Projects & Initiatives
East Coast Hydrogen Feasibility Report
Nov 2021
Publication
The highlights of the report include:
- East Coast Hydrogen has the potential to connect up to 7GW of hydrogen production by 2030 alone exceeding the UK Government’s 5GW by 2030 target in a single project. It represents an unmissable opportunity for government and the private sector to work together in delivering on our ambitious decarbonisation targets.
- East Coast Hydrogen can use the natural assets of the North of England including existing and potential hydrogen storage facilities and build on the hydrogen production in two of the UK’s largest industrial clusters in the North East and North West in turn ensuring significant private sector investment in the UK’s industrial heartlands.
- This would be the first step in the conversion of our national gas grid to hydrogen and will act as a blueprint for subsequent conversions across the UK.
- The project will also demonstrate the innovation engineering capabilities and economic opportunity in the North and create tens of thousands of highly skilled Green jobs in the future hydrogen economy."
Effect of a Ripple Current on the Efficiency of a PEM Electrolyser
Mar 2021
Publication
The aim of this study was to determine how the efficiency of a proton exchange membrane (PEM) electrolyser is affected by an electric ripple current and the different characteristics of the ripple current (frequency amplitude and waveform). This paper presents the experimental method and measured results used to analyse the effect of ripple currents at various frequencies ripple factors and waveforms on the hydrogen production power consumption and efficiency of a PEM electrolyser. An active laboratory-size PEM electrolysis system was used to investigate the impact of various ripple currents on the efficiency of the system. The results revealed that the average power consumption increases as the ripple factor increases and decreases as the frequency of the ripple increases while the waveform of the applied current has no effect. Furthermore the average hydrogen flow rate is unaffected by the ripple factor frequency or waveform of the applied ripple current.
Milford Haven: Energy Kingdom - System Architecture Report: A Prospering from the Energy Revolution Project
Nov 2021
Publication
Milford Haven: Energy Kingdom is a two-year project exploring what a decarbonised smart local energy system could look like for Milford Haven Pembroke and Pembroke Dock.
The project explores the potential of hydrogen as part of a multi-vector approach to decarbonisation. Central to the project and to achieving Net Zero is a commitment to engage with the community and local industry providing insight and opportunities for growth.
The ambition is to gather detailed insight into the whole energy system around Milford Haven to identify and design a future smart local energy system based on a truly multi-vector approach and comprehensive energy systems architecture.
The transition to Net Zero requires action across the economy. As the UK’s largest energy port Milford Haven is an industrial cluster that can handle 30% of total UK gas demand is home to Europe’s largest gas power station powering 3.5 million homes and businesses has ambitions to build 90MW of floating offshore wind supports 5000 jobs and injects £324m to the Pembrokeshire economy.
This work describes the outcomes of the effort to define designs of future energy system architectures combining; technology the interconnectivity between them and data; with markets trading platforms and policies; with business models and defined organisational governance. The aim of these designs is to provide:
The project explores the potential of hydrogen as part of a multi-vector approach to decarbonisation. Central to the project and to achieving Net Zero is a commitment to engage with the community and local industry providing insight and opportunities for growth.
The ambition is to gather detailed insight into the whole energy system around Milford Haven to identify and design a future smart local energy system based on a truly multi-vector approach and comprehensive energy systems architecture.
The transition to Net Zero requires action across the economy. As the UK’s largest energy port Milford Haven is an industrial cluster that can handle 30% of total UK gas demand is home to Europe’s largest gas power station powering 3.5 million homes and businesses has ambitions to build 90MW of floating offshore wind supports 5000 jobs and injects £324m to the Pembrokeshire economy.
This work describes the outcomes of the effort to define designs of future energy system architectures combining; technology the interconnectivity between them and data; with markets trading platforms and policies; with business models and defined organisational governance. The aim of these designs is to provide:
- The basis for a roadmap for the next phases of development and implementation
- Confidence to innovators and investors in the future longevity of investments in hydrogen and
- A common basis of understanding for all stakeholders wishing to contribute to the Milford Haven: Energy Kingdom.
HyDeploy Report: Keele Information
Jun 2018
Publication
Keele University was chosen as the site for the HyDeploy project as it was seen as the site offered a high degree of control regarding safety functions high availability of operational data and minimal supply chain interfaces given that Keele University is the supplier transporter and distributer of natural gas at the site. The site was offered to the project as a living laboratory in line with the university's ambition to be at the forefront of energy innovation through the Smart Energy Network Demonstrator (SEND). Evidenced within this report is the supporting data that confirms the rationale for selecting Keele University and the necessary data to profile the section of the gas network which hydrogen will be injected into. The gas network at Keele University is segregated via the governor stations which regulate pressure within the network. The section of network which has been chosen for the HyDeploy project is the G3 network which is regulated by the G3 governor.
Energy From Waste and the Circular Economy
Jul 2020
Publication
The Energy Research Accelerator (ERA) and the Birmingham Energy Institute have launched a policy commission to examine the state of play barriers challenges and opportunities for Energy from Waste (EfW) to form part of the regional energy circular economy in the Midlands. This policy commission explores the case for regional investment whilst helping shape the regional local government and industry thinking surrounding critical issues such as fuel poverty and poor air quality.
The Challenge
Tackling climate change is one of the most pressing issues of our time. To follow the path for limiting global warming below 2ᵒC set out in the 2015 Paris agreement requires significant reduction in greenhouse gas emissions. The UK has committed to bring all greenhouse gas emissions to net zero by 2050 requiring action at a local regional and national level to transition to a zero carbon economy.
To decarbonise and decentralise the UK’s energy system we must implement technologies that provide energy supply solutions across the UK.
In the Midlands many industrial sites are unable to access supply of affordable clean and reliable energy to meet their demands.
Energy from Waste (EfW) could offer a solution to the Midlands based industrial sites. EfW sites provide affordable secure energy supply solutions that form part of a developing circular economy. EfW reduces our reliance on landfills and obtains the maximum value from our waste streams. There are a number of merging technologies that could potentially play an important role which treats waste as a resource properly integrated into an energy and transport system and fully respects the potential of linking in the circular economy.
Investment into EfW infrastructure in the region could lead to job creation and economic growth and could help provide inward investment needed to redevelop old industrial sites and retiring power stations. However for EfW to be part of a net-zero energy system (either in transition or long-term) technologies and processes are needed that reduce the current carbon emissions burden.
EfW could play a significant role in the net zero carbon transition in the Midlands supplying heat power and green fuels and solve other problems - the region has some of the highest levels of energy/fuel poverty and poor air quality in the UK. The policy commission will help shape the regional local government and industry thinking surrounding this important topic.
Report Recommendations
Recovery Resource Cluster
The EfW policy commission proposes three major areas where it believes that government investment would be highly beneficial
The National Centre for the Circular Economy would analyse material flows throughout the economy down to regional and local levels and develop deep expertise in recycling and EfW technologies. The CCE would also provide expert guidance and support for local authorities as they develop local or regional strategies and planning frameworks.
The R&D Grand Challenge aims to make big advances in small-scale carbon capture technologies in order to turn 100% of CO2 produced through the process of converting waste to energy into useful products. This is very important for areas such as the Midlands which are remoted from depleted oil and gas reservoirs.
The Challenge
Tackling climate change is one of the most pressing issues of our time. To follow the path for limiting global warming below 2ᵒC set out in the 2015 Paris agreement requires significant reduction in greenhouse gas emissions. The UK has committed to bring all greenhouse gas emissions to net zero by 2050 requiring action at a local regional and national level to transition to a zero carbon economy.
To decarbonise and decentralise the UK’s energy system we must implement technologies that provide energy supply solutions across the UK.
In the Midlands many industrial sites are unable to access supply of affordable clean and reliable energy to meet their demands.
Energy from Waste (EfW) could offer a solution to the Midlands based industrial sites. EfW sites provide affordable secure energy supply solutions that form part of a developing circular economy. EfW reduces our reliance on landfills and obtains the maximum value from our waste streams. There are a number of merging technologies that could potentially play an important role which treats waste as a resource properly integrated into an energy and transport system and fully respects the potential of linking in the circular economy.
Investment into EfW infrastructure in the region could lead to job creation and economic growth and could help provide inward investment needed to redevelop old industrial sites and retiring power stations. However for EfW to be part of a net-zero energy system (either in transition or long-term) technologies and processes are needed that reduce the current carbon emissions burden.
EfW could play a significant role in the net zero carbon transition in the Midlands supplying heat power and green fuels and solve other problems - the region has some of the highest levels of energy/fuel poverty and poor air quality in the UK. The policy commission will help shape the regional local government and industry thinking surrounding this important topic.
Report Recommendations
Recovery Resource Cluster
The EfW policy commission proposes three major areas where it believes that government investment would be highly beneficial
- Building a network of local and regional Resource Recovery Clusters
- Creating a National Centre for the Circular Economy
- Launching an R&D Grand Challenge to develop small-scale circular carbon capture technologies.
The National Centre for the Circular Economy would analyse material flows throughout the economy down to regional and local levels and develop deep expertise in recycling and EfW technologies. The CCE would also provide expert guidance and support for local authorities as they develop local or regional strategies and planning frameworks.
The R&D Grand Challenge aims to make big advances in small-scale carbon capture technologies in order to turn 100% of CO2 produced through the process of converting waste to energy into useful products. This is very important for areas such as the Midlands which are remoted from depleted oil and gas reservoirs.
Hy4Heat Annex To Site Specific Safety Case for Hydrogen Community Demonstration - Work Package 7
May 2021
Publication
The Hy4Heat Safety Assessment has focused on assessing the safe use of hydrogen gas in certain types of domestic properties and buildings. The summary reports (the Precis and the Safety Assessment Conclusions Report) bring together all the findings of the work and should be looked to for context by all readers. The technical reports should be read in conjunction with the summary reports. While the summary reports are made as accessible as possible for general readers the technical reports may be most accessible for readers with a degree of technical subject matter understanding. All of the safety assessment reports have now been reviewed by the HSE<br/>Annex prepared to support Site Specific Safety Cases for hydrogen gas community demonstrations based on work undertaken by the Hy4Heat programme. It covers a collection of recommended risk reduction measures for application downstream of the Emergency Control Valve (ECV)
Hy4Heat Safety Assessment: Precis - Work Package 7
May 2021
Publication
The Hy4Heat Safety Assessment has focused on assessing the safe use of hydrogen gas in certain types of domestic properties and buildings. The summary reports (the Precis and the Safety Assessment Conclusions Report) bring together all the findings of the work and should be looked to for context by all readers. The technical reports should be read in conjunction with the summary reports. While the summary reports are made as accessible as possible for general readers the technical reports may be most accessible for readers with a degree of technical subject matter understanding. All of the safety assessment reports have now been reviewed by the HSE.<br/><br/>This document is an overview of the Safety Assessment work undertaken as part of the Hy4Heat programme
HyDeploy2: Gas Characteristics Summary and Interpretation
Jun 2020
Publication
In order to inform the Quantified Risk Assessment (QRA) and procedures for the Winlaton trial the gas characteristics relating to the behaviour of the flammable gas have been reviewed for blended natural gas mixtures containing 20% mol/mol hydrogen (hereby referred to as “blend”) for normal operation and 50% mol/mol for fault conditions. This work builds on the findings of the previous HyDeploy gas characteristics report HyD-Rep04-V02-Characteristics.<br/>Click on the supplements tab to view the other documents from this report
Hydrogen Projects Database – Analysis
Jun 2020
Publication
The IEA produced this dataset as part of efforts to track advances in low-carbon hydrogen technology. It covers all projects commissioned worldwide since 2000 to produce hydrogen for energy or climate-change-mitigation purposes. It includes projects which their objective is either to reduce emissions associated with producing hydrogen for existing applications or to use hydrogen as an energy carrier or industrial feedstock in new applications that have the potential to be a low-carbon technology. Projects in planning or construction are also covered.
Link to Download Database from IEA Website
Link to Download Database from IEA Website
Testing Programme for Hydrogen Tolerance Tests of Domestic and Commercial Natural Gas Appliances
Jan 2021
Publication
The THyGA project (‘Testing Hydrogen admixture for Gas Applications’) focusses on technical aspects and the regulatory framework concerning the potential operation of domestic and commercial end-user appliances with hydrogen / natural gas blends.<br/>The core of the project is a broad experimental campaign with the aim to conduct up to 100 hydrogen tolerance tests. In addition the technical status quo and present knowledge about hydrogen impact on domestic and commercial appliances are assessed and potential future developments of rules and standards are discussed. Also mitigation strategies for coping with high levels of hydrogen admixture will be developed. By this broad approach the project aims at investigating which levels of hydrogen blending impact the various appliance technologies and to which extent in order to identify the regime in which a safe efficient and low-polluting operation is possible.<br/>The series of public reports by the THyGA project starts with several publications from work package 2 which sets the basis for the upcoming results and discussion of the experimental campaign as well as mitigation and standardisation topics.<br/>This report D2.5 completes the series of public reports from work package 2. It explains the steps of development of the test programme for gas-fired appliance tests with hydrogen admixture and especially describes the exchange between the THyGA partners and the external stakeholders.<br/>The report also explains the process of acquisition of appliances to test and method of selecting appliances.
HyDeploy2: Summary of Procedures for the Trial Network
Jun 2021
Publication
The assessment of appropriate operational procedures to govern the injection of a hydrogen/natural gas blend into Northern Gas Networks’ (NGN) Winlaton gas distribution network was a key requirement of the HyDeploy2 project. To perform this assessment the review was broken down into two areas procedures upstream of the emergency control valve (owned by NGN) and procedures downstream of the Emergency Control Valve (procedures which would be performed by Gas Safe registered individuals). Assessment of the upstream procedures was led by NGN (own and carry out all upstream procedures on NGN’s gas network) and assessment of the downstream procedures was led by Blue Flame Associates (an industry expert on downstream gas procedures).<br/>Methodologies were adopted to be able to highlight procedures that could potentially be used on the Winlaton trial network during the hydrogen blended gas injection period and if they were impacted by the changing of the gas within the network from natural gas to hydrogen blended gas. This method determined that for downstream gas procedures a total of 56 gas procedures required expert review resulting in 80 technical questions to be assessed and for the upstream gas procedures a total of 80 gas procedures required expert review resulting in 266 technical questions to be assessed.<br/>The operational procedures assessment has led to a determination as to whether a change is or is not required for relevant operational procedures where a basis of concern existed with respect to the injection of hydrogen blended gas. Any requirements to modify an existing procedure has been given in this report referencing the source as to where the detailed analysis for the change/no change recommendation has been given.<br/>The assessment took into account the associated experimental and research carried out as part of the HyDeploy and HyDeploy2 projects such as the assessment of gas characteristics materials impact appliance survey of assets on the Winlaton network and impact of hydrogen blended gas on gas detection equipment references to these studies have been given accordingly to associated impacted operational procedures.<br/>The conclusion of the assessment is that for upstream gas procedures there are some operational procedures that are unchanged some that require an increase in the frequency as to how often they are performed and some procedures which require a technical modification. For downstream domestic gas procedures all procedures applicable to a domestic gas installation were deemed to not be detrimentally affected by the introduction of a 20 mol% hydrogen blend.<br/>For upstream gas procedures an appropriate training package will be built off the back of the results presented in this report and disseminated accordingly to all relevant Operatives that will be responsible for the safety operation and maintenance of the Winlaton network during the hydrogen blend injection period. For downstream gas procedures the Gas Safe community have been fully engaged and informed about the trial.<br/>Click on the supplements tab to view the other documents from this report
North East Network & Industrial Cluster Development – Summary Report A Consolidated Summary Report by SGN & Wood
Nov 2021
Publication
In response to the global climate emergency governments across the world are aiming to lower greenhouse gas emissions to slow the damaging effects of climate change.<br/>The Scottish Government has set a target of net zero emissions by 2045. Already a global leader in renewable energy and low-carbon technology deployment Scotland’s energy landscape is set to undergo more change as it moves toward becoming carbon-neutral. Key to that change will be the transition from natural gas to zero-carbon gases like hydrogen and biomethane.<br/>Scotland’s north-east and central belt are home to some of its largest industrial carbon emitters. The sector’s reliance on natural gas means that it emits 11.9Mt of CO2 emissions per year says NECCUS: the equivalent of 2.6 million cars or roughly all the cars in Scotland. Most homes and businesses across Scotland also use natural gas for heating.<br/>Our North-East Network and Industrial Cluster project is laying the foundations for the rapid decarbonisation of this high-emitting sector. We’ve published a report outlining the practical steps needed to rapidly decarbonise a significant part of Scotland’s homes and industry. It demonstrates how hydrogen can play a leading role in delivering the Scottish Government’s target of one million homes with low carbon heat by 2030.<br/>The research published with global consulting and engineering advisor Wood sets out a transformational and accelerated pathway to 100% hydrogen for Scotland’s gas networks which you can see on the map below. It also details the feasibility of a CO2 collection network to securely capture transport and store carbon dioxide emissions deep underground.
HyDeploy2 Technical Services Report: Downstream Gas Standards Review
Jan 2021
Publication
The application of appropriate procedures in the downstream gas industry (defined as any works downstream of the emergency control value) is critical in protecting consumers of gas both domestic and commercial. The two primary standard setting bodies for the downstream gas industry are the British Standard Institution (BSI) and the Institution of Gas Engineers and Managers (IGEM). To ensure only competent engineers carry out works on a gas installation all gas businesses or selfemployed persons must become a member of Gas Safe Register as stipulated by the Gas Safety (Installation and Use) Regulations 1998 1 and each gas operative shall be included on the register and hold a valid license card that covers the areas of gas work they undertake. Membership of the Gas Safe Register is contingent upon demonstration of competency the recognised competency assessments are based on the relevant BSI and IGEM standards. Therefore the primary source of a gas operative’s competency to work on natural gas installations are the associated BSI and IGEM natural gas downstream standards.<br/>Investigation was undertaken to understand the potential implications of introducing 20 mol% hydrogen (H2) within natural gas supplies on the ability of gas operatives to competently carry out works. This investigation took the form of identifying all BSI and IGEM standards that could be applied on natural gas installations and reviewing them within the context of the known effects of introducing a 20 mol% H2 blend. Following review a series of technical questions were generated and responded to by the Health and Safety Executive Science Division. The responses provided were then reviewed and if considered necessary challenged to provide further information. The procedural review was led by Blue Flame Associates a body deemed sufficiently competent in downstream standards training certification and investigation. The report was subsequently reviewed by industry and feedback received. The industry comments were reviewed by the Project Team and where considered necessary the report was updated.
HyDeploy2 Project: Winlaton Trial Report
Sep 2022
Publication
The HyDeploy project seeks to address a key issue for UK customers and UK energy policy makers: how to reduce the carbon emitted from heating homes. The UK has a world class gas distribution grid delivering heat conveniently and safely to over 83% of homes. Emissions can be reduced by lowering the carbon content of gas through blending with hydrogen. This delivers carbon savings without customers requiring disruptive and expensive changes in their homes. It also provides the platform for deeper carbon savings by enabling wider adoption of hydrogen across the energy system. HyDeploy has previously delivered a successful trial demonstrations of repurposing existing UK distribution gas networks (Keele University) to operate on a blend of natural gas and hydrogen (up to 20% mol/mol) showing that carbon savings can be made through the gas networks today whilst continuing to meet the needs of gas consumers without introducing any disruptions.<br/>The ultimate objective of the HyDeploy programme is to see the roll-out of hydrogen blends across the GB gas distribution network unlocking 35 TWh pa of low carbon heat - the equivalent of removing 2.5 million fossil-fuelled cars off the roads. To achieve this the next phase of the programme is to address the remaining evidence gaps that had not been covered by the trial demonstration programmes.<br/>The demonstrations have focussed on the low and medium pressure tiers of the gas distribution network (i.e. injecting into a 2 bar gauge pressure network and distributing the blended gas down to the low pressure network and into people’s homes and commercial buildings and businesses) and predominantly serving domestic appliances.<br/>The remainder of the HyDeploy2 programme will generate an evidence base for GB’s gas distribution network which includes demonstrating the suitability of using hydrogen blended gas in the fields of industrial and commercial users and the performance of materials assets and procedures on the higher pressure tiers (i.e. 7 bar gauge operation and above).<br/>This report captures the details of the Winlaton trial and provides a future look to how the UK can transition from successful hydrogen blending trials to roll-out.
H21 Phase 2 Technical Summary Report
Jul 2023
Publication
The H21 Phase 2 research will provide vital evidence both towards the hydrogen village trial and potential town scale pilots and to the Government which is aiming to make a decision about the use of hydrogen for home heating by 2026.
The key objectives of the H21 Phase 2 NIC project were to further develop the evidence base supporting conversion of the natural gas distribution network to 100% hydrogen. The key principles of H21 NIC Phase 2 were to:
→ Confirm how we can manage and operate the network safely through an appraisal of existing network equipment procedures and network modelling tools.
→ Validate network operations on a purpose-built below 7 barg network as well as an existing unoccupied buried network and provide a platform to publicise and demonstrate a hydrogen network in action.
→ Develop a combined distribution network and downstream Quantitative Risk Assessment (QRA) for 100% hydrogen by further developing the work undertaken on the H21 Phase 1 QRA and the Hy4Heat ‘downstream of ECV’ QRA.
→ Continue to understand how consumers could be engaged with ahead of a conversion. This programme was split into four phases detailed below:
→ Phase 2a – Appraisal of Network 0-7 bar Operations
→ Phase 2b – Unoccupied Network Trials
→ Phase 2c – Combined QRA
→ Phase 2d – Social Sciences
The project with the support of the HSE’s Science & Research Centre (HSE S&RC) and DNV successfully undertook a programme of work to review the NGN below 7 barg network operating procedures. The project implemented testing and demonstrations on the Phase 2a Microgrid at DNV Spadeadam and Phase 2b Unoccupied Trial site in South Bank on a repurposed NGN network to provide and demonstrate the supporting evidence for the required changes to procedures. Details of the outputs of the HSE S&RC procedure review and the evidence collected by DNV from the testing and demonstration projects is provided in detail in this technical summary report.
Due to the differences in gas characteristics between hydrogen and natural gas changes will be required to some of the operational and maintenance procedures the evidence of which is provided in this report. The Gas Distribution Networks (GDNs) will need to review the findings from this project when implementing the required changes to their operational and maintenance procedures.
The key objectives of the H21 Phase 2 NIC project were to further develop the evidence base supporting conversion of the natural gas distribution network to 100% hydrogen. The key principles of H21 NIC Phase 2 were to:
→ Confirm how we can manage and operate the network safely through an appraisal of existing network equipment procedures and network modelling tools.
→ Validate network operations on a purpose-built below 7 barg network as well as an existing unoccupied buried network and provide a platform to publicise and demonstrate a hydrogen network in action.
→ Develop a combined distribution network and downstream Quantitative Risk Assessment (QRA) for 100% hydrogen by further developing the work undertaken on the H21 Phase 1 QRA and the Hy4Heat ‘downstream of ECV’ QRA.
→ Continue to understand how consumers could be engaged with ahead of a conversion. This programme was split into four phases detailed below:
→ Phase 2a – Appraisal of Network 0-7 bar Operations
→ Phase 2b – Unoccupied Network Trials
→ Phase 2c – Combined QRA
→ Phase 2d – Social Sciences
The project with the support of the HSE’s Science & Research Centre (HSE S&RC) and DNV successfully undertook a programme of work to review the NGN below 7 barg network operating procedures. The project implemented testing and demonstrations on the Phase 2a Microgrid at DNV Spadeadam and Phase 2b Unoccupied Trial site in South Bank on a repurposed NGN network to provide and demonstrate the supporting evidence for the required changes to procedures. Details of the outputs of the HSE S&RC procedure review and the evidence collected by DNV from the testing and demonstration projects is provided in detail in this technical summary report.
Due to the differences in gas characteristics between hydrogen and natural gas changes will be required to some of the operational and maintenance procedures the evidence of which is provided in this report. The Gas Distribution Networks (GDNs) will need to review the findings from this project when implementing the required changes to their operational and maintenance procedures.
THyGA - Review on Other Projects Related to Mitigation and Identification of Useable Sensors in Existing Appliances
Jun 2022
Publication
The main goal of THyGA’s WP5 is to investigate ways to adapt residential or commercial appliances that have safety or performance issues to different levels of H2 concentrations in natural gas. This first deliverable presents some possible mitigation measures based on a literature study and some calculations.<br/>Acting on gas quality to avoid that hydrogen addition enhance current gas properties variations was explored several times in the past. Designing new appliances that could operate with variable gas composition including hydrogen. Dealing with existing appliances in order to guaranty safety for users and appliances.
THyGA - Overview of Relevant Existing Certification Experience and On-going Standardization Activities in the EU and Elsewhere Related to Gas Appliances Using H2NG
Oct 2021
Publication
This 2nd deliverable from WP4 gives an overview of relevant existing certification experience on-going standardization activities and field trials in the European Union and other countries regarding gas appliances using H2NG. It gives a picture of the today’s situation as many of the identified initiatives are ongoing and progressing continuously.
Everything About Hydrogen Podcast: Back to a Hydrogen Future?
Mar 2020
Publication
On this weeks episode the team are talking all things hydrogen with Mark Neller Director at Arup. On the show we discuss the UK’s Hydrogen4Heat program where Arup has been leading the UK government’s work on the safety and practical considerations that are necessary to examine whether hydrogen could be a serious solutions for decarbonising UK residential commercial and industry heat. We also discuss the Nikola Badger the need for system wide planning when considering decarbonisation pathways for heat. All this and more on the show!
The podcast can be found on their website
The podcast can be found on their website
Historical Analysis of FCH 2 JU Stationary Fuel Cell Projects
May 2021
Publication
As a part of its knowledge management activities the Fuel Cell and Hydrogen Joint Undertaking 2 (FCH 2 JU) has commissioned the Joint Research Centre (JRC) to perform a series of historical analyses by topic area to assess the impact of funded projects and the progression of its current Multi-Annual Work Plan (MAWP; 2014- 2020) towards its objectives. These historical analyses consider all relevant funded projects since the programme’s inception in 2008. This report considers the performance of projects against the overall FCH 2 JU programme targets for stationary Fuel Cells (FCs) using quantitative values of Key Performance Indicators (KPI) for assessment. The purpose of this exercise is to see whether and how the programme has enhanced the state of the art for stationary fuel cells and to identify potential Research & Innovation (R&I) gaps for the future. Therefore the report includes a review of the current State of the Art (SoA) of fuel cell technologies used in the stationary applications sector. The programme has defined KPIs for three different power output ranges and equivalent applications: (i) micro-scale Combined Heat and Power (mCHP) for single family homes and small buildings (0.3 - 5 kW); (ii) mid-sized installations for commercial and larger buildings (5 - 400 kW); (iii) large scale FC installations converting hydrogen and renewable methane into power in various applications (0.4 - 30 MW). Projects addressing stationary applications in these particular power ranges were identified and values for the achieved KPIs extracted from relevant sources of information such as final reports and the TRUST database (Technology Reporting Using Structured Templates). As much of this data is confidential a broad analysis of performance of the programme against its KPIs has been performed without disclosing confidential information. The results of this analysis are summarised within this report. The information obtained from this study will be used to suggest future modifications to the research programme and associated targets.
Development of Hydrogen Area Classification Data for Use in Village Trials
May 2023
Publication
The natural gas industry proposes carrying out trials on limited parts of the gas network using hydrogen as an alternative to natural gas as a fuel. Ahead of these trials it is important to establish whether the zones of negligible extent that are typically applied to natural gas systems could still be considered zones of negligible extent for hydrogen. The standard IGEM/UP/16 is commonly used by the natural gas industry to carry out area classification for low pressure gas systems for example as found in boiler houses. However IGEM/UP/16 is not applicable to hydrogen. Therefore IGEM commissioned HSE’s Science Division to develop some data that could be used to feed into an area classification assessment for the village trials.<br/>This report identifies two main elements of IGEM/UP/16 which may not apply to hydrogen and suggests values for hydrogen-specific alternatives. These are the ventilation rate requirements to allow a zone to be deemed of negligible extent and the definition of a confined space.
No more items...