the thousands of small all-volunteer departments which may operate as private corporations. Union contracts may define training and promotions may be based on satisfactorily completed certain levels of training. Emergency responders could no sooner learn how to extinguish a<br/>hydrogen fire by reading a webpage than a person could learn to ride a bicycle by reading a book. Procedures must be learned by listening reading and then doing. Regular practice is necessary. As new hydrogen applications are commercialized additional responder training may be necessary. This highlights another obstacle emergency responders’ ability to travel distances and take the time to undergo training. Historically fire academies established adjunct instructor programs and satellite academies to bring the training to firefighters. The large well-equipped academies are typically used for specialized training. States rarely have enough instructors and instructors often must take the time to create a course outline research each point and produce a program that is informative useful and holds the attention of responders. The challenge of training emergency responders seems next to impossible but public safety authorities are asked to tackle the impossible every day and a model exists to move forward in the U.S. Over the past few years the National Association of State Fire Marshals and U.S. Department of Transportation enlisted the help of emergency responders and industry to create a standardized approach to train emergency responders to deal with pipeline incidents. A curriculum and training materials were created and more than 26000 sets have been distributed for free to public safety agencies nationwide. More than 8000 instructors have been trained to use these materials that are now part of the regular training in 23 states. Using this model HELP intends to ensure that all emergency responders are trained to address hydrogen risks. The model and the rigorous scenario analysis and review used to developing the operational and technical training is addressed in this paper.
Prediction of the Lift-off, Blow-out and Blow-off Stability Limits of Pure Hydrogen and Hydrogen and Hydrocarbon Mixture Jet Flames
Sep 2007
Publication
The paper presented experimental studies of the liftoff and blowout stability of pure hydrogen hydrogen/propane and hydrogen/methane jet flam es using a 2 mm burner. Carbon dioxide and Argon gas were also used in the study for the comparison with hydrocarbon fuel. Comparisons of the stability of H 2/C3H8 H 2/CH4 H 2/Ar and H 2/CO2 flames showed that H 2/C3H8 produced the highest liftoff height and H 2/CH4 required highest liftoff and blowoff velocities. The non-dimensional analysis of liftoff height approach was used to correlate liftoff data of H 2 H2-C3H8 H 2-CO2 C 3H8 and H2-Ar jet flames tested in the 2 mm burner. The suitability of extending the empirical correlations based on hydrocarbon flames to both hydrogen and hydrogen/ hydrocarbon flames was examined.
Complex Hydrides as Solid Storage Materials- First Safety Tests
Sep 2007
Publication
Hydrogen technology requires efficient and safe hydrogen storage systems. For this purpose storage in solid materials such as high capacity complex hydrides is studied intensely. Independent from the actual material to be used eventually any tank design will combine nanoscale powders of highly reactive material with pressurized hydrogen gas and so far little is known about the behaviour of these mixtures in case of incidents. For a first evaluation of a complex hydride in case of a tank failure NaAlH4 (doped with Ti) was investigated in a small scale tank failure tests. 80-100 ml of the material were filled into a heat exchanger tube and sealed under argon atmosphere with a burst disk. Subsequently the NaAlH4 was partially desorbed by heating. When the powder temperature reached 130 °C and the burst disk ruptured at 9 bar hydrogen overpressure the behaviour of the expelled powder was monitored using a high speed camera an IR camera as well as sound level meters. Expulsion of the hydrogen storage material into (dry) ambient atmosphere yields a dust cloud of finely dispersed powder which does not ignite spontaneously. Similar experiments including an external source of ignition (spark / water reacting with NaAlH4) yield a flame of reacting powder. The intensity will be compared to the reaction of an equivalent amount of pure hydrogen.
Modelling of Lean Uniform and Non-Uniform Hydrogen-Air Mixture Explosions in a Closed Vessel
Sep 2009
Publication
Simulation of hydrogen-air mixture explosions in a closed large-scale vessel with uniform and nonuniform mixture compositions was performed by the group of partners within the EC funded project “Hydrogen Safety as an Energy Carrier” (HySafe). Several experiments were conducted previously by Whitehouse et al. in a 10.7 m3 vertically oriented (5.7-m high) cylindrical facility with different hydrogen-air mixture compositions. Two particular experiments were selected for simulation and comparison as a Standard Benchmark Exercise (SBEP) problem: combustion of uniform 12.8% (vol.) hydrogen-air mixture and combustion of non-uniform hydrogen-air mixture with average 12.6% (vol.) hydrogen concentration across the vessel (vertical stratification 27% vol. hydrogen at the top of the vessel 2.5% vol. hydrogen at the bottom of the vessel); both mixtures were ignited at the top of the vessel. The paper presents modelling approaches used by the partners comparison of simulation results against the experiment data and conclusions regarding the non-uniform mixture combustion modelling in real-life applications.
Risk-Informed Process and Tools for Permitting Hydrogen Fueling Stations
Sep 2007
Publication
The permitting process for hydrogen fueling stations varies from country to country. However a common step in the permitting process is the demonstration that the proposed fueling station meets certain safety requirements. Currently many permitting authorities rely on compliance with well known codes and standards as a means to permit a facility. Current codes and standards for hydrogen facilities require certain safety features specify equipment made of material suitable for hydrogen environment and include separation or safety distances. Thus compliance with the code and standard requirements is widely accepted as evidence of a safe design. However to ensure that a hydrogen facility is indeed safe the code and standard requirements should be identified using a risk-informed process that utilizes an acceptable level of risk. When compliance with one or more code or standard requirements is not possible an evaluation of the risk associated with the exemptions to the requirements should be understood and conveyed to the Authority Having Jurisdiction (AHJ). Establishment of a consistent risk assessment toolset and associated data is essential to performing these risk evaluations. This paper describes an approach for risk-informing the permitting process for hydrogen fueling stations that relies primarily on the establishment of risk-informed codes and standards. The proposed risk-informed process begins with the establishment of acceptable risk criteria associated with the operation of hydrogen fueling stations. Using accepted Quantitative Risk Assessment (QRA) techniques and the established risk criteria the minimum code and standard requirements necessary to ensure the safe operation of hydrogen facilities can be identified. Risk informed permitting processes exist in some countries and are being developed in others. To facilitate consistent risk-informed approaches the participants in the International Energy Agency (IEA) Task 19 on hydrogen safety are working to identify acceptable risk criteria QRA models and supporting data.
High Pressure Hydrogen Jets in the Presence of a Surface
Sep 2009
Publication
The effect of surfaces on the extent of high pressure vertical and horizontal unignited jets is studied using CFD numerical simulations performed with FLACS Hydrogen and Phoenics. For a constant flow rate release of hydrogen from a 284 bar storage unit through a 8.5 mm orifice located 1 meter from the ground the maximum extent of the flammable cloud is determined as a function of time and compared to a free vertical hydrogen jet under identical release conditions. The results are compared to methane numerical simulations and to the predictions of the Birch correlations for the size of the flammable cloud. We find that the maximum extent of the flammable clouds of free jets obtained using CFD numerical simulations for both hydrogen and methane are in agreement with the Birch predictions. For hydrogen horizontal free jets there is strong buoyancy effect observed towards the end of the flammable cloud thus noticeably reducing its centreline extent. For methane horizontal free jets this effect is not observed. For methane the presence of the ground results in a pronounced increase in the extent of the flammable cloud compared to a free jet. The effects of a surface on vertical jets are also studied.
Hydrogen Safety and Permitting Hydrogen Fueling Stations
Sep 2007
Publication
Two key aspects of hydrogen safety are (1) incorporating data and analysis from research development and demonstration (RD&D) into the codes and standards development process; and (2) adopting and enforcing these codes and standards by state and local permitting officials. This paper describes work that the U.S. Department of Energy (DOE) is sponsoring to address these aspects of hydrogen safety. For the first DOE is working with the automobile and energy industries to identify and address high priority RD&D to establish a sound scientific basis for requirements that are incorporated in hydrogen codes and standards. The high priority RD&D needs are incorporated and tracked in an RD&D Roadmap adopted by the Codes and Standards Technical Team of the FreedomCAR and Fuel Partnership. DOE and its national laboratories conduct critical RD&D and work with key standards and model code development organizations to help incorporate RD&D results into the codes and standards process. To address the second aspect DOE has launched an initiative to facilitate the permitting process for hydrogen fueling stations (HFS). A key element of this initiative will be a Web-based information repository a toolkit that includes information fact sheets networking charts to encourage information exchange among code officials who have permitted or are in the process of permitting HFS templates to show whether a proposed station footprint conforms to requirements in the jurisdiction and a database of requirements incorporated in key codes and standards. The information repository will be augmented by workshops for code officials and station developers in jurisdictions that are likely to have HFS in the near future.
Experimental and Numerical Investigation of Hydrogen Gas Auto-ignition
Sep 2007
Publication
This paper describes hydrogen self-ignition as a result of the formation of a shock wave in front of a high-pressure hydrogen gas propagating in the tube and the semi-confined space for which the numerical and experimental investigation was done. An increase in the temperature behind the shock wave leads to the ignition on the contact surface of the mixture of combustible gas with air. The required condition of combustible self-ignition is to maintain the high temperature in the mixture for a time long enough for inflammation to take place. Experimental technique was based on a high-pressure chamber inflating with hydrogen burst disk failure and pressurized hydrogen discharge into tube of round or rectangular cross section filled with air. A physicochemical model involving the gas dynamic transport of a viscous gas the detailed kinetics of hydrogen oxidation k-ω differential turbulence model and the heat exchange was used for calculations of the self-ignition of high-pressure hydrogen. The results of our experiments and model calculations show that self-ignition in the emitted jet takes place. The stable development of self-ignition naturally depends on the orifice size and the pressure in the vessel a decrease in which leads to the collapse of the ignition process. The critical conditions are obtained.
Optimization of a Solar Hydrogen Storage System: Safety Considerations
Sep 2007
Publication
Hydrogen has been extensively used in many industrial applications for more than 100 years including production storage transport delivery and final use. Nevertheless the goal of the hydrogen energy system implies the use of hydrogen as an energy carrier in a more wide scale and for a public not familiarised with hydrogen technologies and properties.<br/>The road to the hydrogen economy passes by the development of safe practices in the production storage distribution and use of hydrogen. These issues are essential for hydrogen insurability. We have to bear in mind that a catastrophic failure in any hydrogen project could damage the insurance public perception of hydrogen technologies at this early step of development of hydrogen infrastructures.<br/>Safety is a key issue for the development of hydrogen economy and a great international effort is being done by different stakeholders for the development of suitable codes and standards concerning safety for hydrogen technologies [1 2]. Additionally to codes and standards different studies have been done regarding safety aspects of particular hydrogen energy projects during the last years [3 4]. Most of such have been focused on hydrogen production and storage in large facilities transport delivery in hydrogen refuelling stations and utilization mainly on fuel cells for mobile and stationary applications. In comparison safety considerations for hydrogen storage in small or medium scale facilities as usual in hydrogen production plants from renewable energies have received relatively less attention.<br/>After a brief introduction to risk assessment for hydrogen facilities this paper reports an example of risk assessment of a small solar hydrogen storage system applied to the INTA Solar Hydrogen Production and Storage facility as particular case and considers a top level Preliminary Failure Modes and Effects Analysis (FMEA) for the identification of hazard associated to the specific characteristics of the facility.
CFD Simulations of Hydrogen Release and Dispersion Inside the Storage Room of a Hydrogen Refuelling Station Using the ADREA-HF Code
Sep 2007
Publication
The paper presents CFD simulations of high pressure hydrogen release and dispersion inside the storage room of realistic hydrogen refuelling station and comparison to experimental data. The experiments were those reported by Tanaka et al. (2005) carried out inside an enclosure 5 m wide 6 m long and 4 m high having 1 m high ventilation opening on all sidewalls (half or fully open) containing an array of 35 x 250 L cylinders. The scenarios investigated were 40 MPa storage pressure horizontal releases from the center of the room from one cylinder with orifices of diameters 0.8 1.6 and 8 mm. The release calculations were performed using GAJET integral code. The CFD dispersion simulations were performed using the ADREA-HF CFD code. The structure of the flow and the mixing patterns were also investigated by presenting the predicted hydrogen concentration field. Finally the effects of release parameters natural ventilation and wind conditions were analyzed too.
Hydrogen Refuelling Stations for Public Transport Quality and Safety in the User-interface
Sep 2007
Publication
Hydrogen stations and supply systems for public transport have been demonstrated in a number of European cities during the last four years. The first refuelling facility was put into operation in Reykjavik in April 2003. Experience from the four years of operation shows that safety related incidents are more frequent in the user interface than in the other parts of the hydrogen refuelling station (HRS). This might be expected taking into account the fact that the refuelling is manually operated and that according to industrial statistics human failures normally stand for more than 80% of all safety related incidents. On the other hand the HRS experience needs special attention since the refuelling at the existing stations is carried out by well trained personnel and that procedures and systems are followed closely. So far the quality and safety approach to hydrogen refuelling stations has been based on industrial experience. This paper addresses the challenge related to the development of safe robust and easy to operate refuelling systems. Such systems require well adapted components and system solutions as well as user procedures. The challenge to adapt the industrial based quality and safety philosophy and methodologies to new hydrogen applications and customers in the public sector is addressed. Risk based safety management and risk acceptance criteria relevant to users and third party are discussed in this context. Human factors and the use of incident reporting as a tool for continuous improvement are also addressed. The paper is based on internal development programmes for hydrogen refuelling stations in Hydro and on participation in international EU and IPHE projects such as CUTE HyFLEET:CUTE HySafe and HyApproval.
Numerical Study of Spontaneous Ignition of Pressurized Hydrogen Release into Air
Sep 2007
Publication
Numerical simulations have been carried out for spontaneous ignition of pressurized hydrogen release directly into air. Results showed a possible mechanism for spontaneous ignition due to molecular diffusion. To accurately calculate the molecular transport of species momentum and energy in a multi-component gaseous mixture a mixture-averaged multi-component approach was employed in which thermal diffusion is accounted for. To reduce false numerical diffusion extremely fine meshes were used along with the ALE (Arbitrary Lagrangian-Eulerian) method. The ALE method was employed to track the moving contact surface with moving clustered grids. A detailed kinetic scheme with 21 elementary steps and 8 reactive chemical species was implemented for combustion chemistry. The scheme gives due consideration to third body reactions and reaction-rate pressure-dependant “fall-off” behavior. The autoignition of pressurized hydrogen release was previously observed in laboratory tests [2-3] and suspected as possible cause of some accidents. The present numerical study successfully captured this scenario. Autoignition was predicted to first take place at the tip region of the hydrogen-air contact surface due to mass and energy exchange between low temperature hydrogen and shock-heated air at the contact surface through molecular diffusion. The initial flame thickness is extremely thin due to the limiting molecular diffusion. The combustion region extends downward along the contact surface as it moves downstream. As the hydrogen jet developed downstream the front contact surface tends to be distorted by the developed flow of the air. Turbulence plays an important role in mixing at the region of the distorted contact surface. This is thought to be a major factor for the initial laminar flame to turn into a final stable turbulent flame.
Safety-Barrier Diagrams for Documenting Safety of Hydrogen Applications
Sep 2007
Publication
Safety-barrier diagrams have proven to be a useful tool in documenting the safety measures taken to prevent incidents and accidents in process industry. In Denmark they are used to inform the authorities and the nonexperts on safety relevant issues as safety-barrier diagrams are less complex compared to fault trees and are easy to understand. Internationally there is a growing interest in this concept with the use of so-called “bowtie” diagrams which are a special case of safety-barrier diagrams. Especially during the on-going introduction of new hydrogen technologies or applications as e.g. hydrogen refueling stations this technique is considered a valuable tool to support the communication with authorities and other stakeholders during the permitting process. Another advantage of safety-barrier diagrams is that there is a direct focus on those system elements that need to be subject to safety management in terms of design and installation operational use inspection and monitoring and maintenance. Safety-barrier diagrams support both quantitative and qualitative or deterministic approaches. The paper will describe the background and syntax of the methodology and thereafter the use of such diagrams for hydrogen technologies are demonstrated.
Testing Safety of Hydrogen Components
Sep 2007
Publication
Hydrogen as a new and ecologic energy source is tempting though it creates the challenge of ensuring the safe use of hydrogen for all future consumers. Making sure that a hydrogen vehicle can be simply and safely used by anyone while performing as expected requires that the car be light with built-in safety features. This is achieved by combining high pressure composite cylinders with strict test procedures. Composite cylinders of up to 150 L operated to a maximum of 700 bar are required for vehicle applications. Air Liquide has developed test benches to hydraulically cycle such cylinders at 1400 bar and up to 3500 bar for burst tests. These tests are performed under controlled temperature conditions at ambient and extreme temperatures in order to simulate cylinder aging. Components in gas service such as valves hoses and other pressure devices are tested up to 1400 bars with hydrogen to simulate actual usage conditions. Hydrogen is used as a testing gas instead of nitrogen which is commonly used for such tests because hydrogen interacts with materials (e.g. hydrogen embrittlement) and because hydrogen has a special thermodynamic behaviour ( pressure drop velocity heat exchange…)
No more items...